Skip to main content

Microbial PHA Production from Waste Raw Materials

  • Chapter
  • First Online:
Plastics from Bacteria

Part of the book series: Microbiology Monographs ((MICROMONO,volume 14))

Abstract

The application of biotechnological processes for industrial production can be regarded as promising for sustainable development, although for a range of products, biotechnological production strategies have not yet passed the test of economic viability. This is often caused by the cost of the raw materials. Here, a viable solution strategy is identified by the utilization of a broad range of waste and surplus materials that can be upgraded to the role of feedstocks for the biomediated production of desired end products such as polyhydroxyalkanoate biopolymers. The selection of the appropriate waste stream as a feedstock for biotechnological purposes mainly depends on the global region where the production plant will be constructed. To save costs for transportation, facilities for the production of biopolymers, biofuels and biochemicals should be integrated into existing production lines, where the feedstocks directly accrue as waste streams. In Europe and North America, surplus whey from the dairy industry is available in large quantities, whereas huge amounts of non-wood lignocellulosic materials from rice, corn and sugar cane plants are found in many different countries worldwide. The enormously increasing production of biofuels provides a range of by-products such as glycerol and low-quality fatty acid esters from biodiesel production or distillery residues from bioethanol factories. The utilization of waste streams for production of value-added products not only enhances the economics of such products, but also provides industry with a strategy to overcome disposal problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agus J, Kahar P, Abe H, Doi Y, Tsuge T (2006) Molecular weight characterization of poly[(R)-3-hydroxybutyrate] synthesized by genetically engineered strains of Escherichia coli. Polym Degrad Stab 91:1138–1146

    Article  CAS  Google Scholar 

  • Ahn WS, Park SJ, Lee SY (2000) Production of poly(3-hydroxybutyrate) by fed.batch culture of recombinant Escherichia coli with a highly concentrated whey solution. Appl Environ Microbiol 66(8):3624–3627

    Google Scholar 

  • Ahn WS, Park SJ, Lee SY (2001) Production of poly(3-hydroxybutyrate) from whey by cell recycle fed-batch culture of recombinant Escherichia coli. Biotechnol Lett 23:235–240

    Article  CAS  Google Scholar 

  • Alias Z, Tan IKP (2005) Isolation of palm oil-utilising, polyhydroxyalkanoate (PHA)-producing bacteria by an enrichment technique. Bioresource Technology 96(11):1229–1234

    Google Scholar 

  • Alvarez HM, Kalscheuer R, Steinbuchel A (1997) Accumulation of storage lipids in species of Rhodococcus and Nocardia and effect of inhibitors and polyethylene glycol. Fett/Lipid 99:239–246

    Article  CAS  Google Scholar 

  • Ashby R, Solaiman D, Foglia T (2002) Poly(ethylene glycol)-mediated molar mass control of short-chain- and medium-chain-length poly(hydroxyalkanoates) from Pseudomonas oleovorans. Appl Microbiol Biotechnol 60:154–159

    Article  CAS  PubMed  Google Scholar 

  • Ashby RD, Solaiman DKY, Foglia TA (2004) Bacterial poly(hydroxyalkanoate) polymer production from the biodiesel co-product stream. J Polym Environ 12:105–112

    Article  CAS  Google Scholar 

  • Ashby RD, Solaiman DKY, Foglia TA (2005) Synthesis of short-/medium-chain-length poly(hydroxyalkanoate) blends by mixed culture fermentation of glycerol

    Google Scholar 

  • Audic J-L, Chaufer B, Daufin G (2003) Non-food applications of milk components and dairy co-products: a review. Lait 83:417–438

    Article  CAS  Google Scholar 

  • Baptist JN (1963) US Patent 3,107,172

    Google Scholar 

  • Baptist JN (1965) US Patent 3,182,036

    Google Scholar 

  • Bertrand J-L, Ramsay BA, Ramsay JA, Chavarie C (1990) Biosynthesis of poly-ß-hydroxyalkanoates from pentoses by Pseudomonas pseudoflava. Appl Environ Microbiol 56:3133–3138

    CAS  PubMed  Google Scholar 

  • Borah B, Thakur PS, Nigam JN (2002) The influence of nutritional and environmental conditions on the accumulation of poly-ß-hydroxy-butyrate in Bacillus mycoides RLJ B-017. J Appl Microbiol 92:776–783

