Skip to main content

Triticum

  • Chapter
  • First Online:

Abstract

Wheat is a superb model organism for the evolutionary theory of allopolyploid speciation, adaptation, and domestication in plants, and is also the most important food crop for humans. Its domestication, primarily in modern breeding practices, led to its genetic erosion and increasing susceptibility and vulnerability to environmental stresses, pests, and diseases. Hence, its future genetic improvement as a high-quality nutritional food is paramount for feeding the ever-increasing human population. The best hope for crop improvement is to utilize the adaptive genetic resources of the wheat progenitor, wild emmer Triticum dicoccoides, and other wheat relatives. Here, I review wild wheat evolution focusing on wild emmer wheat: its evolutionary history, domestication, population genetics, genetic organization, and genetic resources for wheat improvement.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aaronsohn A (1910) Agricultural and Botanical Explorations in Palestine. Bureau of Plant Industry Bulletin 80, USDA, No 180, 66p

    Google Scholar 

  • Aaronsohn A (1913) The discovery of wild wheat. City Club Bull Chicago 6:167–173

    Google Scholar 

  • Aimin A, Tiecheng H (1998) Hybrid wheat – a new crop going to the farmer. In: Proceedings of the first international workshop on hybrid wheat. China Agricultural University Press, Beijing, China

    Google Scholar 

  • Aimin A, Tiecheng H (1998) Hybrid wheat – a new crop going to the farmer. In: Proceedings of the first international workshop on hybrid wheat. China Agricultural University Press, Beijing, China

    Google Scholar 

  • Akkaya MS, Shoemaker RC, Specht JE, Bhagwat AA, Cregan PB (1995) Integration of simple sequence repeat DNA markers into a soybean linkage map. Crop Sci 35:1439–1445

    CAS  Google Scholar 

  • Aldriche PR, Hamrick JL, Chavarriaga P, Kochert G (1998) Microsatellite analysis of demographic genetic structure in fragmented populations of the tropical tree Symphonia globulifera. Mol Ecol 7:933–944

    Google Scholar 

  • Anikster Y (2001) Host-parasite relations in a population of wild emmer in Eastern Galilee. Isr J Plant Sci 49:S37–S43

    Google Scholar 

  • Anikster Y, Noy-Meir I (1991) The wild wheat field laboratory at Ammiad. Isr J Bot 40:351–362

    Google Scholar 

  • Anikster Y, Wahl I (1979) Coevolution of the rust fungi on Gramineae and Liliaceae and their host. Annu Rev Phytopathol 17:367–403

    Google Scholar 

  • Anikster Y, Eshel A, Ezrati S, Horovitz A (1991) Patterns of phenotypic variation in wild tetraploid wheat at Ammiad. Isr J Bot 40:397–418

    Google Scholar 

  • Anikster Y, Manisterski J, Long DL, Leonard KJ (2005) Leaf rust and stem rust resistance in Triticum dicoccoides populations in Israel. Plant Dis 89:55–62

    Google Scholar 

  • Appels R, Dvorak J (1982) The wheat ribosomal DNA spacer region: its structure and variation in populations and among species. Theor Appl Genet 63:337–348

    CAS  Google Scholar 

  • Ashraf M, Ozturk M, Ahar HR (eds) (2009) Salinity and water stress: improving crop efficiency. Springer, Berlin

    Google Scholar 

  • Avise JC (1976) Genetic differentiation during speciation. In: Ayala FJ (ed) Molecular evolution. Sinauer, Sunderland, MA, USA, pp 106–122

    Google Scholar 

  • Avivi L (1978) High grain protein content in wild tetraploid wheat Triticum dicoccoides Korn. In: Proceedings of 5th international wheat genetics symposium, New Delhi, India, pp 372–380

    Google Scholar 

  • Avivi L (1979) Utilization of Triticum dicoccoides for the improvement of grain protein quantity and quality in cultivated wheats. Monogr Genet Agrar 4:27–38

    Google Scholar 

  • Avivi L, Levy AA, Feldman M (1983) Studies on high protein durum wheat derived from crosses with the wild tetraploid wheat Triticum turgidum var. dicoccoides. In: Proceedings of the 6th international wheat genetics symposium, Kyoto, Japan, pp 199–204

    Google Scholar 

  • Ayala FJ (1975) Genetic differentiation during the speciation process. Evol Biol 8:1–78

    Google Scholar 

  • Badaeva ED, Dedkova OS, Gay G, Pukhalskyi VA, Zelenin AV et al (2007) Chromosomal rearrangements in wheat: their types and distribution. Genome 50:907–926

    PubMed  CAS  Google Scholar 

  • Baum BR, Bailey LG, Belyayev A, Raskina O, Nevo E (2004) The utility of the nontranscribed spacer of 5S rDNA units grouped into unit classes assigned to haplomes–a test on cultivated wheat and wheat progenitors. Genome 47:590–599

    PubMed  CAS  Google Scholar 

  • Bell CJ, Ecker JR (1994) Assignment of 30 microsatellite loci to the linkage map of Arabidopsis. Genomics 19:137–144

    PubMed  CAS  Google Scholar 

  • Belyayev A, Raskina O (1998) Heterochromatin discrimination in Aegilops speltoides by simultaneous genomic in situ hybridization. Chrom Res 6:559–565

    PubMed  CAS  Google Scholar 

  • Belyayev A, Raskina O, Korol AB, Nevo E (2000) Coevolution of A and B-genomes in allotetraploid Triticum dicoccoides. Genome 43:1021–1026

    PubMed  CAS  Google Scholar 

  • Belyayev A, Raskina O, Nevo E (2001) Evolutionary dynamics and chromosomal distribution of repetitive sequences on chromosomes of Aegilops speltoides revealed by genomic in situ hybridization. Heredity 86:738–742

    PubMed  CAS  Google Scholar 

  • Belyayev A, Raskina O, Nevo E (2003) Evolutionary dynamics of repetitive DNA fraction in two wild Triticeae species. In: Sharma AK, Sharma A (eds) Plant genome: biodiversity and evolution, vol 1, Part A: Phanerogams. Science, Enfield, NH, USA, pp 37–56

    Google Scholar 

  • Belyayev A, Raskina O, Nevo E (2005) Variability of the chromosomal distribution of Ty3-gypsy retrotransposons in the populations of two wild Triticeae species. Cytogenet Genome Res 109:43–49

    PubMed  CAS  Google Scholar 

  • Belyayev A, Kalendar R, Brodsky L, Schulman AH, Raskina O, Nevo E (2007) The dynamics of transposable elements in time: impact on marginal population of Aegilops speltoides. (Abstr). In: Aaronsohn-ITMI international conference, 16–20 April 2007, Tiberias, Israel

    Google Scholar 

  • Belyayev A, Kalendar R, Brodsky L, Nevo E, Schulman AH, Raskina O (2010) Transposable elements in a marginal plant population: temporal fluctuations provide new insights into genome evolution of wild diploid wheat. Mobile DNA 1:6

    PubMed  Google Scholar 

  • Bennetzen JL (2000) Comparative sequence analysis of plant nuclear genomes: microcolinearity and its many exceptions. Plant Cell 12:1021–1030

    PubMed  CAS  Google Scholar 

  • Bennetzen JL (2002) Mechanisms and rates of genome expansion and contraction in flowering plants. Genetica 115:29–36

    PubMed  CAS  Google Scholar 

  • Bolot S, Abrouk M, Masood-Quraishi U, Stein N, Messing J, Feuillet C, Salse J (2009) The “inner circle” of the cereal genomes. Curr Opin Plant Biol 12:119–125

    PubMed  CAS  Google Scholar 

  • Borlaug N (2007) Sixty-two years of fighting hunger: personal recollections. Euphytica 157:282–297

    Google Scholar 

  • Britz SJ, Hungerford WE, Lee DR (1987) Rhythms during extended dark periods determine rates of net photosynthesis and accumulations of starch and soluble sugars in subsequent light periods in leaves of sorghum. Plant 171:171–345

    Google Scholar 

  • Brown AHD, Feldman MW, Nevo E (1980) Multilocus structure of natural populations of Hordeum spontaneum. Genetics 96:523–536

    PubMed  CAS  Google Scholar 

  • Buerstmayr H, Lemmens M, Hartl L, Doldi l, Steiner B, Stierschneider M, Ruckenbauer P (2002) Molecular mapping of QTLs for Fusarium head blight resistance in spring wheat. I. Resistance to fungal spread (type II resistance). Theor Appl Genet 104:84–91

    Google Scholar 

  • Cakmak I, Torun A, Millet E, Feldman M, Fahima T, Korol AB, Nevo E, Braun HJ, Özkan H (2004) Triticum dicoccoides: an important genetic resource for increasing zinc and iron concentration in modern cultivated wheat. Soil Sci Plant Nutr 50:1047–1054

    CAS  Google Scholar 

  • Caligari PDS, Brandham PE (eds) (2001) Wheat taxonomy: the legacy of John Percival, special issue 3. Linnean Society, London, p 190

