Skip to main content

Physical and Mechanical Properties of Rocks

  • Chapter
  • First Online:

Abstract

Since early antiquity dimension stones have been used as building materials due to their natural beauty and availability, and the diversity of their applications has increased ever since. As any other building material, dimension stones today have to fulfill the physical and technical requirements demanded by architects. This chapter focuses on the physical and mechanical properties of dimension stones, while emphasizing that stones are an old, but still modern building material. Among the parameters discussed here are water absorption, thermal conductivity and expansion, hygric and hydric properties, strength, abrasion, the more modern aspect of breaking load at the dowel hole, and ultrasonic wave velocities. Extensive data sets and a variety of case studies reveal relationships between the physical properties and the internal fabric elements of the dimension stones, such as sedimentary layering, metamorphic foliation, pores, and microcracks. In addition, these fabric elements are often responsible for the weathering behavior of the dimension stones, which not only affects the heritage but also the safety of modern buildings. This is illustrated through laboratory experiments and case studies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aires-Barros L, Graca RC, Velez A (1975) Dry and wet laboratory tests and the thermal fatigue of rocks. Eng Geol 9:249–265.

    Google Scholar 

  • Akin M (2010) A quantitative weathering classification system for yellow travertines. Environ Earth Sci. doi: 10.1007/s12665-009-0319-7.

    Google Scholar 

  • Archie GE (1952) Classification of carbonate reservoir rocks and petrophysical considerations. AAPG Bull 36:278–298.

    Google Scholar 

  • Arikan F, Ulusay R, Aydin N (2007) Characterization of weathered acidic volcanic rocks and a weathering classification based on a rating system. Bull Eng Geol Environ 66/4:415–430.

    Google Scholar 

  • ASTM C 880-89 (1989) Flexural Strength of Dimension Stones. Beuth Verlag, Berlin.

    Google Scholar 

  • Babuska V, Cara M (1991) Seismic Anisotropy in the Earth. Kluwer Academic Press, Dordrecht.

    Google Scholar 

  • Battaglia S, Franzini M, Mango F (1993) High sensitivity apparatus for measuring linear thermal expansion: preliminary result on the respond of marbles. Nuovo Cimento C 16:453–461.

    Google Scholar 

  • Bauer SJ, Johnson B (1979) Effects of slow uniform heating on the physical properties of Westerly and Charocoal granites. Proceedings of 20th Symposium on Rock Mechanics, Austin, Texas, pp. 7–18.

    Google Scholar 

  • Bieniawski ZT (1967) Mechanism of the Fracture of Rocks. Pergamon Press, New York.

    Google Scholar 

  • Birch F (1960) The velocity and compressional waves in rocks to 10 kilobars. Part 1. J Geophys Res 65:1083–1102.

    Google Scholar 

  • Birch F (1961) The velocity and compressional waves in rocks to 10 kilobars. Part 2. J Geophys Res 66:2199–2224.

    Google Scholar 

  • Birch F, Clark H (1940) The thermal conductivities of rocks and its dependence upon temperature and composition. Part I. Am J Sci 238:529-558.

    Google Scholar 

  • Bland W, Rolls D (1998) Weathering. Arnold, London.

    Google Scholar 

  • Blasi P, Frisa Morandini A, Mancini R, et al. (2000) Investigación experimental sobre los ensayos de flexión en los mármoles: confianza de los resultados y efecto escala. Roc Maquina – Dimension Stone Industry, 36:20–25.

    Google Scholar 

  • Blöchl B, Kirchner D, Stadlbauer E (1998) Die hygrische Dehnung von Baumberger Kalksandstein – tonmineralogische und gesteinsphysikalische Aspekte. Arbeitshefte zur Denkmalpflege in Niedersachsen 15:46–53.

    Google Scholar 

  • Brakel J, Modry S, Svata M (1981) Mercury porosimetry: State of the art. Powder Tech 29:1–12.

    Google Scholar 

  • Brosch FJ, Schachner K, Bluemel M, et al. (2000) Preliminary investigation results on fabrics and related mechanical properties of an anisotropic gneiss. J Struc Geo 22:1773–1787.

    Google Scholar 

  • Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60(2):309–319.

    Google Scholar 

  • Bucher WH (1956) Role of gravity in orogenesis. Bull Geol Soc America 67:1295–1318.

    Google Scholar 

  • Buntebarth G (1982) Density and seismic velocity in relation to mineralogical constitution based on an ionic model for minerals. Earth Planet Sci Lett 57:358–366.

    Google Scholar 

  • Buntebarth G (1991) Thermal properties of KTB-Oberpfalz VB core samples at elevated temperature and pressure. Sci Drill 2:73–80.

    Google Scholar 

  • Buntebarth G (1992) Variation of thermal conductivity with structure of rocks. In: Buntebarth G (ed) Thermal Properties of Crustal Materials. Sitzungsberichte der 22. Sitzung FKPE-Arbeitsgruppe and 92th Seminar of Dr WH Heraeus und E Heraeus-Stiftung.

    Google Scholar 

  • Buntebarth G, Rueff P (1987) Laboratory thermal conductivity applied to crustal conditions. Rev Brasil Geofisica 5:103–109.

    Google Scholar 

  • Cammerer JS (1954) Das Verhalten der wichtigsten Baustoffe gegenüber flüssigen und dampfförmigen Wasser. Tonind Ztg 78:199–204.

    Google Scholar 

  • Ceryan S, Tudes S, Ceryan N (2008) Influence of weathering on the engineering properties of Harsit granitic rocks (NE Turkey). Bull Eng Geo Environ 67:97–104.

    Google Scholar 

  • Chitsazian A (1985) Beziehung zwischen Mineralbestand, Gefüge und technologischen Eigenschaften der Niedersächsischen ‘Wealden’-Sandsteine (Unterkreide). Mitt Geol Institut Univ Hannover, Hannover.

    Google Scholar 

  • Choquette PW, Pray LC (1970) Geologic nomenclature and classification of porosity in sedimentary carbonates. Am Assoc Petrol Geol Bull 54:207–250.

    Google Scholar 

  • Christensen NI (1968) Chemical changes associated with upper mantle structure. Tectonophysics 6:331–342.

    Google Scholar 

  • Christensen NI (1979) Compressional wave velocities in rocks at high temperatures and pressures, critical thermal gradient, and crustal low-velocity zones. J Geophys Res 84:6849–6857.

    Google Scholar 

  • Clauser C, Huenges E (1995) Thermal conductivity of rocks and minerals. In: Ahrens TJ (ed) Rock Physics and Phase Relations – a Handbook of Physical Constants. AGU Ref Shelf Vol. 3. American Geophysical Union, Washington.

