Skip to main content

Plastics Completely Synthesized by Bacteria: Polyhydroxyalkanoates

  • Chapter
  • First Online:
Book cover Plastics from Bacteria

Part of the book series: Microbiology Monographs ((MICROMONO,volume 14))

Abstract

Polyhydroxyalkanoates (PHA) produced by many bacteria have been investigated by microbiologists, molecular biologists, biochemists, chemical engineers, chemists, polymer experts, and medical researchers over the past many years. Applications of PHA as bioplastics, fine chemicals, implant biomaterials, medicines, and biofuels have been developed. Companies have been established or involved in PHA-related R&D as well as large-scale production. PHA synthesis has been found to improve the robustness of non-PHA-producing microorganisms and to regulate bacterial metabolism, leading to yield improvement for some bacterial fermentation products. In addition, amphiphilic proteins related to PHA synthesis including PhaP, PhaZ, and PhaC have been found to be useful for achieving protein purification and even specific drug targeting. It has become clear that PHA and its related technologies are forming an industrial value chain ranging from fermentation, materials, and energy to medical fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe H, Doi Y, Aoki H, Akehata T, Hori Y, Yamaguchi A (1995) Physical properties and enzymatic degradability of copolymers of (R)-3-hydroxybutyric and 6-hydroxyhexanoic acids. Macromolecules 28:7630–763

    Google Scholar 

  • Alderete JE, Karl DW, Park CH (1993) Production of poly(hydroxybutyrate) homopolymer and copolymer from ethanol and propanol in a fed-batch culture. Biotechnol Prog 9:520–525

    Article  CAS  Google Scholar 

  • Anderson AJ, Haywood GW, Dawes EA (1990) Biosynthesis and composition of bacterial poly(hydroxyalkanoates). Int J Biol Macromol 12:102–105

    Article  CAS  PubMed  Google Scholar 

  • Bian YZ, Wang Y, Guli S, Chen GQ, Wu Q (2009) Evaluation of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) conduits for peripheral nerve regeneration. Biomaterials 30:217–225

    Article  CAS  PubMed  Google Scholar 

  • Bissery MC, Valeriote F, Thies C (1985) Therapeutic efficacy of CCNU-loaded microspheres prepared from poly(D,L)lactide (PLA) or poly-β-hydroxybutyrate (PHB) against Lewis lung (LL) carcinoma. Proc Am Assoc Cancer Res 26:355–355

    Google Scholar 

  • Brophy MR, Deasy PB (1986) In vitro and in vivo studies on biodegradable polyester microparticles containing sulfamethizole. Int J Pharm 29:223–231

    Article  CAS  Google Scholar 

  • Brzostowicz PC, Blasko MS, Rouvière PE (2002) Identification of two gene clusters involved in cyclohexanone oxidation in Brevibacterium epidermidis strain HCU. Appl Microbiol Biotechnol 58:781–789

    Article  CAS  PubMed  Google Scholar 

  • Byrom D (1992) Production of poly-beta-hydroxybutyrate-poly-beta-hydroxyvalerate copolymers. FEMS Microbiol Rev 103:247–250

    Google Scholar 

  • Castro-Sowinski S, Burdman S, Matan O, Okon Y (2009) Natural functions of bacterial polyhydroxyalkanoates. Microbiol Monogr. doi:10.1007/978-3-642-03287-5_3

    Google Scholar 

  • Chen GQ (2009a) A polyhydroxyalkanoates based bio- and materials industry. Chem Soc Rev. 38:2434–2446

    Google Scholar 

  • Chen GQ (2009b) Industrial production of PHA. Microbiol Monogr. doi:10.1007/978-3-642-03287-5_6

    Google Scholar 

  • Chen GQ, Zhang G, Park SJ, Lee SJ (2001) Industrial production of poly(hydroxybutyrate-co-hydroxyhexanoate). Appl Microbiol Biotechnol 57:50–55

    Google Scholar 

  • Chen JY, Liu T, Zheng Z, Chen JC, Chen GQ (2004) Polyhydroxyalkanoate synthases PhaC1 and PhaC2 from Pseudomonas stutzeri 1317 had different substrate specificities. FEMS Microbiol Lett 234:231–237

    Article  CAS  PubMed  Google Scholar 

  • Chen GQ and Wu Q (2005) Polyhydroxyalkanoates as tissue engineering materials. Biomaterials 26:6565–6578