    Google Scholar 

  • Carver BF, Nevo E (1990) Genetic diversity of photosynthetic characters in native populations of Triticum dicoccoides. Photosynth Res 25:119–128

    Google Scholar 

  • Chague V, Fahima T, Dahan A, Sun GL, Korol AB, Ronin YI, Grama A, Röder MS, Nevo E (1999) Isolation of microsatellite and RAPD markers flanking the Yr15 gene of wheat using NILs and bulked segregant analysis. Genome 42:1050–1056

    PubMed  CAS  Google Scholar 

  • Chapman V, Miller TE, Riley R (1976) Equivalence of the A-genome of bread wheat and that of Triticum urartu. Genet Res 27:69–76

    Google Scholar 

  • Chen XM, Luo YH, Xia XC, Xia LQ, Chen X, Ren ZL, He Ah, Jia JZ (2005) Chromosomal location of powdery mildew resistance gene Pm16 in wheat using SSR marker analysis. Plant Breed 124:225–228

    CAS  Google Scholar 

  • Coyne JA (1992) Genetics and speciation. Nature 355:511–515

    PubMed  CAS  Google Scholar 

  • Darwin C (1905) The variation of animals and plants under domestication. John Murray, London, (popular edition in two volumes), p 566

    Google Scholar 

  • Devos KM, Gale MD (1992) The use of random amplified polymorphic DNA markers in wheat. Theor Appl Genet 84:567–572

    Google Scholar 

  • Dib C, Faure S, Fizames C, Samson D, Drouot N, Vignal A, Millasseau P, Marc S, Hazan J, Seboun E, Lathrop M, Gyapay G, Morissette J, Weissenbach J (1996) A comprehensive genetic map of the human genome based on 5264 microsatellites. Nature 380:152–154

    PubMed  CAS  Google Scholar 

  • Dietrich WR, Miller J, Steen R, Merchant MA, Danrom-Boles D, Husain Z, Dredge R, Daly MJ, Ingalls KA, O’Connor TJ, Evans CA, DeAngelis MM, Levinson DM, Kruglyak L, Goodman N, Copeland NG, Jenkins NA, Hawkins TL, Stein L, Page DC, Lander ES (1996) A comprehensive genetic map of the mouse genome. Nature 380:149–152

    PubMed  CAS  Google Scholar 

  • Distelfeld A, Fahima T (2007) Wild emmer wheat as a source for high-grain-protein genes: map-based cloning of Gpc-B1. Isr J Plant Sci 55:297–306

    Google Scholar 

  • Dong P, Wei Y-M, Chen G-Y, Li W, Nevo E (2009) Resistance gene analog polymorphisms (RGAPs) in wild emmer wheat (Triticum dicoccoides) and their ecological associations. Genet Resour Crop Evol 56:121–136

    CAS  Google Scholar 

  • Dong P, Wei Y-M, Chen G-Y, Li W, Wang J-R, Nevo E, Zheng Y-L (2010) Sequence-related amplified polymorphism (SRAP) of wild emmer wheat (Triticum dicoccoides) in Israel and its ecological association. Biochem Syst Ecol 38:1–11

    CAS  Google Scholar 

  • Dubcovsky J, Dvorak J (1995) Ribosomal RNA multigene loci: nomads of the triticeae genomes. Genetics 140:1367–1377

    PubMed  CAS  Google Scholar 

  • Dvorak J, Akhunov E (2005) Tempos of gene locus deletions and duplications and their relationship to recombination rates during diploid and polyploidy evolution in the Aegilops-Triticum alliance. Genetics 171:323–332

    PubMed  CAS  Google Scholar 

  • Dvorak J, McGuire PE, Cassidy B (1988) Apparent sources of the A genomes of wheats inferred from polymorphism in abundance and restriction fragment length of repeated nucleotide sequences. Genome 30:680–689

    CAS  Google Scholar 

  • Dvorak J, di Terlizzei P, Zhang H-B, Resta P (1993) The evolution of polyploid wheat: identification of the A-genome donor species. Genome 36:21–31

    PubMed  CAS  Google Scholar 

  • Dvorak J, Luo MC, Yang ZL, Zhang HB (1998) The structure of the Aegilops tauschii genepool and the evolution of hexaploid wheat. Theor Appl Genet 67:657–670

    Google Scholar 

  • Fahima T, Röder MS, Grama A, Nevo E (1998) Microsatellite DNA polymorphism divergence in Triticum dicoccoides accessions highly resistant to yellow rust. Theor Appl Genet 96:187–195

    CAS  Google Scholar 

  • Fahima T, Sun GL, Beharav A, Krugman T, Beiles A, Nevo E (1999) RAPD polymorphism of wild emmer wheat population, Triticum dicoccoides, in Israel. Theor Appl Genet 98:434–447

    CAS  Google Scholar 

  • Fahima T, Peng JH, Cheng JP, Röder MS, Ronin YI, Li YC, Korol AB, Nevo E (2001) Molecular genetic maps in tetraploid wild emmer wheat, Triticum dicoccoides, based on microsatellite and AFLP markers. Isr J Plant Sci (Abstr) 49:154

    Google Scholar 

  • Fahima T, Röder MS, Wendehake K, Kirzhner VM, Nevo E (2002) Microsatellite polymorphism in natural populations of wild emmer wheat, Triticum dicoccoides, in Israel. Theor Appl Genet 104:17–29

    PubMed  CAS  Google Scholar 

  • Feldman M (1977) Historical aspects and significance of the discovery of wild wheats. Stadler Symp 9:121–124

    Google Scholar 

  • Feldman M (1979) Genetic resources of wild wheats and their use in breeding. Monogr Genet Agrar 4:9–26

    Google Scholar 

  • Feldman M, Kislev ME (2007) Domestication of emmer wheat and evolution of free-threshing tetraploid wheat. Isr J Plant Sci 55:207–221

    Google Scholar 

  • Feldman M, Levy AA (2005) Allopolyploidy-a shaping force in the evolution of wheat genomes. Cytogenet Genome Res 109:250–258

    PubMed  CAS  Google Scholar 

  • Feldman M, Millet E (2001) The contribution of the discovery of wild emmer to an understanding of wheat evolution and domestication and to wheat improvement. Isr J Plant Sci 49:S25–S37

    Google Scholar 

  • Feldman M, Sears ER (1981) The wild gene resources of wheat. Sci Am 244:102–112

    Google Scholar 

  • Feldman M, Lupton FGH, Miller TE (1995) Wheats. Triticum spp. (Gramineae-Triticinae). In: Smartt J, Simmonds NW (eds) Evolution of crop plants. Longman Scientific & Technical Press, London, UK, pp 184–192

    Google Scholar 

  • Felsenburg T, Levy AA, Galili G, Feldman M (1991) Polymorphism of high-molecular-weight glutenins in wild tetraploid wheat: spatial and temporal variation in a native site. Isr J Bot 40:451–479

    CAS  Google Scholar 

  • Feuillet C, Eversole K (2007) Physical mapping of the wheat genome: a coordinated effort to lay the foundation for genome sequencing and develop tools for breeders. Isr J Plant Sci 55:307–313

    Google Scholar 

  • Feuillet C, Keller B (2002) Comparative genomics in the grass family: molecular characterization of grass genome structure and evolution. Ann Bot 89:3–10

    PubMed  CAS  Google Scholar 

  • Feuillet C, Muehlbauer GJ (Eds) (2009) Genetics and genomics of the Triticeae. In: Plant genetics and genomics, vol 7. Springer, Berlin

    Google Scholar 

  • Flavell RB, O'Dell M, Sharp P, Nevo E, Beiles A (1986) Variation in the intergenic spacer of ribosomal DNA of wild wheat, Triticum dicoccoides, in Israel. Mol Biol Evol 3:547–558

    CAS  Google Scholar 

  • Fu YB, Somers D (2009) Genome wide reduction of genetic diversity in wheat breeding. Crop Sci 49:161–168

    Google Scholar 

  • Fu D, Uauy C, Distelfeld A, Blechl A, Epstein L, Chen X, Sela H, Fahima T, Dubcovsky J (2009) A kinase-START gene confers temperature-dependent resistance to wheat stripe rust. Science 323:1357–1360

    PubMed  CAS  Google Scholar 

  • Gale MD, Devos KM (1998) Comparative genetics in the grasses. Proc Natl Acad Sci USA 95:1971–1974

    PubMed  CAS  Google Scholar 

  • Galili G, Feldman M (1983) Genetic control of endosperm proteins in wheat: II. Variation of high-molecular-weight glutenin and gliadin subunits of Triticum aestivum L. Theor Appl Genet 66:77–86

    CAS  Google Scholar 

  • Galili G, Feldman M (1985) Structural homology of endosperm high-molecular-weight glutenin subunits of common wheat (Triticum aestivum L.). Theor Appl Genet 70:634–642

    CAS  Google Scholar 

  • Gepts P (1990) Genetic diversity of seed storage proteins in plants. In: Brown MT, Clegg AL, Kahler AL, Weir BS (eds) Plant populations genetics, breeding and genetic resources. Sinauer Associates, Sunderland, MA, USA, pp 64–82