    Google Scholar 

  • Clemens K, Grimm W-D, Poschlod K (1990) Zur Kennzeichnung des Korngefüges und des Porenraumes der Naturwerksteine. In: Grimm W-D (ed) Bildatlas wichtiger Denkmalgesteine der Bundesrepublik Deutschland. Bayerisches Landesamt für Denkmalpflege, Munich.

    Google Scholar 

  • Crosson RS, Lin JW (1971) Voigt and Reuss predictions of anisotropic elasticity of olivine. J Geophys Res 76:570–578.

    Google Scholar 

  • David Ch (2006). Buntsandsteine–Bausandsteine, Marburger Bausandsteine unter der Lupe. Marburger Geowissenschaften 3:1–129.

    MATH  Google Scholar 

  • De Quervain F (1967) Technische Gesteinskunde. Lehrbücher und Monographien aus dem Gebiete der exakten Wissenschaften. Mineralogisch-geotechnische Reihe, Bd 1. Birkhäuser, Basel.

    Google Scholar 

  • DIN 52 105 (1988) Prüfung von Naturstein. Druckversuch. – 2 S. Beuth, Berlin.

    Google Scholar 

  • DIN 66131 (1993) Bestimmung der spezifischen Oberfläche von Feststoffen durch Gasadsorption nach Brunauer, Emmett und Teller (BET). Beuth Verlag, Berlin.

    Google Scholar 

  • DIN EN 1097–6 (2005) Tests for mechanical and physical properties of aggregates – Part 6: Determination of particle density and water absorption. German version EN 1097–6 European Committee for Standardization. Beuth Verlag, Berlin.

    Google Scholar 

  • DIN EN 12372 (1999) Natural stone test methods – Determination of flexural strength under concentrated load. German version EN 12372 European Committee for Standardization. Beuth Verlag, Berlin.

    Google Scholar 

  • DIN EN 13161 (2008) Natural stone test methods – Determination of flexural strength under constant moment. German version EN 13161, European Committee for Standardization. Beuth Verlag, Berlin.

    Google Scholar 

  • DIN EN 13364 (2002) Natural stone test methods – Determination of the breaking load at dowel hole. German version EN 13364 European Committee for Standardization. Beuth Verlag, Berlin.

    Google Scholar 

  • DIN EN 1926 (1999) Natural stone test methods – Determination of uniaxial compressive strength. German version EN 1926 European Committee for Standardization. Beuth Verlag, Berlin.

    Google Scholar 

  • DIN EN 12572 (2009) Hygrothermal performance of building materials and products – Determination of water vapour transmission properties. German version EN 12572, European Committee for Standardization. Beuth Verlag, Berlin.

    Google Scholar 

  • Doveton JH (1987) Log analysis of petrofacies and lithofacies. GFZ Logging Course. Geoforschungszentrum Potsdam, Potsdam.

    Google Scholar 

  • Dubinin MM (1979) Micropore structures of charcoal adsorbents. 1. A general characterization of micro- and supermicropores in the fissure model. Proc Acad Sci USSR 8:1691–1696.

    Google Scholar 

  • Dürrast H, Jahns E, Tischer A, et al. (2001) Vorzugsorientierungen der Mikrorissbildung im triaxialen Verformungsexperiment am Beispiel des Piesberger Sandsteins. Z dtsch geol Ges 152:611–620.

    Google Scholar 

  • Dürrast H, Rasolofosaon PNJ, Siegesmund S (2002) P-wave velocity and permeability distribution of sandstones from a fractured tight gas reservoir. Geophysics 67:241–253.

    Google Scholar 

  • Dürrast H, Siegesmund S (1999) Correlation between rock physics and physical properties of carbonate reservoir rocks. Int J Earth Sci 88:392–408.

    Google Scholar 

  • Dürrast H, Siegesmund S, Prasad M (1999) Schadensanalyse von Natursteinen mittels Ultraschalldiagnostik: Möglichkeiten und Grenzen. Z dtsch geol. Ges 150/2:359–374.

    Google Scholar 

  • Fitzner B (1970) Die Prüfung der Frostbeständigkeit von Naturbausteinen. Geol Mitt 10:205–296.

    Google Scholar 

  • Fitzner B (1988) Untersuchung der Zusammenhänge zwischen dem Hohlraumgefüge von Natursteinen und physikalischen Verwitterungsvorgängen. Mitt Ing Geol Hydrogeol 29:1–217.

    Google Scholar 

  • Fitzner B, Basten D (1994) Gesteinsporosität – Klassifizierung, meßtechnische Erfassung und Bewertung ihrer Verwitterungsrelevanz – Jahresberichte aus dem Forschungsprogramm “Steinzerfall-Steinkonservierung” 1992, Förderprojekt des Bundesministers für Forschung und Technologie. Verlag Ernst & Sohn, Berlin.

    Google Scholar 

  • Fitzner B, Heinrichs K (1992) Verwitterungszustand und Materialeigenschaften der Kalksteine des Naumburger Doms – Jahresberichte aus dem Forschungsprogramm “Steinzerfall-Steinkonservierung” 1990, Förderprojekt des Bundesministers für Forschung und Technologie. Verlag Ernst & Sohn, Berlin.

    Google Scholar 

  • Fitzner B, Kownatzki R (1991) Porositätseigenschaften und Verwitterungsverhalten von sedimentären Naturwerksteinen. Bauphysik 13/4:111–119.

    Google Scholar 

  • Fitzner B, Snethlage R (1983) Modellvorstellungen zum Kristallisations- und Hydratationsdruck von Salzen im Porenraum von Sandsteinen. Sitzungsbericht des Arbeitskreises ‘Naturwissenschaftliche Forschung an Kunstgütern aus Stein’, Erlangen.

    Google Scholar 

  • Franklin JA, Dusseault MB (1989) Rock Engineering. McGraw Hill Publ, New York.

    Google Scholar 

  • Franzen C, Mirwald PW (2004) Moisture content of natural stones: static and dynamic equilibrium with atmospheric humidity. Environ Geol 46:391–401.

    Google Scholar 

  • Fredrich JT, Wong TF (1986) Micromechanics of thermally induced cracking in three crustal rocks. J Geophys Res 91(B12):12743–12764.

    Google Scholar 

  • Garrecht H (1992): Porenstrukturmodelle für den Feuchtehaushalt von Baustoffen mit und ohne Salzbefrachtung und rechnerische Anwendung auf Mauerwerk. Dissertation, Schriftenreihe des Instituts für Massivbau und Baustofftechnologie, Karlsruhe.