    Google Scholar 

  • Cheng S, Chen GQ, Leski M, Zou B, Wang Y, Wu Q (2006a) The effect of D,L-β-hydroxybutyric acid on cell death and proliferation in L929 cells. Biomaterials 27:3758–3765

    Article  CAS  PubMed  Google Scholar 

  • Cheng S, Wu Q, Zhao Y, Zou B, Chen GQ (2006b) Poly(hydroxybutyrate-co-hydroxyhexanoate) microparticles stimulate murine fibroblast L929 cell proliferation. Polym Degrad Stab 91:3191–3196

    Article  CAS  Google Scholar 

  • Chohan SN, Copeland L (1998) Acetoacetyl coenzyme A reductase and polyhydroxybutyrate synthesis in Rhizobium (Cicer) sp. strain CC 1192. Appl Environ Microbiol 64:2859–2863

    CAS  PubMed  Google Scholar 

  • Chung CW, Kim YS, Kim YB, Bae KS, Rhee YH (1999) Isolation of a Pseudomonas sp. strain exhibiting unusual behavior of poly(3-hydroxyalkanoates) biosynthesis and characterization of synthesized polyesters. J Microbiol Biotechnol 9:847–853

    CAS  Google Scholar 

  • Chung A, Liu Q, Ouyang SP, Wu Q, Chen GQ (2009) Microbial production of 3-hydroxydodecanoic acid by pha-operon and fadBA knockout mutant of Pseudomonas putida KT2442 harboring tesB gene. Appl Microbiol Biotechnol 83:513–519

    Google Scholar 

  • Clarinval AM, Halleux J (2005) Classification of biodegradable polymers. In: Smith R (ed) Biodegradable polymers for industrial applications. CRC, Boca Raton, pp 3–56

    Google Scholar 

  • Dai ZW, Zou XH, Chen GQ (2009) Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) as an injectable implant system for prevention of post-surgical tissue adhesion. Biomaterials 30:3075–3083

    Google Scholar 

  • de Roo G, Kellerhals MB, Ren Q, Witholt B, Kessler B (2002) Production of chiral R-3-hydroxyalkanoic acids and R-3-hydroxyalkanoic acid methylesters via hydrolytic degradation of polyhydroxyalkanoate synthesized by pseudomonads. Biotechnol Bioeng 77:717–722

    Article  PubMed  Google Scholar 

  • Gould PL, Holland SJ, Tighe BJ (1987) Polymers for biodegradable medical devices. 4-Hydroxybutyrate valerate copolymers as nondisintegrating matrices for controlled-release oral dosage forms. Int J Pharm 38:231–237

    Article  CAS  Google Scholar 

  • He WN, Zhang ZM, Hu P, Chen GQ (1999) Microbial synthesis and characterization of polyhydroxyalkanoates by strain DG17 from glucose. Acta Polym Sin 6:709–714

    Google Scholar 

  • Hrabak O (1992) Industrial production of poly-beta-hyrdoxybutyrate. FEMS Microbiol Rev 103:251–255

    Google Scholar 

  • Iwata T, Doi Y (2000) Morphology and crystal structure of solution-grown single crystals of poly[(R)-3-hydroxyvalerate]. Macromolecules 33:5559–5565

    Article  CAS  Google Scholar 

  • Kemnitzer JE, McCarthy SP, Gross RA (1993) Preparation of predominantly syndiotactic poly(beta-hydroxybutyrate) by the tributyltin methoxide catalyzed ring-opening polymerization of racemic beta-butyrolactone. Macromolecules 26:1221–1229

    Article  CAS  Google Scholar 

  • Koosha F, Muller RH, Davis SS (1989) Polyhydroxybutyrate as a drug carrier. CRC Crit Rev Ther Drug Carrier Syst 6:117–130

    CAS  Google Scholar 

  • Kourtz L, Dillon K, Daughtry S, Madison LL, Peoples O, Snell KD (2005) A novel thiolase-reductase gene fusion promotes the production of polyhydroxybutyrate in Arabidopsis. Plant Biotechnol J 3:435–447

    Article  CAS  PubMed  Google Scholar 

  • Kubota M, Nakano M, Juni K (1988) Mechanism of enhancement of the release rate of aclarubicin from poly-beta-hydroxybutyric acid microspheres by fatty acid esters. Chem Pharm Bull 36:333–337