    Google Scholar 

  • Gerechter-Amitai ZK, Grama A (1974) Inheritance of resistance to stripe rust (Puccinia striiformis) in crosses between wild emmer (Triticum dicoccoides) and cultivated tetraploid and hexaploid wheat. I. Triticum durum. Euphytica 23:387–392

    Google Scholar 

  • Gerechter-Amitai ZK, Grama A (1977) Use of alien genes in wheat breeding. Annu Wheat Newsl 23:57–58

    Google Scholar 

  • Gerechter-Amitai ZK, Stubbs RW (1970) A valuable source of yellow rust resistance in Israeli populations of wild emmer, Triticum dicoccoides Koern. Euphytica 19:12–21

    Google Scholar 

  • Gerechter-Amitai ZK, Van Silfhout CH, Grama A, Kleitman F (1989) Yr15 – a new gene for resistance to Puccinia striiformis in Triticum dicoccoides sel. G-25. Euphytica 34:187–190

    Google Scholar 

  • Gianibelli MC, Gupta RB, Lafiandra D, Margiotta B, MacRitchie F (2001) Polymorphism of high Mr glutenin subunits in Triticum tauschii: characterization by chromatography and electrophoretic methods. J Cereal Sci 33:39–52

    CAS  Google Scholar 

  • Gill BS, Friebe B, Raupp WJ, Wilson DL, Cox TS, Sears RG, Brown-Guedira GL, Fritz AK (2006) Wheat genetics resource center: the first 25 years. Adv Agron 89:73–136

    Google Scholar 

  • Gill BS, Li W, Sood S, Kuraparthy V, Friebe SKJ, Zhang Z, Faris JD (2007) Genetics and genomics of wheat domestication-driven evolution. Isr J Plant Sci 55:223–229

    Google Scholar 

  • Gladysz C, Lemmens M, Steiner B, Buerstmayr H (2007) Evaluation and genetic mapping of resistance to Fusarium head blight in Triticum dicoccoides. Isr J Plant Sci 55:263–266

    Google Scholar 

  • Golenberg EM (1986a) Multilocus structures in plant populations: populations and genetic dynamics of Triticum dicoccoides. PhD Thesis, State University of New York, Stony Brook, USA

    Google Scholar 

  • Golenberg EM (1986b) Linkage relationships in wild emmer wheat, Triticum dicoccoides. Genetics 114:1023–1031

    PubMed  CAS  Google Scholar 

  • Golenberg EM (1987) Estimation of gene flow and genetic neighborhood size by indirect methods in a selfing annual, Triticum dicoccoides. Evolution 41:1326–1334

    Google Scholar 

  • Golenberg EM, Nevo E (1987) Multilocus differentiation and population structure in a selfer, wild emmer wheat, Triticum dicoccoides. Heredity 58:451–456

    Google Scholar 

  • Grama A, Gerechter-Amitai ZK, Blum A (1983) Wild emmer as donor of genes for resistance to stripe rust and for high protein content. In: Proceedings of the 6th international wheat genetics symposium, Kyoto University, Kyoto, Japan, pp 187–192

    Google Scholar 

  • Grant V (1981) Plant speciation. Columbia University Press, New York, NY, USA

    Google Scholar 

  • Gupta PK, Sharma PK, Balyan HS, Roy JK, Sharma S, Beharav A, Nevo E (2002) Polymorphism at rDNA loci in barley and its relation with climatic variables. Theor Appl Genet 104:473–481

    PubMed  CAS  Google Scholar 

  • Gustafson P, Raskina O, Ma X-F, Nevo E (2009) Evolutionary genomics of wheat. In: Carver B (ed) Wheat: science and trade. Blackwell, Hoboken, NJ, USA, pp 5–30

    Google Scholar 

  • Harlan JR (1975) Our vanishing genetic resources. Science 188:618–621

    Google Scholar 

  • Harlan JR (1992) Crop and man. American Society of Agronomy, Crop Science Society of America, Madison, WI, USA

    Google Scholar 

  • Harlan JR, Zohary D (1966) Distribution of wild emmer wheat and barley. Science 153:1074–1080

    PubMed  CAS  Google Scholar 

  • Haudry A, Cenci A, Ravel C, Bataillon T, Brunel D, Poncet C, Hochu I, Poirier S, Santoni S, Glemin S, David J (2007) Grinding up wheat: a massive loss of nucleotide diversity since domestication. Mol Biol Evol 24:1506–1517

    PubMed  CAS  Google Scholar 

  • He S, Ohm H, Mackenzie S (1992) Detection of DNA sequence polymorphisms among wheat varieties. Theor Appl Genet 84:578

    Google Scholar 

  • Hedrick PW (1986) Genetic polymorphism in heterogeneous environments: a decade later. Annu Rev Ecol Syst 17:535–566

    Google Scholar 

  • Heun M, Schäfer-Pregl R, Klawan D, Castagna R, Acerbi M, Borghi B, Salamini F (1997) Site of einkorn wheat domestication identified by DNA fingerprinting. Science 278:1312–1314

    CAS  Google Scholar 

  • Hovmoller MS (2007) Sources of seedling and adult plant resistance to Puccinia striiformis f.sp. tritici in European wheats. Plant Breed 126:225–233

    Google Scholar 

  • Huang SA, Sirikhachornkit XS, Faris J, Gill BS, Haselkorn R, Gornicki P (2002) Genes encoding plastid acetyl-CoA carboxylase and 3-phosphoglycerate kinase of the Triticum/Aegilops complex and the evolutionary history of polyploidy wheat. Proc Natl Acad Sci USA 99:8133–8138

    PubMed  CAS  Google Scholar 

  • Hunger RM, Sherwood JL, Pennington RE, Carver BF, Nevo E (1992) Reaction of native populations of Triticum dicoccoides to wheat soilborne mosaic. In: Biological and cultural tests for control of plant diseases, vol 7. APS, St. Paul, MN, USA

    Google Scholar 

  • Isabel N, Beiaulier J, Bousquet J (1995) Complete congruence between gene diversity estimates derived from genotypic data at enzyme and random amplified polymorphic DNA loci in black spruce. Proc Natl Acad Sci USA 92:6369–6373

    PubMed  CAS  Google Scholar 

  • Israel Journal of Botany (1991) vol. 40

    Google Scholar 

  • Israel Journal of Plant Sciences (2001) vol. 49

    Google Scholar 

  • Israel Journal of Plant Sciences (2007) vol. 55

    Google Scholar 

  • Jaaska V (1997) Isoenzyme differences between the wild diploid and tetraploid wheats. Genet Resour Crop Evol 44:137–146

    Google Scholar 

  • Johnson BL, Dhaliwal HS (1976) Reproductive isolation of Triticum boeticum and Triticum urartu and the origin of the tetraploid wheats. Am J Bot 63:1088–1094

    Google Scholar 

  • Jones JD, Dangl JL (2006) The plant immune system. Nature 444:424–429

    Google Scholar 

  • Joppa LR, Nevo E, Beiles A (1995) Chromosome translocations in wild populations of tetraploid emmer wheat in Israel and Turkey. Theor Appl Genet 91:713–719

    Google Scholar 

  • Joshi CP, Nguyen HT (1993a) Application of the random amplified polymorphic DNA technique for the detection of polymorphism among wild and cultivated tetraploid wheats. Genome 36:602–609

    PubMed  CAS  Google Scholar 

  • Joshi CP, Nguyen HT (1993b) RAPD (random amplified polymorphic DNA) analysis based on intervarietal genetic relationships among haploid wheats. Plant Sci 93:95–103

    CAS  Google Scholar 

  • Kalendar R, Tanskanen J, Immonen S, Nevo E, Schulman AH (2000) Genome evolution of wild barley (Hordeum spontaneum) by BARE-1 retrotransposon dynamics in response to sharp microclimatic divergence. Proc Natl Acad Sci USA 97:6603–6607

    PubMed  CAS  Google Scholar 

  • Karlin S, McGregor JL (1972) Polymorphisms for genetics and ecological systems with weak coupling. Theor Popul Biol 3:210–238

    PubMed  CAS  Google Scholar 

  • Kasarda DD, Bernardin JE, Nimmo CC (1976) Wheat proteins. In: Pomeranz Y (ed) Advances in cereal science and technology. American Association of Cereal Chemists, St Paul, MN, USA, pp 158–236

    Google Scholar 

  • Kashi Y, King D (2006) Has simple sequence repeat mutability been selected to facilitate evolution? Isr J Ecol Evol 52:331–342

    Google Scholar 

  • Kashi Y, King D, Soller M (1997) Simple sequence repeats as a source of quantitative genetic variation. Theor Appl Genet 13:74–78

    CAS  Google Scholar 

  • Kashkush K (2007) Genome-wide impact of transcriptional activation of long terminal repeat retrotransposons on the expression of adjacent host genes. Isr J Plant Sci 55:241–250