    Google Scholar 

  • Gebrande H (1982) Elasticity and inelasticity. In: Augenheister G (ed) Landolt–Börnstein, Band 1, Physikalische Eigenschaften der Gesteine. Springer, Berlin.

    Google Scholar 

  • Glover PW, Baud P, Darot M, et al. (1995) Alpha/beta phase transition in quartz monitored using acoustic emissions. Geophys J Inter 120:775–782.

    Google Scholar 

  • Goudie AS (1974) Further experimental investigations of rock weathering by salt and other mechanical processes. Z Geomorph 21:1–12.

    Google Scholar 

  • Greger O (1930). Druckfestigkeit und Bergfrische beim Granit. Straßenbau 21:99–102.

    Google Scholar 

  • Gregg SJ, Sing KSW (1982) Adsorption, Surface Area and Porosity. Academic, London.

    Google Scholar 

  • Grelk B, Goltermann P, Schouenborg B, et al. (2004) The laboratory testing of potential bowing and expansion of marble. In: Prikryl R (ed) Dimension Stone 2004. Taylor & Francis Group, London.

    Google Scholar 

  • Griesser UJ, Dillenz J (2002) Neuartiges, vollautomatisches Feuchtesorptionsprüfgerüt mit hohem Probendurchsatz. Conf Proc 9. Feuchtetag, Weimar.

    Google Scholar 

  • Griggs DT (1936) The factor of fatigue in rocks exfoliation. J Geol 44:781–796.

    Google Scholar 

  • Grimm W-D (1990) Bildatlas wichtiger Denkmalgesteine in Deutschland. Bayerisches Landesamt für Denkmalpflege, München.

    Google Scholar 

  • Grimm W-D (1999) Beobachtungen und Überlegungen zur Verformung von Marmorobjekten durch Gefügeauflockerung. Z dtsch geol Ges 150:195–236.

    Google Scholar 

  • Grüneisen E (1926). Zustand des festen Körpers. In: Geiger H, Scheel K (eds) Handbuch der Physik. Vol. 10, Thermische Eigenschaften der Stoffe. Springer-Verlag, Berlin.

    Google Scholar 

  • Hajpal LM, Török A (2004) Mineralogical and colour changes of quartz sandstones by heat. Environ Geol 46:311–322.

    Google Scholar 

  • Han D-H, Nur A, Morgan D (1986) Effects of porosity and clay content on wave velocities in sandstones. Geophysics 51:2093–2107.

    Google Scholar 

  • Hawkins AB, McConnell BJ (1992) Sensitivity of sandstone strength and deformability to changes in moisture content. Quart J Eng Geol 25:115–130.

    Google Scholar 

  • Heinrichs K (2005) Diagnose der verwitterungsschäden an den Felsmonumenten der antiken Stadt Petra (Jordanien). Aachener Geowiss Beiträge 41:1–144.

    Google Scholar 

  • Hirschwald J (1912) Die Prüfung der natürlichen Bausteine auf ihre Verwitterungsbeständigkeit. Verlag W Ernst & Sohn, Berlin.

    Google Scholar 

  • Hockmann A, Kessler DW (1950). Thermal and moisture expansion studies of some domestic granites. US Bur Stand J Res 44:395–410.

    Google Scholar 

  • Hoffmann A (2008) Naturwerksteine Thailands: Lagerstättenerkundung und Bewertung. http://webdoc.sub.gwdg.de/diss/2007/hoffmann/hoffmann.pdf. Accessed 20 July 2010.

  • Hoffmann A, Siegesmund S (2007) Investigation of dimension stones in Thailand: an approach to a methodology fort he assessment of stone deposits. Z dtsch Ges Geowiss 158/3:375–416.

    Google Scholar 

  • Holm A (2001) Ermittlung der Genauigkeit von instationären hygrothermischen Bauteilberechnungen mittels eines stochastischen Konzepts. Diss Uni Stuttgart.

    Google Scholar 

  • Horai K, Baldridge WS (1972) Thermal conductivity of nineteen igneous rocks, I: Application of the needle probe method to the measurement of the thermal conductivity of rock. Phys Earth Planet Inter 5:151–156.

    Google Scholar 

  • Horai K, Simmons G (1969) Thermal conductivity of rock forming minerals. Earth Planet Sci Lett 6:259–268.

    Google Scholar 

  • Horai K, Susaki J (1989) The effect of pressure on the thermal conductivity of silicate rocks up to 12 kbar. Phys Earth Planet Inter. 55:292–305.

    Google Scholar 

  • Hörenbaum W (2005). Verwitterungsmechanismen und Dauerhaftigkeit von Sandsteinsichtmauerwerk. Schriftenreihe des Instituts für Massivbau und Baustofftechnologie, TH Karlsruhe, Karlsruhe.

    Google Scholar 

  • Howarth DF, Rowlands JC (1987) Quantitative assessment of rock texture and correlation with drillability and strength properties. Rock Mech Rock Eng 20:57–85.

    Google Scholar 

  • I-Stone (2008) Characterization of natural stones and finished products. http://www.istone.ntua.gr/Training_courses/wp1/absorption.html. Accessed 20 July 2010.

  • Ide JM (1937) The velocity of sound in rocks and glasses as a function of temperature. J Geol 45:689–716.

    Google Scholar 

  • Illiev IG (1967) An attempt to estimate the degree of weathering of intrusive rocks from their physica-mechanical properties. Proc 1st Int Congress Int Soc Rock Mech, Lisbon 1:109–114.

    Google Scholar 

  • Jiménez González I, Scherer GW (2004) Effect of swelling inhibitors on the swelling and stress relaxation of clay bearing stones. Environ Geo 46:364–377.

    Google Scholar 

  • Katzschman L, Aselmeyer G, Auras M (2006) Natursteinkataster Thüringen. IFS-Bericht 23:1–196.

    Google Scholar 

  • Kern H, Siegesmund S (1989) A test of the relationship between seismic velocity and heat production for crustal rocks. Earth Planet Sci Lett 92:89–94.

    Google Scholar 

  • Kettenacker L (1930) Über die Feuchtigkeit in Mauern. Ges Ing 53:721–728.

    Google Scholar 

  • Kießl K (1983) Kapillarer und dampfförmiger Feuchtetransport in mehrschichtigen Bauteilen. Diss, Univ Essen.

    Google Scholar 

  • Kim D-C, Manghnani MH, Schlanger SO (1985) The role of diagenesis in the development of physical properties of deep-sea carbonate sediments. Marine Geol 69:69–91.