    CAS  PubMed  Google Scholar 

  • Lageveen RG, Huisman GW, Preusting H, Ketelaar P, Eggink G, Witholt B (1988) Formation of polyesters by Pseudomonas oleovorans: effect of substrates on formation and composition of poly-(R)-3-hydroxyalkanoates and poly-(R)-3-hydroxyalkenoates. Appl Environ Microbiol 54:2924–2932

    CAS  PubMed  Google Scholar 

  • Lee SY, Lee Y, Wang FL (1999) Chiral compounds from bacterial polyesters: sugars to plastics to fine chemicals. Biotechnol Bioeng 65:363–368

    Article  CAS  PubMed  Google Scholar 

  • Lossl A, Bohmert K, Harloff H, Eibl C, Muhlbauer S, Koop HU (2005) Inducible trans-activation of plastid transgenes: expression of the R. eutropha phb operon in transplastomic tobacco. Plant Cell Physiol 46:1462–1471

    Article  PubMed  Google Scholar 

  • McChalicher CWJ, Srienc F (2007) Investigating the structure–property relationship of bacterial PHA block copolymers. J Biotechnol 132:296–302

    Article  CAS  PubMed  Google Scholar 

  • Menzel G, Harloff HJ, Jung C (2003) Expression of bacterial poly(3-hydroxybutyrate) synthesis genes in hairy roots of sugar beet. Appl Microbiol Biotechnol 60:571–576

    CAS  PubMed  Google Scholar 

  • Mikova G, Chodak I (2006) Properties and modification of poly(3-hydroxybutanoate). Chem Listy 100:1075–1083

    CAS  Google Scholar 

  • Mittendorf V, Robertson EJ, Leech RM, Krüger N, Steinbüchel A, Poirier Y (1998) Synthesis of medium-chain-length polyhydroxyalkanoates in Arabidopsis thaliana using intermediates of peroxisomal fatty acid β-oxidation. Proc Natl Acad Sci USA 95:13397–13402

    Article  CAS  PubMed  Google Scholar 

  • Noda I, Lindsey SB, Caraway D (2009) Nodax™ class PHA copolymers: their properties and applications. Microbiol Monogr. doi:10.1007/978-3-642-03287-5_10

    Google Scholar 

  • Pederson EN, McChalicher CWJ, Srienc F (2006) Bacterial synthesis of PHA block copolymers. Biomacromolecules 7:1904–1911

    Article  CAS  PubMed  Google Scholar 

  • Poirier Y (2002) Polyhydroxyalknoate synthesis in plants as a tool for biotechnology and basic studies of lipid metabolism. Prog Lipid Res 41:131–155

    Article  CAS  PubMed  Google Scholar 

  • Poirier Y, Brumbley SM (2009) Metabolic engineering of plants for the synthesis of polyhydroxyalkanaotes. Microbiol Monogr. doi:10.1007/978-3-642-03287-5_8

    Google Scholar 

  • Pouton CW, Akhtar S (1996) Biosynthetic polyhydroxyalkanoates and their potential in drug delivery. Adv Drug Deliv Rev 18:133–162

    Article  CAS  Google Scholar 

  • Purnell MP, Petrasovits LA, Nielsen LK, Brumbley SM (2007) Spatio-temporal characterization of polyhydroxybutyrate accumulation in sugarcane. Plant Biotechnol J 5:173–184

    Article  CAS  PubMed  Google Scholar 

  • Ren Q, Grubelnik A, Hoerler M, Ruth K, Hartmann R, Felber H, Zinn M (2005) Bacterial poly(hydroxyalkanoates) as a source of chiral hydroxyalkanoic acids. Biomacromolecules 6:2290–2298

    Article  CAS  PubMed  Google Scholar 

  • Reusch RN (1989) Poly-beta-hydroxybutyrate calcium polyphosphate complexes in eukaryotic membranes. Proc Soc Exp Biol Med 191:377–381

    CAS  PubMed  Google Scholar 

  • Reusch RN (1992) Biological complexes of poly-β-hydroxybutyrate. FEMS Microbiol 103:119–129

    Google Scholar 

  • Reusch RN, Sparrow AW, Gardiner J (1992) Transport of poly-beta-hydroxybutyrate in human plasma. Biochim Biophys Acta 1123:33–40