    Article  CAS  PubMed  Google Scholar 

  • Bormann EJ, Roth M (1999) The production of polyhydroxybutyrate byMethylobacterium rhodesianum and Ralstonia eutropha in media containing glycerol and casein hydrolysates. Biotechnol Lett 5:1059–1063

    Article  Google Scholar 

  • Bourque PY, Pomerleau Y, Groleau D (1995) High-cell-density production of poly-ß-hydroxybutyrate (PHB) from methanol by Methylobacterium extorquens: production of high-molecular-mass PHB. Appl Microbiol Biotechnol 44:367–376

    Article  CAS  Google Scholar 

  • Bozbas K (2008) Biodiesel as an alternative motor fuel: production and policies in the European Union. Renew Sustain Energy Rev 12:542–552

    Article  CAS  Google Scholar 

  • Brandl H, Gross RA, Lenz RW, Fuller RC (1990) Plastics from bacteria and for bacteria: poly(beta-hydroxyalkanoates) as natural, biocompatible, and biodegradable polyesters. Adv Biochem Eng Biotechnol 41:77–93

    CAS  PubMed  Google Scholar 

  • Braunegg G, Lefebvre G, Genser KF (1998) Polyhydroxyalkanoates, biopolyesters from renewable resources: physiological and engineering aspects. J Biotechnol 65:127–161

    Article  CAS  PubMed  Google Scholar 

  • Braunegg G, Genser K, Bona R, Haage G (1999) Production of PHAs from agricultural waste material. Macromol Symp 144:375–383

    CAS  Google Scholar 

  • Braunegg G, Bona R, Koller M, Martinz J (2002) Production of polyhydroxyalkanoates: a contribution of biotechnology to sustainable development. Proceedings of sustainable development and environmentally degradable plastics in China, Beijing, pp 56–71

    Google Scholar 

  • Braunegg G, Bona R, Koller M (2004) Sustainable polymer production. Polym Plast Technol Eng 43:1779–1974

    Article  CAS  Google Scholar 

  • Braunegg G, Koller M, Hesse PJ, Kutschera C, Bona R, Hermann C, Horvat P, Neto J, Dos Santos Pereira L (2007) Production of plastics from waste derived from agrofood industry. In: Graziani M, Fornasiero P (eds) Renewable resources and renewable energy: a global challenge. CRC Press, Taylor and Francio Group, Boca Raton pp 119–135

    Google Scholar 

  • Canakci M, Sanli H (2008) Biodiesel production from various feedstocks and their effects on the fuel properties. J Ind Microbiol Biotechnol 35:431–441

    Article  CAS  PubMed  Google Scholar 

  • Chen CW, Trong-Ming D, Hsiao-Feng Y (2006) Enzymatic extruded starch as a carbon source for the production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by Haloferax mediterranei. Process Biochem 41:2289–2296

    Article  CAS  Google Scholar 

  • Choi J, Lee SY (1997) Process analysis and economic evaluation for Poly(3-hydroxybutyrate) production by fermentation Bioprocess Eng 17(6):335–342

    Google Scholar 

  • Choi J, Lee SY (1999) Factors affecting the economics of polyhydroxyalkanoateproduction by bacterial fermentation. Appl Microbiol Biotechnol 51:13–21

    Article  CAS  Google Scholar 

  • Cromwick AM, Foglia T, Lenz RW (1996) The microbial production of poly(hydroxyalkanoates) from tallow. Appl Microbiol Biotechnol 46:464–469

    Article  CAS  Google Scholar 

  • Daniel H-J, Otto RT, Binder M, Reuss M, Syldatk C (1999) Production of sophorolipids from whey: development of a two-stage process with Cryptococcus curvatus ATCC 20509 and Candida bombicola ATCC 22214 using deproteinized whey concentrates as substrates. Appl Microbiol Biotechnol 51:40–45

    Article  CAS  PubMed  Google Scholar 

  • de Palma Revillion JP, Adriano Brandelli A, Záchia Ayub MA (2003) Production of yeast extract from whey using Klyveromyces marxianus. Braz Arch Biol Technol 146(1):121–127