    CAS  Google Scholar 

  • Kashkush K, Feldman M, Levy AA (2002) Gene loss, silencing and activation in a newly synthesized wheat allotetraploid. Genetics 160:1651–1656

    PubMed  CAS  Google Scholar 

  • Kawahara T, Nevo E (1996) Screening of spontaneous major translocations in Israeli populations of Triticum dicoccoides Korn. Wheat Inf Serv 83:28–30

    Google Scholar 

  • Kawahara T, Nevo E, Beiles A (1993) Frequencies of translocations in Israel populations of Triticum dicoccoides Korn. Abstracts of XVth international botany congress, 28 Aug–3 Sept 1993, Yokohama, Japan

    Google Scholar 

  • Kellogg EA (1998) Relationships of cereal crops and other grasses. Proc Natl Acad Sci USA 95:2005–2010

    PubMed  CAS  Google Scholar 

  • Kellogg EA (2001) Evolutionary history of the grasses. Plant Physiol 125:1198–1205

    PubMed  CAS  Google Scholar 

  • Kellogg EA, Appels R, Mason-Gamer RJ (1996) When genes tell different stories: the diploid genera of Triticeae (Gramineae). Syst Bot 21:321–347

    Google Scholar 

  • Kerber ER, Rowland GG (1974) Origin of the free-threshing character in hexaploid wheat. Can J Genet Cytol 16:145–154

    Google Scholar 

  • Kihara H (1944) Discovery of the DD-analyser, one of the ancestors of Triticum vulgare. Agric Hortic 19:13–14 (in Japanese)

    Google Scholar 

  • Kihara H (1954) Considerations on the evolution and distribution of Aegilops species based on the analyser method. Cytologia 19:336–357

    Google Scholar 

  • Kimber G, Feldman M (1987) Wild wheat: an introduction. College of Agricultural University, Columbia, MO, USA, 143 p

    Google Scholar 

  • King D, Soller M, Kashi Y (1997) Evolutionary tuning knobs. Endeavour 21:36–40

    Google Scholar 

  • Kirzhner VM, Korol AB, Ronin YI (1995) Cyclical environmental changes as a factor maintaining genetic polymorphism. I. Two-locus haploid selection. J Evol Biol 8:93–120

    Google Scholar 

  • Kirzhner VM, Korol AB, Nevo E (1999) Abundant multilocus polymorphisms caused by genetic interaction between species on trait-for-trait bases. J Theor Biol 198:61–70

    PubMed  CAS  Google Scholar 

  • Kislev ME, Nadel D, Carmi I (1992) Epi-palaeolithic (19 000 BP) cereal and fruit diet at Ohalo II, Sea of Galilee, Israel. Rev Palaeobot Palynol 3:161–166

    Google Scholar 

  • Konzak CF (1977) Genetic control of the content, amino acid composition and processing properties of proteins in wheat. Adv Genet 19:407–582

    PubMed  CAS  Google Scholar 

  • Korol AB, Preygel IA, Preygal SA (1994) Recombination variability and evolution. Chapman and Hall, London, UK

    Google Scholar 

  • Korol AB, Kirzhner VM, Ronin YI, Nevo E (1996) Cyclical environmental changes as a factor of maintaining genetic polymorphism. II. Diploid selection for an additive trait. Evolution 50:1432–1441

    Google Scholar 

  • Krugman T, Levy O, Snape J, Rubin B, Korol AB, Nevo E (1997) Comparative RFLP mapping of the chlorotoluron resistance gene (Su1) in cultivated wheat (Triticum aestivum) and wild wheat (Triticum dicoccoides). Theor Appl Genet 94:46–51

    PubMed  CAS  Google Scholar 

  • Krugman T, Chague V, Peleg Z, Balzergue S, Just J, Korol AB, Nevo E, Saranga Y, Chalhoub B (2010) Multilevel regulation and signaling processes associated with adaptation to terminal drought in wild emmer wheat. Funct Integ Genomics DOI 10.1007/s10142-010-0166-3

    Google Scholar 

  • Kumar S, Stack RW, Friesen TL, Faris JD (2007) Identification of a novel Fusarium head blight resistance quantitative trait locus on chromosome 7A in tetraploid wheat. Phytopathology 97:592–597

    PubMed  CAS  Google Scholar 

  • Lanner-Herrera C, Bustafsson M, Falt AS, Bryngelsson T (1996) Diversity of wild Brassica oleraceae as estimated by isozyme and RAPD analysis. Genet Resour Crop Evol 43:13–23

    Google Scholar 

  • Law CN, Payne PI (1983) Genetical aspects of breeding for improved grain protein content and type in wheat. J Cereal Sci 1:79–93

    CAS  Google Scholar 

  • Lemaux PG, Qualset CO (2001) Advances in technology for wheat breeding. Isr J Plant Sci 49:S105–S116

    CAS  Google Scholar 

  • Levene H (1953) Genetic equilibrium when more than one ecological niche is available. Am Nat 87:331–333

    Google Scholar 

  • Levy AA (1987) Genetic studies on grain proteins in Triticum durum var. dicoccoides. PhD Thesis, Weizmann Institute of Science, Rehovot, Israel

    Google Scholar 

  • Levy AA, Feldman M (1987) Increase in grain protein percentage in high-yielding common wheat breeding lines by genes from wild tetraploid wheat. Euphytica 36:353–359

    Google Scholar 

  • Levy AA, Feldman M (1988) Ecogeographical distribution of HMW glutenin alleles in populations of the wild tetraploid wheat. Triticum turgidum var. dicoccoides. Theor Appl Genet 75:651–658

    CAS  Google Scholar 

  • Levy AA, Feldman M (2002) The impact of polyploidy on grass genome evolution. Plant Physiol 130:1587–1593

    PubMed  CAS  Google Scholar 

  • Levy AA, Feldman M (2004) Genetic and epigenetic reprogramming of the wheat genome upon allopolyploidization. Biol J Linn Soc 82:607–613

    Google Scholar 

  • Lev-Yadun S, Gopher A, Abbo S (2000) The cradle of agriculture. Science 288:602–1603

    Google Scholar 

  • Lewontin RC (1974) The genetic basis of evolutionary change. Columbia University Press, New York, NY, USA

    Google Scholar 

  • Li YC, Fahima T, Beiles A, Korol AB, Nevo E (1999) Microclimatic stress and adaptive DNA differentiation in wild emmer wheat, Triticum dicoccoides. Theor Appl Genet 99:873–883

    Google Scholar 

  • Li YC, Fahima T, Peng JH, Röder MS, Kirzhner VM, Beiles A, Korol AB, Nevo E (2000a) Edaphic microsatellite DNA divergence in wild emmer wheat, Triticum dicoccoides at a microsite: Tabigha, Israel. Theor Appl Genet 101:1029–1038

    CAS  Google Scholar 

  • Li YC, Fahima T, Korol AB, Peng J, Röder MS, Kirzhner VM, Beiles A, Nevo E (2000b) Microsatellite diversity correlated with ecological-edaphic and genetic factors in three microsites of wild emmer wheat in North Israel. Mol Biol Evol 17:851–862

    PubMed  CAS  Google Scholar 

  • Li YC, Röder MS, Fahima T, Kirzhner VM, Beiles A, Korol AB, Nevo E (2000c) Natural selection causing microsatellite divergence in wild emmer wheat at the ecologically variable microsite at Ammiad, Israel. Theor Appl Genet 100:985–999

    Google Scholar 

  • Li YC, Fahima T, Krugman T, Beiles A, Röder MS, Korol AB, Nevo E (2000d) Parallel microgeographic patterns of genetic diversity and divergence revealed by allozyme, RAPD, and microsatellites in Triticum dicoccoides at Ammiad, Israel. Conserv Genet 1:191–207

    CAS  Google Scholar 

  • Li YC, Krugman T, Fahima T, Beiles A, Korol AB, Nevo E (2001) Spatiotemporal allozyme divergence caused by aridity stress in a natural population of wild wheat, Triticum dicoccoides, at the Ammiad microsite, Israel. Theor Appl Genet 109:853–864

    Google Scholar 

  • Li YC, Röder MS, Fahima T, Kirzhner VM, Beiles A, Korol AB, Nevo E (2002a) Climatic effects on microsatellite diversity in wild emmer wheat (Triticum dicoccoides) at the Yehudiyya microsite, Israel. Heredity 89:127–132

    Google Scholar 

  • Li YC, Korol AB, Fahima T, Beiles A, Nevo E (2002b) Microsatellites: genomic distribution, putative functions and mutational mechanisms: a review. Mol Ecol 11:2453–2465

    PubMed  CAS  Google Scholar 

  • Li YC, Fahima T, Röder MS, Beiles A, Korol AB, Nevo E (2003) Genetic effects on microsatellite diversity in wild emmer wheat, Triticum dicoccoides, at the Yehudiyya microsite. Heredity 90:150–156

    Google Scholar 

  • Li YC, Korol AB, Fahima T, Nevo E (2004) Microsatellites within genes: structure, function, and evolution. Mol Biol Evol 6:991–1007