    CAS  PubMed  Google Scholar 

  • Rieth LR, Moore DR, Lobkovsky EB, Coates GW (2002) Single-site beta-diiminate zinc catalysts for the ring-opening polymerization of beta-butyrolactone and beta-valerolactone to poly(3-hydroxyalkanoates). J Am Chem Soc 124:15239–15248

    Article  CAS  PubMed  Google Scholar 

  • Saito Y, Nakamura S, Hiramitsu M, Doi Y (1996) Microbial synthesis and properties of poly(3-hydroxybutyrate-co-4-hydroxybutyrate). Polym Int 39:169–174

    Article  CAS  Google Scholar 

  • Shimamura E, Scandola M, Doi Y (1994) Microbial synthesis and characterization of poly(3-hydroxybutyrateco-3-hydroxypropionate). Macromolecules 27:4429–4435

    Article  CAS  Google Scholar 

  • Somleva MN, Snell KD, Beaulieu JJ, Peoples OP, Garrison BR, Patterson NA (2008) Production of polyhydroxybutyrate in switchgrass, a value-added co-product in an important lignocellulosic biomass crop. Plant Biotechnol J 6:663–678

    Article  CAS  PubMed  Google Scholar 

  • Steinbüchel A, Schmack G (1995) Large-Scale production of poly(3-hydroxyvaleric acid) by fermentation of Chromobacterium violaceum, processing, and characterization of the homopolyester. J Environ Polym Degrad 3:243–258

    Article  Google Scholar 

  • Steinbüchel A, Debzi EM, Marchessault RH, Timm A (1993) Synthesis and production of poly(3-hydroxyvaleric acid) homopolyester by Chromabacterium violaceum. Appl Microbiol Biotechnol 39:443–449

    Article  Google Scholar 

  • Steinbüchel A, Valentin HE, Schünebaum A (1994) Application of recombinant gene technology for production of polyhydroxyalkanoic acids: biosynthesis of poly(4-hydroxybutyric acid) homopolyester. J Environ Polym Degrad 2:67–74

    Article  Google Scholar 

  • Sudesh K, Abe H, Doi Y (2000) Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters. Prog Polym Sci 25:1503–1555

    Article  CAS  Google Scholar 

  • Sun J, Dai ZW, Chen GQ (2007) Oligomers of polyhydroxyalkanoates stimulated calcium ion channels in mammalian cells. Biomaterials 28:3896–3903

    Article  CAS  PubMed  Google Scholar 

  • Taguchi K, Aoyagi Y, Matsusaki H, Fukui T, Doi Y (1999) Over-expression of 3-ketoacyl-ACP synthase III or malonyl-CoA-ACP transacylase gene induces monomer supply for polyhydroxybutyrate production in Escherichia coli HB101. Biotechnol Lett 21:579–584

    Article  CAS  Google Scholar 

  • Taguchi S, Yamada M, Matsumoto K, Tajima K, Satoh Y, Munekata M, Ohno K, Kohda K, Shimamura T, Kambe H, Obata S (2008) A microbial factory for lactate-based polyesters using a lactate-polymerizing enzyme. Proc Natl Acad Sci USA 105:17323–17327

    Article  CAS  PubMed  Google Scholar 

  • Tanaka T, Yabe T, Teramachi S, Iwata T (2007) Mechanical properties and enzymatic degradation of poly[(R)-3-hydroxybutyrate] fibers stretched after isothermal crystallization near T-g. Polym Degrad Stab 92:1016–1024

    Article  CAS  Google Scholar 

  • Tasaki O, Hiraide A, Shiozaki T, Yamamura H, Ninomiya N, Sugimoto H (1999) The dimer and trimer of 3-hydroxybutyrate oligomer as a precursor of ketone bodies for nutritional care. J Parenter Enteral Nutr 23:321–325

    Article  CAS  Google Scholar 

  • Valentin HE, Dennis D (1997) Production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) in recombinant Escherichia coli grown on glucose. J Biotechnol 58:33–38

    Article  CAS  PubMed  Google Scholar 

  • Valentin HE, Steinbüchel A (1995) Accumulation of poly(3-hydroxybutyric acid-co-3-hydroxyvaleric acid-co-4-hydroxyvaleric acid) by mutants and recombinant strains of Alcaligenes eutrophus. J Environ Polym Degrad 3:169–175

    Article  CAS  Google Scholar 

  • Vogel R, Tandler B, Voigt D, Jehnichen D, Haussler L, Peitzsch L, Brunig H (2007) Melt spinning of bacterial aliphatic polyester using reactive extrusion for improvement of crystallization. Macromol Biosci 7:820–828