    Google Scholar 

  • Dhanasekar R, Viruthagiri T (2005) Batch kinetics and modeling of poly-β-hydroxybutyrate synthesis from Azotobacter vinelandii using different carbon sources. Ind J Chem Technol 12:322–326

    CAS  Google Scholar 

  • Dionisi D, Carucci G, Petrangeli Papini M, Riccardi C, Majone M, Carrasco F (2005) Olive oil mill effluents as a feedstock for production of biodegradable polymers Water research 39(10):2076–2084

    Google Scholar 

  • Doi Y, Kitamura S, Abe H (1995) Microbial synthesis and characterization of poly(3hydro­xybutyrate-3-hydroxyhexanoate). Macromolecules 28:4822–4828

    Article  CAS  Google Scholar 

  • Drumright RE, Gruber PR, Henton DE (2000) Polylactic acid technology. Adv Mater 12:1841–1846

    Article  CAS  Google Scholar 

  • Felipe MGA, Vitolo M, Mancilha IM, Silva SS (1997) Environmental parameters affecting xylitol production from sugar cane bagasse hemicellulosic hydrolyzate by Candida guilliermondii. J Ind Microbiol Biotechnol 18:251–254

    Article  CAS  Google Scholar 

  • Fernández D, Rodríguez E, Bassas M, Viñas M, Solanas AM, Llorens J, Marqués AM, Manresa A (2005) Agro-industrial oily wastes as substrates for PHA production by the new strain Pseudomonas aeruginosa NCIB 40045: effect of culture conditions. Biochem Eng J 26(2, 3):159–167

    Google Scholar 

  • Füchtenbusch B, Wullbrandt D, Steinbüchel A (2000) Production of polyhydroxyalkanoic acids by Ralstonia eutropha and Pseudomonas oleovorans from an oil remaining from biotechnological rhamnose production. Applied Microbiology and Biotechnology 53(2):167–172

    Google Scholar 

  • Fukui T, Doi Y (1998) Efficient production of polyhydroxyalkanoates from plant oils by Alcaligenes eutrophus and its recombinant strain. Appl Microbiol Biotechnol 49:333–336

    Article  CAS  PubMed  Google Scholar 

  • Garcia Ribera R, Monteoliva-Sanchez M, Ramos-Cormenzana A (2001) Production of polyhydroxyalkanoates by Pseudomonas putida KT2442 harboring pSK2665 in wastewater from olive oil mills (alpechin) From EJB Electronic Journal of Biotechnology, 4(2):116–119

    Google Scholar 

  • Garcia Lillo J, Rodriguez-Valera F (1990) Effects of culture conditions on poly(β-hydroxybutyric acid) production by Haloferax mediterranei. Appl Environ Microbiol 56:2517–2521

    CAS  Google Scholar 

  • Graziani M., and Fornasiero P. (eds.), CRC press, Taylor and Francio Group, Boca Raton

    Google Scholar 

  • González-López J, Pozo C, Martinez-Toledo MV, Rodelas B, Salmeron V (1996) Production of polyhydroxyalkanoates by Azotobacter chroococcum H23 in wastewater from olive oil mills (Alpechin). Int Biodeterior Biodegradation 38:271–276

    Article  Google Scholar 

  • Haas R, Jin B, Tobias F (2008) Production of poly(3-hydroxybutyrate) from waste potato starch. Biosci Biotechnol Biochem 72:253–256

    Article  CAS  PubMed  Google Scholar 

  • Haenggi UJ (1995) Requirements on bacterial polyesters as future substitute for conventional plastics for consumer goods. FEMS Microbiol Rev 16:213–220

    Article  CAS  Google Scholar 

  • Halami PH (2008) Production of polyhydroxyalkanoate from starch by the native isolate Bacillus cereus CFR06. World J Microbiol Biotechnol 24:805–812

    Article  CAS  Google Scholar 

  • Harding KG, Dennis JS, von Blottnitz H, Harrison STL (2007) Environmental analysis of plastic production processes: Comparing petroleum-based polypropylene and polyethylene with biologically-based poly-hydroxybutyric acid using life cycle analysis. Journal of Biotechnology 130:57–66