    Google Scholar 

  • Li G, Xie C, Tsomin Y, Nevo E, Fahima T, Sun Q, Liu Z (2009) Molecular characterization of a new powdery mildew resistance gene Pm41 on chromosome 3BL derived from wild emmer (Triticum turgidum var. dicoccoides). Theor Appl Genet 119:531–539

    PubMed  CAS  Google Scholar 

  • Litt M, Luty JA (1989) A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene. Am J Hum Genet 44:397–401

    PubMed  CAS  Google Scholar 

  • Liu Z, Biyashev RM, Saghai-Maroof MA (1996) Development of simple sequence repeat DNA markers and their integration into a barley linkage map. Theor Appl Genet 93:869–876

    CAS  Google Scholar 

  • Luo MC, Yang ZL, Dvorak J (2000) The Q locus of Iranian and European spelt wheat. Theor Appl Genet 100:602–606

    CAS  Google Scholar 

  • Lupton FGH (ed) (1987) Wheat breeding: its scientific basis. Chapman and Hall, London, UK

    Google Scholar 

  • Ma X-F, Gustafson JP (2005) Genome evolution of allopolyploids: a process of cytological and genetic diploidization. Cytogenet Genome Res 109:236–249

    PubMed  CAS  Google Scholar 

  • Maan SS (1973) Cytoplasmic and cytogenetic relationships among tetraploid Triticum species. Euphytica 22:287–300

    Google Scholar 

  • Magalhaes IS, Mwaiko S, Schneider MV, Seehausen O (2009) Divergent selection and phenotypic plasticity during incipient speciation in Lake Victoria cichlid fish. J Evol Biol 22:260–275

    PubMed  CAS  Google Scholar 

  • Marais GF, Pretorius ZA, Wellings CR, McCallum B, Marais AS (2005) Leaf rust and stripe rust resistance genes transferred to common wheat from Triticum dicoccoides. Euphytica 143:115–123

    CAS  Google Scholar 

  • McClelland M, Welsh J (1994) DNA fingerprinting by arbitrarily primed PCR. PCR Methods Appl 4:S59–S65

    PubMed  CAS  Google Scholar 

  • McClintock B (1946) Maize genetics. Carnegie Inst Washington Year Book 45:76–186

    Google Scholar 

  • McClintock B (1984) The significance of responses of the genome to challenge. Science 226:792–801

    PubMed  CAS  Google Scholar 

  • McFadden ES, Sears ER (1946) The origin of Triticum spelta and its free-threshing hexaploid relative. J Hered 37:81–89

    PubMed  Google Scholar 

  • McIntosh RA, Silk J, The TT (1996) Cytogenetic studies in wheat XVII. Monosomic analysis and linkage relationships of gene Yr15 for resistance to stripe rust. Euphytica 89:395–399

    Google Scholar 

  • Miller TE (1987) Systematics and evolution. In: Lupton FGH (ed) Wheat breeding: it’s scientific basis. Chapman and Hall, London, UK, pp 1–30

    Google Scholar 

  • Miller TE (1992) A cautionary note on the use of morphological characters for recognizing taxa of wheat (genus Triticum). Prehistoire de l'agriculture: nouvelles approches experimentales et ethnographiques. Monographie du CRA, no 6, CNRs, pp 249–253

    Google Scholar 

  • Miller JD, Stack RW, Joppa LR (1998) Evaluation of Triticum turgidum L. var. dicoccoides for resistance to Fusarium head blight and stem rust. In: Slinkard AE (ed) Proceedings of 9th international wheat genetics symposium, vol 3. University of Extension Press, University of Saskatchewan, Saskatoon, Canada, pp 292–293

    Google Scholar 

  • Millet E (2007) Exploitation of Aegilops species of section Sitopsis for wheat improvement. Isr J Plant Sci 55:277–287

    Google Scholar 

  • Moonen JHE, Scheepstra A, Graveland A (1982) Use of the SDS-sedimentation test and SCS-Poly acrylamide gel electrophoresis for screening breeder’s samples of wheat for bread-making quality. Euphytica 31:277–290

    Google Scholar 

  • Moseman JG, Nevo E, El Morshidy MA, Zohary D (1984) Resistance of Triticum dicoccoides to infection with Erysiphe graminis tritici. Euphytica 33:41–47

    Google Scholar 

  • Moseman JG, Nevo E, Gerechter-Amitai ZK, El-Morshidy MA, Zohary D (1985) Resistance of Triticum dicoccoides collected in Israel to infection with Puccinia recondita tritici. Crop Sci 25:262–265

    Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York, NY, USA

    Google Scholar 

  • Nesbitt N, Samuel D (1996) From staple crop to extinction? The archaeology and history of hulled wheats. In: Padulosi S, Hammer K, Heller J (eds) Hulled wheats. International Plant Genetics Resources Institute, Rome, Italy, pp 41–100

    Google Scholar 

  • Nevo E (1983) Genetic resources of wild emmer wheat: structure, evolution and application in breeding. In: Sakamoto S (ed) Proceedings of 6th international wheat genetics symposium. Kyoto University, Kyoto, Japan, pp 421–431

    Google Scholar 

  • Nevo E (1986) Genetic resources of wild cereals and crop improvement: Israel, a natural laboratory. Isr J Bot 235:255–278

    Google Scholar 

  • Nevo E (1987) Plant genetic resources: prediction by isozyme markers and ecology. In: Rattazi MC, Scandalios JG, Whitt GS (eds) Isozymes: current topics in biological research, vol 16, Agriculture, physiology and medicine. Alan R Liss, New York, pp 247–267

    Google Scholar 

  • Nevo E (1988) Genetic diversity in nature: patterns and theory. Evol Biol 23:217–247

    Google Scholar 

  • Nevo E (1989) Genetic resources of wild emmer wheat revisited: genetic evolution, conservation and utilization. In: Miller TE, Koebner RMD (eds) Proceedings of the 7th international wheat genetics symposium. Institute of Plant Sciences Research, Cambridge, UK, pp 121–126

    Google Scholar 

  • Nevo E (1991) Evolutionary theory and processes of active speciation and adaptive radiation in subterranean mole rats, Spalax ehrenbergi superspecies in Israel. Evol Biol 25:1–125

    Google Scholar 

  • Nevo E (1992) Origin, evolution, population genetics and resources for breeding of wild barley, Hordeum spontaneum, in the Fertile Crescent. In: Shewry P (ed) Barley: genetics, molecular biology and biotechnology. CAB International, Wallingford, Oxford, pp 19–43

    Google Scholar 

  • Nevo E (1995) Genetic resources of wild emmer Triticum dicoccoides for wheat improvement: news and views. In: Proceedings of the 8th international wheat genetics symposium, 20–25 July 1993, Beijing, PRC, pp 79–87

    Google Scholar 

  • Nevo E (1998a) Genetic diversity in wild cereals: regional and local studies and their bearing on conservation ex-situ and in-situ. Genet Resour Crop Evol 45:355–370

    Google Scholar 

  • Nevo E (1998b) Molecular evolution and ecological stress at global, regional and local scales: the Israeli perspective. J Exp Zool 282:95–119

    CAS  Google Scholar 

  • Nevo E (2001a) Genetic resources of wild emmer, Triticum dicoccoides, for wheat improvement in the third millennium. Isr J Plant Sci 49:S77–S93

    CAS  Google Scholar 

  • Nevo E (2001b) Evolution of genome-phenome diversity under environmental stress. Proc Natl Acad Sci USA 98:6233–6240

    PubMed  CAS  Google Scholar 

  • Nevo E (2004) Evolution of genome dynamics under ecological stress. In: Parisi V, De Fonzo V, Alluffi-Pentini F (eds) Dynamical genetics. Research Signpost, Keraba, India, ISBN 81:7736-231-3

    Google Scholar 

  • Nevo E (2006) “Evolution Canyon”: a microcosm of life's evolution focusing on adaptation and speciation. Isr J Ecol Evol 52:485–506

    Google Scholar 

  • Nevo E (2007) Evolution of wild wheat and barley and crop improvement: studies at the Institute of Evolution. Isr J Plant Sci 55:251–263

    Google Scholar 

  • Nevo E (2009) Evolution in action across life at “Evolution Canyon”, Israel. Trends in Evol. Biol. 1:e3

    Google Scholar 

  • Nevo E, Beiles A (1989) Genetic diversity of wild emmer wheat in Israel and Turkey: structure, evolution and application in breeding. Theor Appl Genet 77:421–455

    Google Scholar 

  • Nevo E, Beiles A (1992) Amino acid resources in the wild progenitor of wheats, Triticum dicoccoides in Israel: polymorphisms and predictability by ecology and isozymes. Plant Breed 108:190–201

    CAS  Google Scholar 

  • Nevo E, Chen G (2010) Drought and salt tolerances in wild relatives for wheat and barley improvement. Plant, Cell and Environ 33:670–685

    CAS  Google Scholar 

  • Nevo E, Cleve H (1978) Genetic differentiation during speciation. Nature 275:125–126