    Google Scholar 

  • Klima K, Kluhanek O (1968) Quantitative correlation between preferred orientation of grains and elastic anisotropy of marble. IEEE Geisci Electron GE-6:139.

    Google Scholar 

  • Klopfer H (1974) Wassertransport durch Diffusion in Feststoffen. Bauverlag, Wiesbaden.

    Google Scholar 

  • Klopfer H (1985) Feuchte. In: Lutz P, Jenisch R, Klopfer H, et al. (eds) Lehrbuch der Bauphysik. Teubner Verlag, Stuttgart.

    Google Scholar 

  • Koch A, Siegesmund S (2001) Gesteinstechnische Eigenschaften ausgewählter Bausandsteine. Z dtsch geol Ges 152:681–700.

    Google Scholar 

  • Koch A, Siegesmund S (2004) The combined effect of moisture and temperature on the anomalous behavior of marbles. Environ Geol 46/3-4:350–363.

    Google Scholar 

  • Koch A, Siegesmund S (2005) Gesteinstechnische Eigenschaften von Sandsteinen. Naturstein 5:84–91.

    Google Scholar 

  • Koch R, Sobott R (2005) Porosität in Karbonatgesteinen – Genese, Morphologie und Einfluss auf Verwitterung und Konservierungsmaßnahmen. Z dtsch geol Ges 156:33–50.

    Google Scholar 

  • Kocher M (2005) Quelldruckmessungen und thermische Druckmessungen an ausgewählten Sandsteinen. PhD thesis, LMU München.

    Google Scholar 

  • Kodikara J, Barbour SL, Fredlund DG (1999) Changes in clay structure and behavior due to wetting and drying. In: 8th Australian-New Zealand Conference on Geomechanics, Australian Geomechanics, Hobart, Australia.

    Google Scholar 

  • Köhler W (1991) Untersuchungen zu Verwitterungsvorgängen an Carrara-Marmor in Potsdam-Sanssouci. Berichte zu Forschung und Praxis der Denkmalpflege in Deutschland. Steinschäden-Steinkonservierung 2:50–53.

    Google Scholar 

  • Köhler W (2009) Riss- und Verwitterungsanalytik mit zerstörungsfreien Verfahren. In: Venzmer H (ed) EU-Sanierungskalender 2009. Beuth-Verlag, Berlin.

    Google Scholar 

  • Krantz RL (1983) Microcracks in rocks: A review. Tectonophysics 100/1–3:449–480.

    Google Scholar 

  • Kraus K (1985) Experimente zur immissionsbedingten Verwitterung der Naturbausteine des Kölner Doms im Vergleich zu deren Verhalten am Bauwerk. Univ Cologne.

    Google Scholar 

  • Krus M (1995) Feuchtetransport- und Speicherkoeffizienten poröser mineralischer Baustoffe. Theoretische Grundlagen und neue Messtechniken. Diss Univ Stuttgart.

    Google Scholar 

  • Künzel H (1994) Verfahren zur ein- und zweidimensionalen Berechnung des gekoppelten Wärme- und Feuchtetransports in Bauteilen mit einfachen Kennwerten. Diss Univ Stuttgart.

    Google Scholar 

  • Künzel HM, Krus M (1995). Beurteilung des Feuchteverhaltens von Natursteinfassaden durch Kombination von rechnerischen und esperimentellen Untersuchungsmethoden. Intern Z Bauinstandsetzen 1:5–20.

    Google Scholar 

  • Kürzl H (1988) Exploratory data analysis: recent advances for the interpretation of geochemical Data. J Geochem Explor 30:309–322.

    Google Scholar 

  • Landolt-Börnstein (1982) New Series, Group V(1a): Geophysics. Springer, Berlin.

    Google Scholar 

  • Langheinrich G (1983). Wärmeleitfähigkeiten anisotroper Gesteine. Geol Rdsch 72:541–588.

    Google Scholar 

  • Lentschig E (1971) Qualitätspässe für Werksteine. Techn Inf Zuschlagstoffe und Natursteine 3:13–19 and 4:27–32.

    Google Scholar 

  • LGA (1988) Richtlinie zur Bestimmung der Ausbruchslast am Ankerdornloch in Fassasenplatten aus Naturwerkstein. 1987 ed. with corr. Landesgewerbeanstalt Bavaria, Zweigstelle Würzburg, Würzburg.

    Google Scholar 

  • Lu C, Jackson I (1998) Seismic-frequency laboratory measurements of shear mode viscoelasticity in crustal rocks: II Thermally stressed quartzite and granite. Pure and Appl Geophys 153(2–4):441–473.

    Google Scholar 

  • Lucia FJ (1983) Petrophysical parameters estimated from visual description of carbonate rocks: a field classification of carbonate pore space. J Petrol Tech 35:626–637.

    Google Scholar 

  • Lucia FJ (1995) Rock fabric/petrophysical classification of carbonate pore space for reservoir characterization. Am Assoc Petrol Geol Bull 79:1275–1300.

    Google Scholar 

  • Lucia FJ (1999) Carbonate Reservoir Characterization. Springer, Berlin.

    Google Scholar 

  • Lukas R (1990) Die Naturwerksteine Baden-Württembergs und ihre Wetterbeständigkeit sowie Verwitterungsprofile ausgewählter Carbonatgesteine. Diss Univ Munich.

    Google Scholar 

  • Madsen FT (1976) Quelldruckmessungen an Tongesteinen und Berechnung des Quelldrucks nach der DLVO-Theorie. Mitt Institutes für Grundbau und Bodenmechanik, ETH Zürich 108:1–65.

    Google Scholar 

  • Madsen FT, Nüesch R (1990) Langzeitquellverhalten von Tongesteinen und tonigen Sulfatgesteinen. Mitt Institutes für Grundbau und Bodenmechanik, ETH Zürich 140:1–51.

    Google Scholar 

  • Meng B (1993) Charakterisierung der Porenstruktur im Hinblick auf die Interpretation von Feuchtetransportvorgängen. Aachener Beitr Bauforsch 3:1–71.

    Google Scholar 

  • Messmer JH (1965) The thermal conductivity of porous media. IV Sandstones. The effect of temperature and saturation. Proc 5th Conf Thermal Conductivity 1:1–29.

    Google Scholar 

  • Metz F (1992) Zur Charakterisierung von Porenraum und ausgewählten Gebrauchseigenschaften verschiedener Natursteine. Hochschul Sammlung Naturwiss Mineral 2:1–164.