    Article  CAS  PubMed  Google Scholar 

  • Wang HH, Chen GQ (2009) Production and characterization of homopolymer polyhydroxyheptanoate (P3HHp) by a fadBA knockout mutant Pseudomonas putida KTOY06 derived from P. putida KT2442. Process Biochem 44:106–111

    Article  Google Scholar 

  • Wang Y, Bian YZ, Wu Q, Chen GQ (2008a) Evaluation of three-dimensional scaffolds prepared from poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) for growth of allogeneic chondrocytes for cartilage repair in rabbits. Biomaterials 29:2858–2868

    Article  CAS  PubMed  Google Scholar 

  • Wang ZH, Wu HN, Chen J, Zhang J, Chen GQ (2008b) A novel self-cleaving phasin tag for purification of recombinant proteins based on hydrophobic nanoparticles. Lab Chip 8:1957–1962

    Article  CAS  PubMed  Google Scholar 

  • Weiner RM (1997) Biopolymers from marine prokaryotes. Trends Biotechnol 15:390–394

    Article  CAS  PubMed  Google Scholar 

  • Wrobel M, Zebrowski J, Szopa J (2004) Polyhydroxybutyrate synthesis in transgenic flax. J Biotechnol 107:41–54

    Article  CAS  PubMed  Google Scholar 

  • Wu Q, Sun SQ, Yu PHF, Chen AXZ, Chen GQ (2000) Environmental dependence of microbial synthesis of polyhydroxyalkanoates. Acta Polym Sin 6:751–756

    Google Scholar 

  • Wu LP, Cheng ST, Chen GQ, Xu KT (2008) Synthesis, characterization and biocompatibility of novel biodegradable poly[((R)-3-hydroxybutyrate)-block-(D,L-lactide)-block-(epsilon-caprolactone)] triblock copolymers. Polym Int 57:939–949

    Article  CAS  Google Scholar 

  • Xiao XQ, Zhao Y, Chen GQ (2007) The effect of 3-hydroxybutyrate and its derivatives on the growth of glial cells. Biomaterials 28:3608–3616

    Article  CAS  PubMed  Google Scholar 

  • Xie WP, Chen GQ (2008) Production and characterization of terpolyester poly(3-hydroxybutyrate -co-4-hydroxybutyrate-co-3-hydroxyhexanoate) by recombinant Aeromonas hydrophila 4AK4 harboring genes phaPCJ. Biochem Eng J 38:384–389

    Article  CAS  Google Scholar 

  • Yao YC, Zhan XY, Zou XH, Wang ZH, Xiong YC, Zhang J, Chen J, Chen GQ (2008) A specific drug targeting system based on polyhydroxyalkanoate granule binding protein PhaP fused with targeted cell ligands. Biomaterials 29:4823–4830

    Article  CAS  PubMed  Google Scholar 

  • Zhang XJ, Luo RC, Wang Z, Deng Y, Chen GQ (2009) Applications of (R)-3-hydroxyalkanoate methyl esters derived from microbial polyhydroxyalkanoates as novel biofuel. Biomacromolecules. doi:10.1021/bm801424e

    Google Scholar 

  • Zhao W, Chen GQ (2007) Production and Characterization of terpolyester poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate) by recombinant Aeromonas hydrophila 4AK4 harboring genes phaAB. Process Biochem 42:1342–1347

    Article  CAS  Google Scholar 

  • Zheng LZ, Li Z, Tian HL, Li M, Chen GQ (2005) Molecular cloning and functional analysis of (R)-3-hydroxyacyl-acyl carrier protein:coenzyme A transacylase from Pseudomonas mendocina LZ. FEMS Microbiol Lett 252:299–307

    Article  CAS  PubMed  Google Scholar 

  • Zou XH, Li HM, Wang S, Leski M, Yao YC, Yang XD, Huang QJ, Chen GQ (2009) The effect of 3-hydroxybutyrate methyl ester on learning and memory in mice. Biomaterials 30:1532–1541

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-Qiang Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chen, GQ. (2010). Plastics Completely Synthesized by Bacteria: Polyhydroxyalkanoates. In: Chen, GQ. (eds) Plastics from Bacteria. Microbiology Monographs, vol 14. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03287-5_2

Download citation

Publish with us

Policies and ethics