    PubMed  CAS  Google Scholar 

  • Nevo E, Payne PI (1987) Wheat storage proteins: diversity of HMW glutenin subunits in wild emmer from Israel. I. Geographical patterns and ecological predictability. Theor Appl Genet 74:827–836

    CAS  Google Scholar 

  • Nevo E, Zohary D, Brown AHD, Haber M (1979) Genetic diversity and environmental associations of wild barley, Hordeum spontaneum, in Israel. Evolution 33:815–833

    CAS  Google Scholar 

  • Nevo E, Brown AHD, Zohary D, Storch N, Beiles A (1981) Microgeographic edaphic differentiation in allozyme polymorphisms of wild barley (Hordeum spontaneum, Poaceae). Plant Syst Evol 138:287–292

    Google Scholar 

  • Nevo E, Golenberg EM, Beiles A, Brown AHD, Zohary D (1982) Genetic diversity and environmental associations of wild wheat, Triticum dicoccoides, in Israel. Theor Appl Genet 62:241–254

    Google Scholar 

  • Nevo E, Beiles A, Storch N, Doll H, Andersen B (1983) Microgeographic edaphic differentiation in hordein polymorphisms of wild barley. Theor Appl Genet 64:123–132

    Google Scholar 

  • Nevo E, Beiles A, Gutterman Y, Storch N, Kaplan D (1984) Genetic resources of wild cereals in Israel and vicinity: II. Phenotypic variation within and between populations of wild barley, Hordeum spontaneum. Euphytica 33:737–756

    Google Scholar 

  • Nevo E, Moseman JG, Beiles A, Zohary D (1985) Patterns of resistance of Israeli wild emmer wheat to pathogens. I. Predictive method by ecology and allozyme genotypes for powdery mildew and leaf rust. Genetics 67:209–222

    Google Scholar 

  • Nevo E, Grama A, Beiles A, Golenberg EM (1986a) Resources of high-protein genotypes in wild wheat, Triticum dicoccoides in Israel: predictive method by ecology and allozyme markers. Genetics 68:215–227

    CAS  Google Scholar 

  • Nevo E, Gerechter-Amitai Z, Beiles A, Golenberg EM (1986b) Resistance of wild wheat to stripe rust: predictive method by ecology and allozyme genotypes. Plant Syst Evol 153:13–30

    Google Scholar 

  • Nevo E, Beiles A, Kaplan D, Golenberg EM, Olsvig-Whittaker L, Naveh Z (1986c) Natural selection of allozyme polymorphisms: a microsite test revealing ecological genetic differentiation in wild barley. Evolution 40:13–20

    Google Scholar 

  • Nevo E, Beiles A, Kaplan D (1988a) Genetic diversity and environmental associations of wild emmer wheat in Turkey. Heredity 61:31–45

    Google Scholar 

  • Nevo E, Beiles A, Krugman T (1988b) Natural selection of allozyme polymorphisms: a microgeographic differentiation by edaphic, topographical and temporal factors in wild emmer wheat Triticum dicoccoides. Theor Appl Genet 76:737–752

    Google Scholar 

  • Nevo E, Noy-Meir I, Beiles A, Krugman T, Agami M (1991a) Natural selection of allozyme polymorphisms: micro-geographical spatial and temporal ecological differentiations in wild emmer wheat. Isr J Bot 40:419–449

    CAS  Google Scholar 

  • Nevo E, Carver BF, Beiles A (1991b) Photosynthetic performance in wild emmer wheat, Triticum dicoccoides: ecological and genetic predictability. Theor Appl Genet 81:445–460

    Google Scholar 

  • Nevo E, Gorham J, Beiles A (1992a) Variation for 22Na uptake in wild emmer wheat, Triticum dicoccoides in Israel: salt tolerance resources for wheat improvement. J Exp Bot 43:511–518

    CAS  Google Scholar 

  • Nevo E, Snape JW, Lavie B, Beiles A (1992b) Herbicide response polymorphisms in wild emmer wheat: ecological and isozyme correlations. Theor Appl Genet 84:209–216

    CAS  Google Scholar 

  • Nevo E, Ordentlich A, Beiles A, Raskin I (1992c) Genetic divergence of heat production within and between the wild progenitors of wheat and barley: evolutionary and agronomical implications. Theor Appl Genet 84:958–962

    Google Scholar 

  • Nevo E, Nishikawa K, Furuta Y, Gonokami Y, Beiles A (1993a) Genetic polymorphisms of alpha- and beta-amylase isozymes in wild emmer wheat, Triticum dicoccoides, in Israel. Theor Appl Genet 85:1029–1042

    CAS  Google Scholar 

  • Nevo E, Meyer H, Piechulla B (1993b) Diurnal rhythms of the chlorophyll a/b binding protein mRNAs in wild emmer wheat and wild barley (Poaceae) in the Fertile Crescent. Plant Syst Evol 185:181–188

    CAS  Google Scholar 

  • Nevo E, Krugman T, Beiles A (1993c) Genetic resources for salt tolerance in the wild progenitors of wheat (Triticum dicoccoides) and barley (Hordeum spontaneum) in Israel. Plant Breed 110:338–341

    Google Scholar 

  • Nevo E, Pagnotta MA, Beiles A, Porceddu E (1995) Wheat storage proteins: glutenin DNA diversity in wild emmer wheat, Triticum dicoccoides, in Israel and Turkey. 3. Environmental correlates and allozymic associations. Theor Appl Genet 91:415–420

    CAS  Google Scholar 

  • Nevo E, Kirzhner VM, Beiles A, Korol AB (1997) Selection versus random drift: long-term polymorphism persistence in small populations (evidence and modelling). Philos Trans R Soc Lond B 352:381–389

    Google Scholar 

  • Nevo E, Beiles A, Korol AB, Ronin YI, Pavliček T, Hamilton WD (2000) Extraordinary multilocus genetic organization in mole crickets, gryllotalpidae. Evolution 54:586

    PubMed  CAS  Google Scholar 

  • Nevo E, Korol AB, Beiles A, Fahima T (2002) Evolution of wild emmer and wheat improvement: population genetics, genetic resources, and genome organization of wheat's progenitor Triticum dicoccoides. Springer, Berlin, 364 pp

    Google Scholar 

  • Nevo E, Beharav A, Meyer RC, Hackett CA, Forster BP, Russell JR, Powell W (2005) Genomic microsatellite adaptive divergence of wild barley by microclimatic stress in “Evolution Canyon”, Israel. Biol J Linn Soc Lond 84:205–224

    Google Scholar 

  • Nishikawa K, Mizuno S, Furuta Y (1994) Identification of chromosomes involved translocations in wild emmer. Jpn J Genet 69:371–376

    Google Scholar 

  • Noy-Meir I, Agami M, Cohen E, Anikster Y (1991) Floristic and ecological differentiation of habitats within a wild wheat population at Ammiad. Isr J Bot 40:363–384

    Google Scholar 

  • Oliver RE, Stack RW, Miller JD, Cai X (2007) Reaction of wild emmer wheat accessions to Fusarium head blight. Crop Sci 47:893–899

    Google Scholar 

  • Orr HA (1991) Is single-gene speciation possible? Evolution 45:764–769

    Google Scholar 

  • Otto CD, Kianian SF, Elias EM, Stack RW, Joppa LR (2002) Genetic dissection of a major Fusarium head blight QTL in tetraploid wheat. Plant Mol Biol 48:625–632

    PubMed  CAS  Google Scholar 

  • Pagnotta MA, Nevo E, Beiles A, Porceddu E (1995) Wheat storage proteins: glutenin diversity in wild emmer, Triticum dicoccoides, in Israel and Turkey. Theor Appl Genet 91:409–414

    CAS  Google Scholar 

  • Parnas T (2006) Evidence for incipient sympatric speciation in wild barley, H. spontaneum, at “Evolution Canyon”, Mt. Carmel, Israel, based on hybridization and physiological and genetic diversity estimates. M.Sc. Thesis, University of Haifa, Israel

    Google Scholar 

  • Parsons P (2005) Environments and evolution: interactions between stress, resource inadequacy and energetic efficiency. Biol Rev 80:589–610

    PubMed  Google Scholar 

  • Paterson AH (2006) Leafing through the genomes of our major crop plants: strategies for capturing unique information. Nature 7:174–184

    CAS  Google Scholar 

  • Payne PI, Rhodes AP (1982) Cereal storage proteins: structure and role in agriculture and food technology. Encycl Plant Physiol 14:346–369

    Google Scholar 

  • Payne PI, Law CN, Mudd EE (1980) Control by homoeologous group 1 chromosomes of the high molecular weight subunits of glutenin, a major protein of wheat endosperm. Theor Appl Genet 58:113–120

    CAS  Google Scholar 

  • Payne PI, Holt M, Law CN (1981a) Structural and genetical studies on high-molecular-weight of wheat glutenin, part 1. Allelic variation in subunits amongst varieties of wheat (Triticum aestivum). Theor Appl Genet 60:229–236