    Google Scholar 

  • Helm J, Wendlandt K-D, Jechorek M, Stottmeister U (2008) Potassium deficiency results in accumulation of ultra-high molecular weight poly-beta-hydroxybutyrate in a methane-utilizing mixed culture. J Appl Microbiol 105:1054–1061

    Article  CAS  PubMed  Google Scholar 

  • Hezayen FF, Rehm BH, Eberhardt R, Steinbuchel A (2000) Polymer production by two newly isolated extremely halophilic archaea: application of a novel corrosion-resistant bioreactor. Appl Microbiol Biotechnol 54:319–325

    Article  CAS  PubMed  Google Scholar 

  • Hickmann Flôres S, Monte Alegre R (2001) Nisin production from Lactococcus lactis A.T.C.C. 7962 using supplemented whey permeate. Biotechnol Appl Biochem 34:103–107

    Article  Google Scholar 

  • Hou, C.T., Shaw J-F., Editors. Biocatalysis and Biotechnology for Functional Foods and Industrial Products. Boca Raton, FL; CRC Press. p. 431-450 (Book chapter!)

    Google Scholar 

  • Huang T-Y, Duan K-J, Huang C, S-Y, Chen, W (2006) Production of polyhydroxyalkanoates from inexpensive extruded rice bran and starch by Haloferax mediterranei. J Ind Microbiol Biotechnol 33(8):701–706

    Google Scholar 

  • Kahar P, Agus J, Kikkawa Y, Taguchi K, Doi Y, Tsuge T (2004a) Effective production and kinetic characterization of ultra-high-molecular-weight poly[(R)-3-hydroxybutyrate] in recombinant Escherichia coli. Polym Degrad Stab 87:161–169

    Article  Google Scholar 

  • Kahar P, Tsuge T, Taguchi K, Doi Y (2004b) High yield production of polyhydroxyalkanoates from soybean oil by Ralstonia eutropha and its recombinant strain. Polym Degrad Stab 83:79–86

    Article  CAS  Google Scholar 

  • Kalapathy U, Proctor A, Shultz J (2002) An improved method for production of silicia from rice hull ash. Bioresour Technol 85:285–289

    Article  CAS  PubMed  Google Scholar 

  • Keenan TM, Nakas JP, Tanenbaum SW (2006) Polyhydroxyalkanoate copolymers from forest biomass. J Ind Microbiol Biotechnol 33:616–626

    Article  CAS  PubMed  Google Scholar 

  • Kenawy E-R (2008) Selected production processes and applications of bioplastics from waste. Presentation at the ICS-UNIDO workshop on biofuels and bio-based chemicals, Trieste, 18–20 Sept 2008

    Google Scholar 

  • Khanna S, Srivastava AK (2005a) Recent advances in microbial polyhydroxyalkanoates. Process Biochem 40:607–619

    Article  CAS  Google Scholar 

  • Khanna S, Srivastava AK (2005b) A simple structured mathematical model for biopolymer (PHB) production. Biotechnol Prog 21:830–838

    Article  CAS  PubMed  Google Scholar 

  • Khardenavis AA, Kumar MS, Mudliar SN, Chakrabarti T (2007) Biotechnological conversion of agro-industrial wastewaters into biodegradable plastic, poly β-hydroxybutyrate. Bioresour Technol 98:3579–3584

    Article  CAS  PubMed  Google Scholar 

  • Kim BS (2000) Production of poly(3-hydroxybutyrate) from inexpensive substrates Enzyme and Microbial Technology 27(10):774–777

    Google Scholar 

  • Kim YB, Lenz RW (2001) Polyesters from microorganisms. Adv Biochem Eng Biotechnol 71:51–79

    CAS  PubMed  Google Scholar 

  • Kim H-O, Wee Y-J, Kim J-N, Yun J-S, Ryu H-W (1995) Production of lactic acid from cheese whey by batch and repeated batch cultures of Lactobacillus sp. RKY2. Appl Biochem Biotechnol 131:694–704

    Article  Google Scholar 

  • King PP (1982) Biotechnology. An industrial view. J Chem Technol Biotechnol 32:2–8

    Article  CAS  Google Scholar 

  • Knothe G (2001) Historical perspectives on vegetable oil-based diesel fuels. Ind Oils 12:1103–1107