    Google Scholar 

  • Mirwald P (1997) Physikalische Eigenschaften der Gesteine. In: Berufsbildungswerk des Steinmetz- und Bildhauerhandwerks e.V. (ed) Ebner Verlag, Ulm.

    Google Scholar 

  • Monicard RP (1980) Properties of Reservoir Rocks: Core Analysis. Edition Technip, Paris.

    Google Scholar 

  • Morales M (2011) Dimensional stones of Uruguay. PhD thesis, University of Goettingen.

    Google Scholar 

  • Morales M, Oyhantcabal P, Stein K-J, Siegesmund S (2010) Black dimensional stones: geology, technical properties and deposit characterization of the dolerites from Uruguay. Environ Earth Sci. doi: 10.1007/s12665-010-0827-5.

    Google Scholar 

  • Morales Demarco M, Jahns E, Ruedrich J, et al. (2007) The impact on partial water saturation in rock strength: an experimental study on sandstone. Z dtsch Ges Geowiss 158:869–882.

    Google Scholar 

  • Mosch S (2009) Optimierung der Exploration, Gewinnung und Materialcharakterisierung von Naturwerksteinen. http://webdoc.sub.gwdg.de/diss/2009/mosch/mosch.pdf. Accessed 20 July 2010.

  • Mosch S, Siegesmund S (2007) Statistische Bewertung gesteintechnischer Kenndaten von Natursteinen. Z dtsch Ges Geowiss 158/4:821–868.

    Google Scholar 

  • Muegge D (1898) Über Translationen und verwandte Erscheinungen inKristallen. Neues Jahrbuch Miner Geol Palaeont 1:71–158.

    Google Scholar 

  • Müller F (2001) Gesteinskunde. Ebner-Verlag, Ulm.

    Google Scholar 

  • Nafe JE, Drake CL (1963) Physical properties of marine sediments. In: Hill MN (ed) The Earth Beneath the Sea: History. Wiley-Interscience, New York, N.Y.

    Google Scholar 

  • Niesel K, Schimmelwitz P (1982) Zur quantitativen Kennzeichnung des Verwitterunsgverhaltens von Naturwerksteinen anhand ihrer gefügemerkmale. Bundesamt für Materialprüfung Forsch–Ber 86:1–100.

    Google Scholar 

  • Nur A, Simmons G (1969) The effect of saturation on velocity in low porosity rocks. Earth Planet Sci Lett 7:183–193.

    Google Scholar 

  • O’Connell RJ, Budiansky B (1974) Seismic velocities in dry and saturated cracked solids. J Geophys Res 79(35):5412–5426.

    Google Scholar 

  • Ollier C (1984) Weathering. Longman, New York.

    Google Scholar 

  • Ondrasina J, Kirchner D, Siegesmund S (2002) Frost/Thaw cycles and their influence on marble deterioration: a long-term experiment. Geol Soc Spec Publ 205:8–17.

    Google Scholar 

  • Peck L, Barton, CC, Gordon RB (1985). Microstructure and resistance of a rock to tensile fracture. J Geophys Res B 90:11533–11546.

    Google Scholar 

  • Peel RF (1974) Insolation weathering: some measurements of diurnal temperature changes in exposed rocks in the Tibesti Region, Central Sahara. Z Geomorph 21:19–28.

    Google Scholar 

  • Peschel A (1974) Zur Ermittlung und Bewertung von Festigkeitseigenschaften bei Natursteinen. Z Angew Geol 20:118–128.

    Google Scholar 

  • Peschel A (1977) Natursteine. VEB Deutscher Verlag für Grundstoffindustrie, Leipzig.

    Google Scholar 

  • Peschel A (1983) Natursteine. VEB Deutscher Verlag für Grundstoffindustrie, Leipzig.

    Google Scholar 

  • Picot P, Johan Z (1977) Atlas of ore minerals. Bureau de Recherches Geologiques et Minieres, Orleans.

    Google Scholar 

  • Popp T (1994) Der Einfluß von Gesteinsmatrix, Mikrorißgefügen und intergranularen Fluiden auf die elastischen Wellengeschwindigkeiten und die elektrische Leitfähigkeit krustenrelevanter Gesteine unter PT-Bedingungen. Diss Univ Kiel.

    Google Scholar 

  • Poschlod K (1990) Das Wasser im Porenraum kristalliner Naturwerksteine. Münchener Geowiss Abh B 7, Verlag Dr. Friedrich Pfeil, Munich.

    Google Scholar 

  • Pribnow D, Williams CF, Burkhardt H (1993) Well log-derived estimates of thermal conductivity in crystalline rocks penetrated by the 4-km deep KTB Vorbohrung. Geophys Res Lett 20(12):1155–1158.

    Google Scholar 

  • Primavori P (1999) Planet Stone. Giorgio Zusi Editore S.A.S., Verona.

    Google Scholar 

  • Pros Z, Babuška V (1967) A method for investigating the elastic anisotropy on spherical rock samples. Z Geophys 33:289–291.

    Google Scholar 

  • R Development Core Team (2005) R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org. Accessed 20 July 2010.

  • Rasolofosaon P, Rabbel W, Siegesmund S, et al. (2000) Quantified crack distribution in a KTB core sample: Fabric analyses vs. ultrasonic inversion. Geophys J Int 141:413–424.

    Google Scholar 

  • Rentsch W, Krompholz G (1961) Zur Bestimmung elastischer Konstanten durch Schallgeschwindigkeitsmessungen. Fachzeitschrift der Bergakademie Freiberg. http://www.geotron.de/DOWNLOAD/Anwendung%20Dehnwellenmessungen.pdf. Assessed 20 July 2010.

  • Richter D, Simmons G (1974) Thermal expansion behaviour of igneous rocks. Inter J Rock Mech and Min Sci Geomech Abstr 11:403–411.

    Google Scholar 

  • Robertson EC, Peck DL (1974) Thermal conductivity of vesicular basalt from Hawaii. J Geophys Res 79:4875–4888.

    Google Scholar 

  • Rohowski H (2001) Druckfestigkeit und Ausbruchlast neu geregelt. Naturstein 3:88–92.

    Google Scholar 

  • Rösler HJ (1991) Lehrbuch der Mineralogie. Deutscher Verlag für Grundstoffindustrie, Leipzig.

    Google Scholar 

  • Roth ES (1955) Temperature and water content as factors in desert weathering. J Geol 73:454–468.

    Google Scholar 

  • Rudnick RL, Fountain DM (1995) Nature and composition of the continental crust: a lower crustal perspective. Rev Geophys 33:267–309.