    CAS  Google Scholar 

  • Payne PI, Corfield KG, Holt LM, Blackman JA (1981b) Correlation between the inheritance of certain high molecular weight subunits of glutenin and bread-making quality in progress of six crosses of bread wheat. J Sci Food Agric 32:51–60

    CAS  Google Scholar 

  • Payne PI, Holt H, Jackson EA, Law CN (1984) Wheat storage proteins: their genetics and their potential for manipulation by plant breeding. Philos Trans R Soc Lond B 304:359–371

    CAS  Google Scholar 

  • Peakall P, Smouse TE, Hugg DR (1995) Evolutionary implications of allozyme and RAPD variation in diploid populations of dioecious buffalograss Buchloe dactyloides. Mol Ecol 4:135–147

    CAS  Google Scholar 

  • Peleg Z, Fahima T, Abbo S, Krugman T, Nevo E, Yakir D, Saranga Y (2005) Genetic diversity for drought resistance in wild emmer wheat and its ecogeographical associations. Plant Cell Environ 28:176–191

    Google Scholar 

  • Peleg Z, Fahima T, Saranga Y (2007) Drought resistance in wild emmer wheat: physiology, ecology, and genetics. Isr J Plant Sci 55:289–296

    Google Scholar 

  • Peleg Z, Fahima T, Saranga Y (2008) Drought resistance in wild emmer wheat: physiology, ecology and genetics. Isr J Plant Sci 55:289–296

    Google Scholar 

  • Peng JH (2000) Genomics of wild emmer wheat, Triticum dicoccoides: genetic maps, mapping of stripe rust resistance genes and QTLs for agronomic traits. PhD Thesis, University of Haifa, Israel

    Google Scholar 

  • Peng JH, Fahima T, Röder MS, Li YC, Dahan A, Grama A, Ronin YI, Korol AB, Nevo E (1999) Microsatellite tagging of stripe-rust resistance gene YrH52 derived from wild emmer wheat, Triticum dicoccoides, and suggestive negative crossover interference on chromosome 1B. Theor Appl Genet 98:862–872

    CAS  Google Scholar 

  • Peng JH, Fahima T, Röder MS, Li YC, Grama A, Nevo E (2000a) Microsatellite high-density mapping of the stripe rust resistance gene YrH52 region on chromosome 1B and evaluation of its marker-assisted selection in the F2 generation in wild emmer wheat. New Phytol 146:141–154

    CAS  Google Scholar 

  • Peng JH, Korol AB, Fahima T, Röder MS, Ronin YI, Li YC, Nevo E (2000b) Molecular genetic maps in wild emmer wheat, Triticum dicoccoides: genome-wide coverage, massive negative interference, and putative quasi-linkage. Genome Res 10:1509–1531

    PubMed  CAS  Google Scholar 

  • Peng JH, Fahima T, Röder MS, Huang QY, Dahan A, Li YC, Grama A, Nevo E (2000c) High-density molecular map of chromosome region harboring stripe-rust resistance genes YrH52 and Yr15 derived from wild emmer wheat, Triticum dicoccoides. Genetica 109:199–210

    PubMed  CAS  Google Scholar 

  • Peng JH, Ronin YI, Fahima T, Röder MS, Li YC, Nevo E, Korol AB (2003) Domestication quantitative trait loci in Triticum dicoccoides, the progenitor of wheat. Proc Natl Acad Sci USA 100:2489–2494

    PubMed  CAS  Google Scholar 

  • Penner GA (1996) RAPD analysis of plant genomes. In: Jauhar PP (ed) Methods of genome analysis in plants. CRC, Boca Raton, FL, USA, pp 251–268

    Google Scholar 

  • Plaschke J, Ganal MW, Röder MS (1995) Detection of genetic diversity in closely related bread wheat using microsatellite markers. Theor Appl Genet 91:1001–1007

    CAS  Google Scholar 

  • Plucknett DL, Smith NJH, Williams JT, Anishetty NM (1983) Crop germplasm conservation and developing countries. Science 220:163–169

    PubMed  CAS  Google Scholar 

  • Plucknett DL, Smith NJH, Williams JT, Anishetty NM (1987) Gene banks and the world’s food. Princeton University Press, Princeton, NJ, USA

    Google Scholar 

  • Puterka GJ, Black IVSC, Steiner WM, Burton RL (1993) Genetic variation and phylogenetic relationships among world-wide collections of the Russian wheat aphid, Ciuraphis noxia (Mordvilko), inferred from allozyme and RAPD-PCR markers. Heredity 70:604–618

    PubMed  CAS  Google Scholar 

  • Raskina O, Belyayev A, Nevo E (2002) Repetitive DNAs of wild emmer wheat (Triticum dicoccoides) and their relation to S-genome species: molecular cytogenetic analysis. Genome 45:391–401

    PubMed  CAS  Google Scholar 

  • Raskina O, Belyayev A, Nevo E (2004a) Activity of the En/Spm-like transposons in meiosis as a base for chromosome repatterning in a small, isolated, peripheral population of Aegilops speltoides Taushch. Chrom Res 12:153–161

    PubMed  CAS  Google Scholar 

  • Raskina O, Belyayev A, Nevo E (2004b) Quantum speciation in Aegilops: molecular cytogenetic evidence from rDNA cluster variability in natural populations. Proc Natl Acad Sci USA 101:14818–14823

    PubMed  CAS  Google Scholar 

  • Raskina O, Barber JC, Nevo E, Belyayev A (2008) Repetitive DNA and chromosomal rearrangements: speciation-related events in plant genomes. Cytogenet Genome Res 120:351–357

    PubMed  CAS  Google Scholar 

  • Reader SM, Miller TE (1991) The introduction into bread wheat of a major gene for resistance to powdery mildew from wild emmer wheat. Euphytica 52:57–60

    Google Scholar 

  • Riley R (1965) Cytogenetics and evolution of wheats. In: Hutchinson JB (ed) Crop plant evolution. Cambridge University Press, London, UK, pp 103–122

    Google Scholar 

  • Röder MS, Plaschke J, Konig SU, Borner A, Sorrells ME, Tanksley SD, Ganal MW (1995) Abundance, variability and chromosomal location of microsatellites in wheat. Mol Gen Genet 246:327–333

    PubMed  Google Scholar 

  • Ryndin A, Kirzhner VM, Nevo E, Korol AB (2001) Polymorphism maintenance in populations with mixed random mating and apomixes subjected to stabilizing and cyclical selection. J Theor Biol 212:169–181

    PubMed  CAS  Google Scholar 

  • Saghai-Maroof MA, Biyashev RM, Yang GP, Zhang Q, Allard RW (1994) Extraordinarily polymorphic microsatellite DNA in barley: species diversity, chromosomal locations, and populations dynamics. Proc Natl Acad Sci USA 91:5466–5470

    PubMed  CAS  Google Scholar 

  • Salina EA (2007) Tandem repeats in the evolution of polyploidy wheats and Aegilops section Sitopsis. Isr J Plant Sci 55:231–240

    Google Scholar 

  • Salse J, Feuillet C (2007) Comparative genomics of cereals. In: Varshney RK, Tuberosa R (eds) Genomics-assisted crop improvement. Springer, Heidelberg, pp 177–205

    Google Scholar 

  • Schiemann E (1956) Füntzig Jahre Triticum dicoccoides. Ber Dtsch Bot Ges 69:309–322

    Google Scholar 

  • Schuster SC (2008) Next-generation sequencing transforms today's biology. Nat Methods 5:16–18

    PubMed  CAS  Google Scholar 

  • Sears ER (1969) Wheat cytogenetics. Annu Rev Genet 3:451–468

    Google Scholar 

  • Sears ER (1977) An induced mutant with homoeologous pairing in common wheat. Can J Genet Cytol 19:585–589

    Google Scholar 

  • Segal A, Manisterki J, Fishbeck J, Wahl I (1980) How plant populations defend themselves in natural ecosystems. In: Horsfall JG, Cowling EB (eds) Plant disease. Academic, New York, NY, USA, pp 75–102

    Google Scholar 

  • Segal A, Manisterski J, Browning JA, Fischbeck J, Wahl I (1982) Balance in indigenous plant populations. In: Heybroek HM, Stephan BR, Van Weissenberg K (eds) Resistance to disease and pests in forestries. Center for Agriculture Publishing and Documentation, Pudoc, Wageningen, The Netherlands, pp 361–370

    Google Scholar 

  • Sela H, Loutre C, Keller B, Schulman A, Nevo E, Korol A, Fahima T (2010) Rapid linkage disequilibrium decay in the Lr10 gene in wild emmer wheat (Triticum dicoccoides) populations (submitted)

    Google Scholar 

  • Shavrukov Y, Langridge P, Tester M, Nevo E (2010) Wide genetic diversity of salinity tolerance, sodium exclusion and growth in wild emmer wheat, Triticum dicoccoides (submitted)

    Google Scholar 

  • Senior ML, Heun M (1993) Mapping maize microsatellites and polymerase chain reaction confirmation of the targeted repeats using a CT primer. Genome 36:884–889