    Google Scholar 

  • Koller M, Bona R, Braunegg G, Hermann C, Horvat P, Kroutil M, Martinz J, Neto J, Varila P, Pereira L (2005a) Production of polyhydroxyalkanoates from agricultural waste and surplus materials. Biomacromolecules 6:561–565

    Article  CAS  PubMed  Google Scholar 

  • Koller M, Bona R, Hermann C, Horvat P, Martinz J, Neto J, Varila P, Braunegg G (2005b) Biotechnological production of poly(3-hydroxybutyrate) with Wautersia eutropha by application of green grass juice and silage juice as additional complex substrates. Biocatal Biotransform 23:329–337

    Article  CAS  Google Scholar 

  • Koller M, Horvat P, Hesse PJ, Bona R, Kutschera C, Atlic A, Braunegg G (2006) Assessment of formal and low structured kinetic modeling of polyhydroxyalkanoate synthesis from complex substrates. Bioprocess Biosyst Eng 29:367–377

    Article  CAS  PubMed  Google Scholar 

  • Koller M, Hesse PJ, Bona R, Kutschera C, Atlic A, Braunegg G (2007a) Various archae- and eubacterial strains as potential polyhydroxyalkanoate producers from whey lactose. Macromol Biosci 7:218–226

    Article  CAS  PubMed  Google Scholar 

  • Koller M, Hesse PJ, Bona R, Kutschera C, Atlic A, Braunegg G (2007b) Biosynthesis of high quality polyhydroxyalkanoate co- and terpolyesters for potential medical application by the archaeon Haloferax mediterranei. Macromol Symp 253:33–39

    Article  CAS  Google Scholar 

  • Koller M, Bona R, Chiellini E, Grillo Fernandes E, Horvat P, Kutschera C, Hesse PJ, Braunegg G (2008) Polyhydroxyalkanoate production from whey by Pseudomonas hydrogenovora. Bioresour Technol 99:4854–4863

    Article  CAS  PubMed  Google Scholar 

  • Kumar R, Singh S, Singh OV (2008) Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. J Ind Microbiol Biotechnol 35:377–391

    Article  CAS  PubMed  Google Scholar 

  • Lee SY (1998) Poly(3-hydroxybutyrate) production from xylose by recombinant Escherichia coli. Bioprocess Eng 18:397–399

    Article  Google Scholar 

  • Lee SY, Chang HN (1994) Effect of complex nitrogen source on the synthesis and accumulation of poly(3-hydroxybutyric acid) by recombinant Escherichia coli in flask and fed-batch cultures. J Environ Polym Degrad 2:169–176

    Article  CAS  Google Scholar 

  • Lee SY (1997) E. coli moves into the plastic age. Nat. Biotechnol 15:17–18

    Google Scholar 

  • Lee SY, Lee Y, Wang F (1999) Chiral compounds from bacterial polyesters: sugars to plastics to fine chemicals. Biotechnol Bioeng 65:363–368

    Article  CAS  PubMed  Google Scholar 

  • Liebergesell M, Hustede E, Timm A, Steinbüchel A, Fuller RC, Lenz RW, Schlegel HG (1991) Formation of poly(3-hydroxyalkanoates) by phototrophic and chemolithotrophic bacteria. ArchMicrobiol 155:415–421

    Article  CAS  Google Scholar 

  • Loo CY, Lee WH, Tsuge T, Doi Y, Sudesh K (2005) Biosynthesis and characterization of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) from palm oil products in a Wautersia eutropha mutant Biotechnology Letters 27(18):1405–1410

    Google Scholar 

  • Luzier WD (1992) Materials derived from biomass/biodegradable materials. Proc Natl Acad Sci U S A 89:839–842

    Article  CAS  PubMed  Google Scholar 

  • Madden LA, Anderson AJ, Shah DT, Asrar J (1999) Chain termination in polyhydroxyalkanoate synthesis: involvement of exogenous hydroxy-compounds as chain transfer agents. Int J Biol Macromol 25:43–53

    Article  CAS  PubMed  Google Scholar 

  • Majid MIA, Akmal DH, Few LL, Agustien A, Toh MS, Samian MR, Najimudin N, Azizan MN (1999) Production of poly(3-hydroxybutyrate) and its copolymer poly(3-hydroxybutyrate-co-hydroxyvalerate) by Erwinia sp. USMI-20. Int J Biol Macromol 25:95–104