    Google Scholar 

  • Ruedrich J (2003) Gefügekontrollierte Verwitterung natürlicher und konservierter Marmore. Diss Univ Göttingen.

    Google Scholar 

  • Ruedrich J, Bartelsen T, Dohrmann R, Siegesmund S (2010a) Building sandstone integrity affected by the process of hygric expansion. Environ Earth Sci. doi: 10.1007/s12665-010-0767-0.

    Google Scholar 

  • Ruedrich J, Kirchner D, Siegesmund S (2010b) Physical weathering of building stones induced by freeze thaw action: a laboratory long term study. Environ Earth Sci. doi: 10.1007/s12665-010-0826-6.

    Google Scholar 

  • Ruedrich J, Rothert E, Fitzner B, et al. (2005a) Schadensanalyse an Gebäuden aus Kalksteinen auf Malta. In: Siegesmund S, Snethlage R, Auras M (eds) Stein-Zerfall und Konservierung. Edition Leipzig, Leipzig.

    Google Scholar 

  • Ruedrich J, Seidel M, Kirchner D, et al. (2005b) Salzverwitterung, hygrische und thermische Dehnung als auslösende Schadensquantitäten. Z dtsch geol Ges 156/1:59–74.

    Google Scholar 

  • Ruedrich J, Seidel M, Rothert E, et al. (2007) Length change behaviour of sandstones induced by salt crystallisation. In: Prikryl R, Smith BJ (eds) Building Stone Decay: From Diagnosis to Conservation. Geol Soc London Spec Pub, London.

    Google Scholar 

  • Ruedrich J, Siegesmund S (2006) Fabric dependence of length change behaviour induced by ice crystallization in the pore space of natural building stones. In: Fort R, Alvarez de Buergo M, Gomez-Heras M, et al. (eds) Heritage, Weathering and Conservation. Taylor & Francis Group, London.

    Google Scholar 

  • Ruedrich J, Siegesmund S (2007) Salt-induced weathering: an experimental approach. Environ Geol 52:225–249.

    Google Scholar 

  • Ruedrich J, Weiss T, Siegesmund S (2001) Deterioration characteristics of marbles from the Marmorpalais Potsdam (Germany): a compilation. Z dtsch geol Ges 152:637–664.

    Google Scholar 

  • Rybach J, Buntebarth G (1982) Relationship between the petrophysical properties density, seismic velocity, heat production and mineralogical constitution. Earth Planet Sci Lett 57:367–376.

    Google Scholar 

  • Sage JD (1988) Thermal microfracturing of marble. In: Marinos PG, Koukis GC (eds) Engineering Geology of Ancient Works, Monuments and Historical Sites. Balkema, Rotterdam.

    Google Scholar 

  • Schild M, Siegesmund S, Vollbrecht A, et al. (2001) Characterization of granite matrix porosity and pore-space geometry by in-situ and laboratory measurements. Geophys J Int 146:111–125.

    Google Scholar 

  • Schlanger SO, Douglas RG (1974) The pelagic ooze-chalk-limestone transition and its implication for marine stratigraphy. Spec Pub Int Assoc Sediment 1:117–148.

    Google Scholar 

  • Schön J (1983) Petrophysik. Akademie Verlag, Berlin.

    Google Scholar 

  • Schön J (1996). Physical properties of rocks. Handbook of Geophysical Exploration Volume 18. Pergamon, Oxford, New York, Tokyo.

    Google Scholar 

  • Schuh H (1987) Physikalische Eigenschaften von Sandsteinen und ihren verwitterten Oberflächen. Münchner Geowiss Abh (B), Verlag Dr. Friedrich Pfeil, Munich.

    Google Scholar 

  • Sebastian E, Cultrone G, Benavente D, et al. (2008) Swelling damage in clay-rich sandstones used in the church of San Mateo in Tarifa (Spain). J Cultural Heritage 9:66–76.

    Google Scholar 

  • Segall P, Pollard DD (1980) Mechanics of discontinuous faults. J Geophys Res 85:4337–4350.

    Google Scholar 

  • Shushakova V, Fuller ER Jr, Siegesmund S (2010) Influence of shape fabric and crystal texture on marble degradation phenomena: simulations. Environ Earth Sci. doi: 10.1007/s12665-010-0744-7.

    Google Scholar 

  • Siegesmund S (1994) Modelling of the thermal conductivity observed in paragneisses of the KTB pilot hole. Sci Drill 4:207–213.

    Google Scholar 

  • Siegesmund S (1996) The significance of rock fabrics for the geophysical interpretation of geophysical anisotropies. Geotekt Forsch 85:1–123.

    Google Scholar 

  • Siegesmund S, Dahms M (1994) Fabric-controlled anisotropy of elastic, magnetic and thermal properties. In: Bunge HJ, Siegesmund S, Skrotzki W, et al. (eds) Textures of Geological Materials. DGM Informationsgesellschaft, Oberursel.

    Google Scholar 

  • Siegesmund S, Grimm W-D, Dürrast H, et al. (2010) Limestones in Germany used as building stones: an overview. In: Smith B, Gomez-Heras M, Viles H, et al. (eds) Limestone in the Built Environment: Present day Challenges to Preserve the Past. Geol. Soc. Spec. Pub. London, London.

    Google Scholar 

  • Siegesmund S, Kruhl J, Lüschen E (1996) Petrophysical and seismic features of the exposed lower continental crust in Calabria (Italy): Field observation versus modelling. Geotekt Forschungen 85:125–163.

    Google Scholar 

  • Siegesmund S, Mosch St, Scheffzük Ch, et al. (2008a) The bowing potential of granitic rocks: rock fabrics, thermal properties and residual strain. Environ Geol 55:1437–1448.

    Google Scholar 

  • Siegesmund S, Ruedrich J, Koch A (2008b) Marble Bowing: Comparative studies of different public building facades. Environ Geol 56:473–494.

    Google Scholar 

  • Siegesmund S, Ruedrich J, Weiss T (2004a) Marble deterioration. In: Prikryl R (ed) Dimension Stone 2004. Taylor & Francis Group, London.

    Google Scholar 

  • Siegesmund S, Ullemeyer K, Weiß T, et al. (2000a) Physical weathering of marbles caused by anisotropic thermal expansion. Int J Earth Sci 89:170–182.

    Google Scholar 

  • Siegesmund S, Vollbrecht A, Chlupac T, et al. (1993) Fabric-controlled anisotropy of petrophysical properties observed in KTB-core samples. Sci Drill 4:31–54.