    PubMed  CAS  Google Scholar 

  • Snape JW, Leckie D, Parker BB, Nevo E (1991a) The genetical analysis and exploitation of differential responses to herbicides in crop species. In: Casley JC, Cussans JW, Atkin RK (eds) Herbicide resistance in weeds and crops. Butterworth-Heinemann, Oxford, UK, pp 5–17

    Google Scholar 

  • Snape JW, Nevo E, Parker BB, Leckie D, Morgunov A (1991b) Herbicide response polymorphisms in wild populations of emmer wheat. Heredity 66:251–257

    Google Scholar 

  • Soltis DE, Soltis OS (1999) Polyploidy: recurrent formation and genome evolution. Trends Ecol Evol 14:348–352

    PubMed  Google Scholar 

  • Stack RW, Elias EM, Mitchell Fetch J, Miller JD, Joppa LR (2002) Fusarium head blight reaction of Langdon durum – Triticum dicoccoides chromosome substitution lines. Crop Sci 42:637–642

    Google Scholar 

  • Stebbins GL (1950) Variation and evolution in plants. Columbia University Press, New York, NY, USA

    Google Scholar 

  • Sun GL, Fahima T, Korol AB, Turpeinen T, Grama A, Ronin YI, Nevo E (1997) Identification of molecular markers linked to the Yr15 stripe rust esistance gene of wheat originated in wild emmer wheat, Triticum dicoccoides. Theor Appl Genet 95:662–668

    Google Scholar 

  • Tang H, Bowers JE, Wang X, Ming R, Alam M, Paterson AH (2008) Synteny and collinearity in plant genomes. Science 320:486–488

    PubMed  CAS  Google Scholar 

  • Tanksley SD, Orton TJ (eds) (1983) Isozyme in plant genetics and breeding. Elsevier, Amsterdam

    Google Scholar 

  • Templeton AR, Levin DA (1979) Evolutionary consequences of seed pools. Am Nat 114:232–249

    Google Scholar 

  • The TT, Nevo E, McIntosh RA (1993) Responses of Israeli wild emmers to selected Australian pathotypes of Puccinia species. Euphytica 71:75–81

    Google Scholar 

  • Thibert-Plante S, Hendry AP (2009) Five questions on ecological speciation addressed with individual-based simulations. J Evol Biol 22:109–123

    PubMed  CAS  Google Scholar 

  • Tsunewaki K (2005) (ed) Frontiers of wheat bioscience: the 100th memorial issue of wheat information service. Yokohama, Japan, 256 p

    Google Scholar 

  • Turpeinen T, Tenhola T, Manninen O, Nevo E, Nissila E (2001) Microsatellite diversity associated with ecological factors in Hordeum spontaneum populations in Israel. Mol Ecol 10:1577–1591

    PubMed  CAS  Google Scholar 

  • Uauy C, Distelfeld A, Fahima T, Blechl A, Dubcovsky J (2006) A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science 314:1298–1301

    PubMed  CAS  Google Scholar 

  • Valkoun J, Waines JG, Konopka J (1998) Current geographical distribution and habitat of wild wheats and barley. In: Damania AB, Valkoun J, Willcox G, Qualset CO (eds) Origins of agriculture and crop domestication. ICARDA, Aleppo, Syria, pp 293–299

    Google Scholar 

  • van Slageren MW (1994) Wild wheats: a monograph of Aegilops L and Amblyopyrum (Jaub and Spach) Eig (Poaceae): a revision of all taxa closely related to wheat, excluding wild Triticum species, with notes on other genera in the tribe Triticeae, especially Triticum. Wageningen Agricultural University, Wageningen, The Netherlands

    Google Scholar 

  • van Valen L (1965) Morphological variation and width of ecological niche. Am Nat 99:377–390

    Google Scholar 

  • van Zeist W (1976) On macroscopic traces of food plants in southwestern Asia (with some references to pollen data). Philos Trans R Soc Lond Biol Sci 272:27–41

    Google Scholar 

  • van Zeist W, Bakker-Heeres JAH (1985) Archaeological studies in the Levant 1. Neolithic sites in the Damascus Basin: Aswad, Ghoraife, Ramad. Palaeohistoria 24:165–256

    Google Scholar 

  • Vierling RA, Nguyen HT (1992) Use of RAPD markers to determine the genetic diversity of diploid wheat genotypes. Theor Appl Genet 84:835–838

    CAS  Google Scholar 

  • Wall JS (1979) The role of wheat proteins in determining baking quality. In: Laidman DL, Wyn Jones RG (eds) Recent advances in the biochemistry of cereals. Academic, New York, NY, USA, pp 275–311

    Google Scholar 

  • Wang JR, Wei YM, Long XY, Yan ZH, Nevo E, Baum BR, Zheng YL (2008) Molecular evolution of dimer α-amylase inhibitor genes in wild emmer wheat and its ecological association. BMC Evol Biol 8:91–105

    PubMed  Google Scholar 

  • Wang JR, Wei YM, Deng M, Nevo E, Yan Z-H, Zheng Y-L (2010) The impact of single nucleotide polymorphism in monomeric alpha-amylase inhibitor genes from wild emmer wheat, primarily from Israel and Golan. BMC Evol Biol 10:170

    Google Scholar 

  • Weber JL, May PE (1989) Abundant class of human DNA polymorphisms which can be typed using the polymerase chain reaction. Am J Hum Genet 44:388–396

    PubMed  CAS  Google Scholar 

  • Wei YM, Baum BR, Nevo E, Zheng YL (2005) Does domestication mimic speciation? 1. A population-genetic analysis of Hordeum spontaneum and Hordeum vulgare based on AFLP and evolutionary considerations. Can J Bot 83:1496–1512

    CAS  Google Scholar 

  • Wendel JF (2000) Genome evolution in polyploids. Plant Mol Biol 42:225–249

    PubMed  CAS  Google Scholar 

  • Williams PC (1993) The world of wheat. In: Grains and oilseeds: handling marketing processing. Canadian International Grains Institute, Winnipeg, Canada, pp 557–602

    Google Scholar 

  • Williams JGK, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18:6531–6535

    PubMed  CAS  Google Scholar 

  • Wu KS, Tanksley SD (1993) Abundance, polymorphism and genetic mapping of microsatellite in rice. Mol Gen Genet 241:225–235

    PubMed  CAS  Google Scholar 

  • Xie WL (2006) Identification and molecular mapping of powder mildew resistance genes derived from wild relatives of wheat. PhD Thesis, University of Haifa, Israel

    Google Scholar 

  • Xie W, Nevo E (2008) Wild emmer: genetic resources, gene mapping and potential for wheat improvement. Euphytica 164:603–614

    Google Scholar 

  • Xie CJ, Sun QX, Ni ZF, Yang ZM, Nevo E, Fahima T (2003) Chromosomal location of a Triticum dicoccoides-derived powdery mildew resistance gene in common wheat by using microsatellite markers. Theor Appl Genet 106:341–345

    PubMed  CAS  Google Scholar 

  • Yahiaoui N, Kaur N, Keller B (2009) Independent evolution of functional Pm3 resistance genes in wild tetraploid wheat and domesticated bread wheat. Plant J 57:846–856

    PubMed  CAS  Google Scholar 

  • Zakari A, McIntosh RA, Hovmoller MS, Wellings CR, Shariflou MR, Hayden M, Bariana HS (2003) Recombination of Yr15 and Yr24 in chromosome 1BS. In: Pogna NE, Romano M, Pagna EA, Galterio G (eds) Proceedings of 20th international wheat genetics symposium, vol 1. Instituto Sperimentale per la Cerealicoltura, Rome, Italy, pp 417–420

    Google Scholar 

  • Zohary D (1969) The progenitors of wheat and barley in relation to domestication and agricultural dispersal in the old world. In: Ucko PJ, Dimbleby GW (eds) The domestication and exploitation of plants and animals. Duckworth, London, UK, pp 47–66

    Google Scholar 

  • Zohary D, Feldman M (1962) Hybridization between amphiploids and the evolution of polyploids: I. The wheat (Aegilops-Triticum) group. Evolution 16:44–61

    Google Scholar 

  • Zohary D, Hopf M (2000) Domestication of plants in the old world: the origin and spread of cultivated plants in West Asia, Europe and the Nile Valley, 3rd edn. Oxford University Press, Oxford, UK

    Google Scholar 

Download references

Acknowledgments

I thank all of my colleagues at the Institute of Evolution in Israel and worldwide for their extensive collaborations on wild emmer wheat. I thank Robin Barasch-Permut, Esther Kabuliansky, and Michael Margulis for editing and technical assistance. Finally, I extend my deepest gratitude to the Ancell Teicher Research Foundation for Genetics and Molecular Evolution for supporting my wild emmer wheat investigation since 1985.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eviatar Nevo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nevo, E. (2011). Triticum. In: Kole, C. (eds) Wild Crop Relatives: Genomic and Breeding Resources. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14228-4_10

Download citation

Publish with us

Policies and ethics