    Article  CAS  PubMed  Google Scholar 

  • Munoz-Escalona A, Rodriguez-Valera F, Marcilla Gomis A (1994) EP 0622462

    Google Scholar 

  • Nath A, Dixit M, Bandiya A, Chavda S, Desai AJ (2008) Enhanced PHB production and scale up studies using cheese whey in fed batch cultures of Methylobacterium sp. ZP24. Bioresour Technol 99(13):5749–5755

    Article  CAS  PubMed  Google Scholar 

  • Neto J (2006) New strategies in the production of polyhydroxyalkanoates from glycerol and meat and bone meal. PhD thesis, Graz University of Technology

    Google Scholar 

  • Nonato RV, Mantelatto PE, Rossell CEV (2001) Integrated production of biodegradable plastic, sugar and ethanol. Appl Microbiol Biotechnol 57:1–5

    Article  CAS  PubMed  Google Scholar 

  • Ojumu TV, Yu J, Solomon BO (2004) Production of polyhydroxyalkanoate, a biodegradable polymer. Afr J Biotechnol 3:18–24

    CAS  Google Scholar 

  • Omar S, Rayes A, Eqaab A, Viss I, Steinbuchel A (2001) Optimization of cell growth and poly(3-hydroxybutyrate) accumulation on date syrup by a Bacillus megaterium strain. Biotechnol Lett 23:1119–1123

    Article  CAS  Google Scholar 

  • Page WJ (1992) Production of polyhydroxyalkanoates by Azotobacter vinelandii UWD in beet molasses culture. FEMS Microbiol Lett 103:149–157

    Article  CAS  Google Scholar 

  • Page WJ, Cornish A (1993) Growth of Azotobacter vinelandii UWD in fish peptone medium and simplified extraction of poly-β-hydroxybutyrate. Appl Environ Microbiol 59:4236–4244

    CAS  PubMed  Google Scholar 

  • Peters D (2006) Carbohydrates for fermentation. Biotechnol J 1:806–814

    Article  CAS  PubMed  Google Scholar 

  • Petschacher B (2001) Verwertung von Maisernterückständen über Hydrolyse der Cellulose und Hemicellulose. Diploma Thesis, Graz University of Technology

    Google Scholar 

  • Povolo S, Casella S (2003) Bacterial production of PHA from lactose and cheese whey permeate. Macromol Symp 197:1–9

    Article  CAS  Google Scholar 

  • Pozo C, Martínez-Toledo MV, Rodelas B, Gonzáles-López J (2002) Effects of culture conditions on the production of polyhydroxyalkanoates by Azotobacter chroococcum H23 in media containing a high concnetration of alpechín (wastewater from olive oil mills) as primary carbon source. J Biotechnol 97:125–131

    Article  CAS  PubMed  Google Scholar 

  • Purushothaman M, Anderson R, Narayana S, Jayaraman V (2001) Industrial byproducts as cheaper medium components influencing the production of polyhydroxyalkanoates (PHA) – biodegradable plastics. Bioprocess Biosyst Eng 24:131–136

    Article  CAS  Google Scholar 

  • Rajaram S, Verma A (1990) Production and characterization of xylanase from Bacillus thermoalkalophilus growth on agricultural wastes. Appl Microbiol Biotechnol 34:141–144

    Article  CAS  Google Scholar 

  • Ramsay JA, Hassan MCA, Ramsay BA (1995) Hemicellulose as a potential substrate for production of poly(beta-hydroxyalkanoates). Can J Microbiol 41:262–266

    Article  CAS  Google Scholar 

  • Ren Q, Grubelnik A, Hoerler M, Ruth K, Hartmann R, Felber H, Zinn M (2005) Bacterial poly(hydroxyalkanoates) as a source of chiral hydroxyalkanoic acids. Biomacromolecules 6:2290–2298

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Valera F, Lillo JAG (1992) Halobacteria as producers of polyhydroxyalkanoates. FEMS Microbiol Rev 103:181–186

    Article  CAS  Google Scholar 

  • Rusendi D, Sheppard JD (1995) Hydrolysis of potato processing waste for the production of poly-β-hydroxybutyrate. Bioresour Technol 54:191–196

    Article  CAS  Google Scholar 

  • Ruth K, Grubelnik A, Hartmann R, Egli T, Zinn M, Ren Q (2007) Efficient production of (R)-3-hydroxycarboxylic acids by biotechnological conversion of polyhydroxyalkanoates and their purification. Biomacromolecules 8:279–286

    Article  CAS  PubMed  Google Scholar 

  • Salmiati Z, Ujang MR, Salim MF, Md D, Ahmad MA (2007) Intracellular biopolymer productions using mixed microbial cultures from fermented POME. Water Sci Technol 56:179–185

    CAS  Google Scholar 

  • Schubert P, Steinbüchel A, Schlegel HG (1988) Cloning of the Alcaligenes eutrophus poly-β-hydroxybutyrate synthetic pathway and synthesis of PHB in Escherichia coli J. Bacteriol. 170:5837–5647

    Google Scholar 

  • Schultz N, Chang L, Hauck A, Matthias Reuss M, Syldatk C (2006) Microbial production of single-cell protein from deproteinized whey concentrates. Appl Microbiol Biotechnol 69:515–520

    Article  CAS  PubMed  Google Scholar 

  • Seebach D, Zueger M (1982) Ãœber die Pepolymerisierung von Poly-(R)-3-hydroxybuttersaeureester (PHB). Helv Chim Acta 65:495–503

    Article  CAS  Google Scholar 

  • Seebach D, Beck AK, Breitschuh R, Job K (1992) Direct degradation of the biopolymer poly[(R)-3-hydroxybutyric acid] to (R)-3-hydroxybutanoic acid and its methyl ester. Org Synth 71:39–47

    Google Scholar 

  • Silva LF, Taciro MK, Michelin Ramos ME, Carter JM, Pradella JGC, Gomez JGC (2004) Poly-3-hydroxybutyrate (PHB) production by bacteria from xylose, glucose and sugarcane bagasse hydrolysate. J Ind Microbiol Biotechnol 31(6):245–254

    Article  CAS  PubMed  Google Scholar 

  • Solaiman DKY, Ashby RD, Foglia TA, Marmer WN (2007) Fermentative production of biopolymers and biosurfactants from glycerol-rich biodiesel coproduct stream and soy molasses. Biocatal Biotechnol Funct Food Ind Prod 431–450

    Google Scholar 

  • Solaiman DKY, Ashby RD, Foglia TA, Marmer WN (2006) Conversion of agricultural feedstock and coproducts into poly(hydroxyalkanoates). Appl Microbiol Biotechnol 71:783–789

    Article  CAS  PubMed  Google Scholar 

  • Son H, Lee S (1996) Biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) from structurally unrelated single carbon sources by newly isolated Pseudomonas sp. EL - 2. Biotechnol Lett 18:1217–1222

    Article  CAS  Google Scholar 

  • Squio C, Aragao G (2004) Cultivation strategies for production of the biodegradable plastics poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by bacteria. Quim Nova 27:615–622

    Google Scholar 

  • Steinbüchel A, Hein S (2001) Biochemical and molecular basis of microbial synthesis of polyhydroxyalkanoates in microorganisms. Adv Biochem Eng Biotechnol 71:81–123

    PubMed  Google Scholar 

  • Steinbüchel A, Lütke-Eversloh T (2003) Metabolic engineering and pathway construction for biotechnological production of relevant polyhydroxyalkanoates in microorganisms. Biochem Eng J 16:81–89

    Article  Google Scholar 

  • Steinbüchel A, Valentin HE (1995) Diversity of bacterial polyhydroxyalkanoic acids. FEMS Microbiol Lett 128:219–228

    Article  Google Scholar 

  • Sudesh K, Abe H, Doi Y (2000) Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters. Prog Polym Sci 25(10):1503–1555

    Google Scholar 

  • Sudesh K, Iwata T (2008) Sustainability of biobased and biodegradable plastics. Clean 36:433–442

    CAS  Google Scholar 

  • Taniguchi I, Kagotani K, Kimura Y (2003) Microbial production of poly(hydroxyalkanoate)s from waste edible oils. Green Chem 5:545–548

    Article  CAS  Google Scholar 

  • Tengerdy RP, Szakacs G (2003) Bioconversion of lignocellulose in solid substrate fermentation. Biochem Eng J 13(2–3):169–179

    Article  CAS  Google Scholar 

  • Tomita M, Wakabayashi H, Yamauchi K, Teraguchi S, Hayasawa H (2002) Bovine lactoferrin and lactoferricin derived from milk: production and applications. Biochem Cell Biol 80:109–112

    Article  CAS  PubMed  Google Scholar 

  • Tsuge T, Tanaka K, Ishizaki A (2001) Development of a novel method for feeding a mixture of L-lactic acid and acetic in fed-batch culture of Ralstonia eutropha for poly-D-3-hydroxybutyrate production. J Biosci Bioeng 91:545–550

    Article  CAS  PubMed  Google Scholar 

  • Valentin HF, Dennis D (1996) Metabolic pathway for poly(3-hydroxybutyrate-co-3-hydroxyvalerate) formation in Nocardia corallina: inactivation of mutB by chromosomal integration of a kanamycin resistance gene. Appl Environ Microbiol 62:372–379

    CAS  PubMed  Google Scholar 

  • Vasudevan PT, Briggs M (2008) Biodiesel production – current state of the art and challenges. J Ind Microbiol Biotechnol 35:421–430

    Article  CAS  PubMed  Google Scholar 

  • Williams SF, Martin DP (2002) Applications of PHAs in medicine and pharmacy. In: Doi Y, Steinbüchel A (eds) Biopolymers polyesters III – applications, vol. 4. Wiley-VCH, Weinhein, pp. 91–103

    Google Scholar 

  • Wee Y-J, Kim J-N, Ryu H-W (2006) Biotechnological production of lactic acid and its recent applications. Food Technol Biotechnol 44:163–172

    CAS  Google Scholar 

  • Wong HH, Lee SY (1998) Poly(3-hydroxybutyrate) production from whey by high-density cultivation of recombinant Escherichia coli. Appl Microbiol Biotechnol 50(1):30–33

    Google Scholar 

  • Yellore V, Desai A (1998) Production of poly-3-hydroxybutyrate from lactose and whey by Methylobacterium sp. ZP24. Lett Appl Microbiol 25:391–394

    Article  Google Scholar 

  • Yilmaz M, Beyatli Y (2005) Poly-ß-hydroxybutyrate (PHB) production by a Bacillus cereus M5 strain in sugarbeet molasses. Zuckerindustrie 130:109–112

    CAS  Google Scholar 

  • Young FK, Kastner JR, May SW (1994) Microbial production of poly-β-hydroxybutyric acid from D-xylose and lactose by Pseudomonas cepacia. Appl Environ Microbiol 60(11):4195–4198

    CAS  PubMed  Google Scholar 

  • Yu J, Si Y, Wong WKR (2002) Kinetic modelling of inhibition and utilization of mixed volatile fatty acids in the formation of polyhydroxyalkanoates by Ralstonia eutropha. Process Biochem 37:731–738

    Article  CAS  Google Scholar 

  • Zafar S, Owais M (2006) Ethanol production from crude whey by Kluyveromyces marxianus. Biochem Eng J 27(3):295–298

    Article  CAS  Google Scholar 

  • Zhang H, Obias V, Gonyer K, Dennis D (1994) Production of polyhydroxyalkanoates in sucrose-utilizing recombinant Escherichia coli and Klebsiella strains. Appl Environ Microbiol 60:1198–1205

    CAS  PubMed  Google Scholar 

  • Zinn M, Witholt B, Egli T (2001) Occurrence, synthesis and medical application of bacterial polyhydroxyalkanoate. Adv Drug Deliv Rev 53:5–21

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Elisabeth Ingolić, FELMI-ZFE-Graz, for the electron-microscopic pictures of C. necator (Fig. 1) and Petra Glawogger for linguistic proofreading.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Koller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Koller, M., Atlić, A., Dias, M., Reiterer, A., Braunegg, G. (2010). Microbial PHA Production from Waste Raw Materials. In: Chen, GQ. (eds) Plastics from Bacteria. Microbiology Monographs, vol 14. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03287-5_5

Download citation

Publish with us

Policies and ethics