    Google Scholar 

  • Siegesmund S, Vollbrecht A, Ullemeyer K, et al. (1997) Anwendung der geologischen Gefügekunde zur Charakterisierung natürlicher Werksteine – Fallbeispiel: Kauffunger Marmor, Inter J Restoration of Build Monuments 3:269–292.

    Google Scholar 

  • Siegesmund S, Vollbrecht A, Weiss T (2002) Gefügeanisotropien und ihre Bedeutung für Naturwerksteine. Naturstein 7:76–81.

    Google Scholar 

  • Siegesmund S, Weiß T, Vollbrecht A, et al. (1999) Marble as a natural building stone: rock fabrics, physical and mechanical properties. Z dtsch geol Ges 150(2):237–258.

    Google Scholar 

  • Siegesmund S, Weiss T, Ruedrich J (2004b) Schadensmonitoring mittels Ultraschalldiagnostik. Restauro 2:98–105.

    Google Scholar 

  • Siegesmund S, Weiss T, Tschegg EK (2000b) Control of marble weathering by thermal expansion and rock fabrics. In: Proceedings of 9th International Congress on Deterioration and Conservation of Stone, Venice 19–24. Elsevier, Amsterdam.

    Google Scholar 

  • Simmons G (1964) Velocity of compressional waves in various minerals at pressures to 10 kbars. J Geophys Res 69:1117–1121.

    Google Scholar 

  • Simmons G, Cooper HW (1978) Thermal cycling cracks in three igneous rocks. Int J Rock Mech and Min Sci and Geomech Abstr 15:145–148.

    Google Scholar 

  • Simmons G, Nur A (1969) Properties of granites in situ and their relation to laboratory measurements. Science 162:789.

    Google Scholar 

  • Sinclair SW (1980) Analysis of macroscopic fractures on Teton Anticline, Northwestern Montana. MSc Thesis, Texas A&M University.

    Google Scholar 

  • Sippel J, Siegesmund S, Weiss T, et al. (2007) Decay of natural stones caused by fire damage. In: Prikryl R, Smith BJ (eds) Building Stone Decay: From Diagnosis to Conservation, Geol Soc Spec Pub, London.

    Google Scholar 

  • Snethlage R (1984) Steinkonservierung, Forschungsprogramm des Zentrallabors für Denkmalpflege 1979–1983. Bericht für die Stiftung Volkswagenwerk. Arbeitsheft Bayr Landesamt Denkmalpflege 22. Lipp Verlag, Munich.

    Google Scholar 

  • Snethlage R (2005) Leitfaden zur Steinkonservierung. Fraunhofer IRB Verlag, Stuttgart.

    Google Scholar 

  • Snethlage R, Hoffmann D, Knöfel D (1986) Simulation der Verwitterung von Naturstein. Teil 2: Physikalisch–chemische Verwitterungsreaktionen. In: Wittmann FH (ed.) 2nd Int Kolloqium ’Werkstoffwissenschaften und Bausanierung’. Technische Akademie, Esslingen.

    Google Scholar 

  • Snethlage R, Wendler E (1997) Moisture Cycles and Sandstone Degradation. In: Baer N, Snethlage R (eds) Saving our architectural heritage, the conservation of historic stone structures. Dahlem Workshop Reports ES20. Wiley, Chichester.

    Google Scholar 

  • Stearns DW (1967) Certain aspects of fracture in naturally deformed rocks. In Ricker RE (ed) NSF Adv Sci Sem in Rock Mech, Bedford, Mass.

    Google Scholar 

  • Steindlberger E (2003) Vulkanische Gesteine aus Hessen und ihre Eigenschaften als Naturwerksteine. Geol. Abhandlungen Hessen 110:1–67.

    Google Scholar 

  • Steindlberger E (2004) Volcanic tuffs from Hesse (Germany) and their weathering behaviour. Environ Geol 46:378–390.

    Google Scholar 

  • Stockhausen N (1981) Die Dilatation hochporöser Festkörper bei Wasseraufnahme und Eisbildung. Diss TU Munich.

    Google Scholar 

  • Strohmeyer D (2003) Gefügeabhängigkeit technischer Eigenschaften. PhD thesis, Univ Göttingen.

    Google Scholar 

  • Strohmeyer D, Siegesmund S (2002) Influence of anisotropic fabric properties on the mechanical strength of selected building stones. Geol Soc Spec Publ 205:114–135.

    Google Scholar 

  • Stück H, Fischer C, Siegesmund S (2010). Bausteine der Region Drei Gleichen: Entstehung, Charakterisierung, Verwitterung. In: Siegesmund S, Hoppert M (eds) Die Drei Gleichen: Baudenkmäler und Naturraum. Editon Leipzig, Leipzig.

    Google Scholar 

  • Stück H, Forgó Z, Ruedrich J, et al. (2008) The behaviour of consolidated volcanic tuffs: weathering mechanisms under simulated laboratory conditions. Environ Geol 56:699–713.

    Google Scholar 

  • Szilagyi J (1995). Leitgesteine für die Denkmalpflege-Untersuchung petrophysikalischer Eigenschaften (key rocks for monument care-investigation into petrophysical properties). Research report TU Dresden http://www.de/biw/geotechnik/geologie/forschung/download/forschung_leitgesteine.pdf. Accessed 20 July 2009.

  • Thill RE, Willard RJ, Bur TR (1969) Correlation of longitudinal velocity variation with rock fabric. J Geophys Res 74:4897–4909.

    Google Scholar 

  • Thuro K, Plinninger RJ, Zäh S (2001) Scale effects in rock strength properties. Part 1: Unconfined compressive test and Brazilian test. In: Särkkä P, Eloranta P (eds) Rock Mechanics – A Challenge for Society. Proceedings of ISRM Regional Symposium on Eurock 2001, Espoo, Finland. Swets & Zeitlinger, Taylor and Francis Group, London.

    Google Scholar 

  • Török A (2007) Geologia Mernököknek. Müegyetemi Kladno, Budapest.

    Google Scholar 

  • Tournier B, Jeannette D, Destrigenville C (2000) Stone drying: an approach of the effective evaporation surface area. In: Fassina V (ed) 9th International Congress on Deterioration and Conservation of Stone. Elsevier, Amsterdam.

    Google Scholar 

  • Tucker ME (1985) Einführung in die Sedimentpetrologie, Ferdinand Enke Verlag, Stuttgart.

    Google Scholar 

  • UNI 9724/5 (1990) Materiali lapidei. determinazione della resistenza a flessione – Norma parte 5a. UNI Ente Nazionale Italiano di Unificazione, Milano.

    Google Scholar 

  • van Golf-Racht TD (1996) Naturally-fractured carbonate reservoirs. In: Chilingarian GV, Mazullo SJ, Rieke HH (eds) Carbonate Reservoir Characterization: A Geologic-Engineering Analysis, part II. Elsevier, Amsterdam, Lausanne, New York, Oxford, Shannon, Tokyo.

    Google Scholar 

  • Vázquez P, Siegesmund S, Alonso FJ (2010) Bowing of dimensional granitic stones. Environ Earth Sci. doi: 10.1007/s12665-010-0882-y.

    Google Scholar 

  • Vietor T (1993) Entfestigung von KTB-Gesteinen im Kriechexperiment unter dem Einfluß verschiedener Flüssigkeiten. Diplom Thesis Univ Göttingen.

    Google Scholar 

  • Viles HA, Camuffo D, Fitz S, et al. (1997) Group report: What is the state of our knowledge of the mechanisms of deterioration and how good are our estimates of rates of deterioration? – In: Baer NS, Snethlage R (ed) Report of the Dahlem Workshop on Saving our architectural heritage: The conservation of historic stone structures. Wiley, Hoboken NJ.

    Google Scholar 

  • von Moos A, De Quervin F (1948) Technische Gesteinskunde. Birkhäuser, Basel.

    Google Scholar 

  • Vos BH (1978) Hygric methods fort he determination of the behaviour of stones. Int Symp Deterioration of Stone Monuments. UNESCO-RILEM, Paris.

    Google Scholar 

  • Wangler TP, Scherer GW (2008) Clay swelling mechanism in claybearing sandstones. Environ Geol 56:529–534.

    Google Scholar 

  • Wangler TP, Stratulat A, Duffus P, Prevost JH, Scherer GW (2010) Flaw propagation and buckling in clay-bearing sandstones. Environ Earth Sci. doi: 10.1007/s12665-010-0732-y.

    Google Scholar 

  • Washburn EW (1921) A method of determining the distribution of pore sizes in a porous material. Proc Nat Acad Sci 7:115.

    Google Scholar 

  • Weiss G (1992) Die Eis- und Salzkristallisation im Porenraum von Sandsteinen und ihre Auswirkungen auf das Gefüge unter besonderer Berücksichtigung gesteinsspezifischer Parameter. Münchner Geowiss Abh B 9, Verlag Dr. Friedrich Pfeil, Munich.

    Google Scholar 

  • Weiss T, Rasolofosaon PNJ, Siegesmund S (2001) Thermal microcracking in Carrara marble. Z dtsch geol Ges 152/2–4:621–636.

    Google Scholar 

  • Weiss T, Rasolofosaon PNJ, Siegesmund S (2002a) Ultrasonic velocities as a diagnostic tool for the quality assessment of marble. In: Siegesmund S, Weiss T, Vollbrecht A (eds) Natural Stone, Weathering Phenomena, Conservation Strategies and Case Studies. Geological Society Special Publications, London.

    Google Scholar 

  • Weiss T, Siegesmund S, Bohlen T (1999) Seismic, structural, and petrological models of the subcrustal lithosphere in southern Germany: a quantitative reevaluation. Pure Appl Geophys 156:53–81.

    Google Scholar 

  • Weiss T, Siegesmund S, Rasolofosaon P (2000) The deteriorationvelocity-porosity-relation constraint. 9th. International Congress on Deterioration and Conservation of Stone, Venice 19–24, Elsevier 215–223.

    Google Scholar 

  • Weiss T, Siegesmund S, Fuller E, Jr (2002b) Microstructure-based finite element modeling of microcrack formation in marbles. Geol Soc Spec Publ 205:88–101.

    Google Scholar 

  • Weiss T, Siegesmund S, Kirchner D, et al. (2004a) Insolation weathering and hygric dilatation as a control on building stone degradation. Environ Geol 46/3–4:402–413.

    Google Scholar 

  • Weiss T, Strohmeyer D, Kirchner D, et al. (2004b) Weathering of stones caused by thermal expansion, hygric properties and freeze-thaw cycles. In: Kwiatkowski D, Löfvendahl R (eds) Proceedings of 10th International Congress on Deterioration and Conservation of Stone. ICOMOS, Stockholm.

    Google Scholar 

  • Wendler E, Charola EA, Fitzner B (1996) Easter Island tuff: Laboratory studies for its consolidation. In: Riederer J (ed) Proceedings of 8th International Congress Deterioration and Conservation of Stone. Möller Druck und Verlag GmbH, Berlin.

    Google Scholar 

  • Wendler E, Rückert–Thümling R (1992) Gefügezerstörendes Verformungsverhalten bei salzbefrachteten Sandsteinen unter hygrischer Wechselbelastung. In Wittmann FH (ed) Materials Science and Restoration. Expert Verlag, Renningen.

    Google Scholar 

  • Wenk HR (1985) Preferred orientation in deformed metals and rocks. An introduction to modern texture analysis. Academic, Orlando.

    Google Scholar 

  • Wenk HR, Wenk E (1969) Physical constants of alpine rocks (density, porosity, specific heat, thermal diffusivity and conductivity). Schweiz Min Petrogr Mitt 49:343–357.

    Google Scholar 

  • Wenzel A, Häfner F (2003) Die roten Werksandsteine der Westpfalz. IFS-Report 15. Institut für Steinkonservierung, Mainz.

    Google Scholar 

  • Wesche K (1981) Baustoffe für tragende Bauteile. 2nd ed., Vol 2. Bauverlag, Wiesbaden und Berlin.

    Google Scholar 

  • Winkler EM (1994) Stone in Architecture. Springer, Berlin.

    Google Scholar 

  • Winkler EM (1996) Technical note: properties of marble as building veneer. Int J Rock Mech Min Sci 33(2):215–218.

    Google Scholar 

  • Wollard GP (1959) Crustal structure from gravity and seismic measurements. J Geophys Res 64:1521–1544.

    Google Scholar 

  • Woodside W, Messmer J (1961) Thermal conductivity of porous media. II. Consolidated rocks. J Appl Phys 32(9):1699–1706.

    Google Scholar 

  • Zeisig A, Siegesmund S, Weiss T (2002) Thermal expansion and its control on the durability of marbles. Geol Soc Spec Publ 205:64–79.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siegfried Siegesmund .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Siegesmund, S., Dürrast, H. (2011). Physical and Mechanical Properties of Rocks. In: Siegesmund, S., Snethlage, R. (eds) Stone in Architecture. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14475-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14475-2_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14474-5

  • Online ISBN: 978-3-642-14475-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics