Skip to main content

Soil Organic Phosphorus Speciation Using Spectroscopic Techniques

  • Chapter
  • First Online:
Phosphorus in Action

Part of the book series: Soil Biology ((SOILBIOL,volume 26))

Abstract

The most commonly used differentiation of soil phosphorus (P) is between inorganic and organic forms, despite the fact that this is only the beginning of soil P speciation. Forms of inorganic and organic soil P include a large range of specific P compounds, and spectroscopic techniques can offer the best potential for determining the speciation of soil organic P. The focus of this chapter is to summarise the relative merits of three spectroscopic techniques: solution and solid state 31P nuclear magnetic resonance (NMR), and X-ray absorption near-edge structure (XANES). We aim to provide current and potential end-users of these techniques the ability to compare these methods on the basis of four criteria: sample preparation, sensitivity, resolution and quantitation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adams MA (1990) 31P-NMR identification of phosphorus compounds in neutral extracts of Mountain Ash (Eucalyptus regnans F. Muell.) soils. Soil Biol Biochem 22:419–421

    CAS  Google Scholar 

  • Adams MA, Byrne LT (1989) 31P-NMR analysis of phosphorus compounds in extracts of surface soils from selected karri (Eucalyptus diversicolor F. Muell.) forests. Soil Biol Biochem 21:523–528

    CAS  Google Scholar 

  • Ajiboye B, Akinremi OO, Hu Y, Flaten DN (2007a) Phosphorus speciation of sequential extracts of organic amendments using nuclear magnetic resonance and X-ray absorption near-edge structure spectroscopies. J Environ Qual 36:1563–1576

    CAS  PubMed  Google Scholar 

  • Ajiboye B, Akinremi OO, Jurgensen A (2007b) Experimental validation of quantitative XANES analysis for phosphorus speciation. Soil Sci Soc Am J 71:1288–1291

    CAS  Google Scholar 

  • Ajiboye B, Akinremi OO, Hu Y, Jurgensen A (2008) XANES speciation of phosphorus in organically amended and fertilized Vertisol and Mollisol. Soil Sci Soc Am J 72:1256–1262

    CAS  Google Scholar 

  • Al Deen TS, Hibbert DB, Hook JM, Wells RJ (2002) Quantitative nuclear magnetic resonance spectrometry – II. Purity of phosphorus-based agrochemicals glyphosate (N-(phosphonomethyl)-glycine) and profenofos (O-(4-bromo-2-chlorophenyl) O-ethyl S-propyl phosphorothioate) measured by 1H and 31P QNMR spectrometry. Anal Chim Acta 474:125–135

    Google Scholar 

  • Anderson G (1967) Nucleic acids, derivatives, and organic phosphates. In: McLaren AD, Peterson GH (eds) Soil biochemistry. Edward Arnold, London, pp 67–90

    Google Scholar 

  • Anderson G (1980) Assessing organic phosphorus in soils. In: Khasawneh FE, Sample EC, Kamprath EJ (eds) Role of phosphorus in agriculture. ASA, Madison, pp 411–428

    Google Scholar 

  • Baer E, Stancer HC, Korman IA (1953) Migration during hydrolysis of esters of glycerophosphoric acid. III. Cephalin and glycerylphosphorylethanolamine. J Biol Chem 200:251–255

    CAS  PubMed  Google Scholar 

  • Beauchemin S, Hesterberg D, Beauchemin M (2002) Principle component analysis approach for modeling sulfur K-XANES spectra of humic acids. Soil Sci Soc Am J 66:83–91

    CAS  Google Scholar 

  • Beauchemin S, Hesterberg D, Chou J, Beauchemin M, Simard RR, Sayers DE (2003) Speciation of phosphorus in phosphorus-enriched agricultural soils using X-ray near-edge structure spectroscopy and chemical fractionation. J Environ Qual 32:1809–1819

    CAS  PubMed  Google Scholar 

  • Bedrock CN, Cheshire MV, Chudek JA, Goodman BA, Shand CA (1994) Use of 31P-NMR to study the forms of phosphorus in peat soils. Sci Total Environ 152:1–8

    CAS  Google Scholar 

  • Benitez-Nelson CR, O’Neill L, Kolowith LC, Pellechia P, Thunell R (2004) Phosphonates and particulate organic phosphorus cycling in an anoxic marine basin. Limnol Oceanogr 49:1593–1604

    CAS  Google Scholar 

  • Berg AS, Joern BC (2006) Sorption dynamics of organic and inorganic phosphorus compounds in soil. J Environ Qual 35:1855–1862

    CAS  PubMed  Google Scholar 

  • Borie F, Rubio R (2003) Total and organic phosphorus in Chilean volcanic soils. Gayana Bot 60:69–78

    Google Scholar 

  • Borie F, Zunino H, Martãnez L (1989) Macromolecule-P associations and inositol phosphates in some Chilean volcanic soils of temperate regions. Commun Soil Sci Plant Anal 20:1881–1894

    CAS  Google Scholar 

  • Bowman RA, Moir JO (1993) Basic EDTA as an extractant for soil organic phosphorus. Soil Sci Soc Am J 57:1516–1518

    CAS  Google Scholar 

  • Brandes JA, Ingall E, Paterson D (2007) Characterization of minerals and organic phosphorus species in marine sediments using soft X-ray fluorescence spectromicroscopy. Mar Chem 103:250–265

    CAS  Google Scholar 

  • Briceño M, Escudey M, Galindo G, Borchardt D, Chang AC (2006) Comparison of extraction procedures used in determination of phosphorus species by 31P-NMR in Chilean volcanic soils. Commun Soil Sci Plant Anal 37:1553–1569

    Google Scholar 

  • Bünemann EK, Smernik RJ, Marschner P, McNeill AM (2008) Microbial synthesis of organic and condensed forms of phosphorus in acid and calcareous soils. Soil Biol Biochem 40:932–946

    Google Scholar 

  • Cade-Menun B (2005a) Using phosphorus-31 nuclear magnetic resonance spectroscopy to characterise organic phosphorus in environmental samples. In: Turner BL, Frossard E, Baldwin DS (eds) Organic phosphorus in the environment. CABI, Wallingford, pp 21–44

    Google Scholar 

  • Cade-Menun BJ (2005b) Characterizing phosphorus in environmental and agricultural samples by P-31 nuclear magnetic resonance spectroscopy. Talanta 66:359–371

    CAS  PubMed  Google Scholar 

  • Cade-Menun BJ, Preston CM (1996) A comparison of soil extraction procedures for 31P NMR spectroscopy. Soil Sci 161:770–785

    CAS  Google Scholar 

  • Cade-Menun BJ, Liu CW, Nunlist R, McColl JG (2002) Soil and litter phosphorus-31 nuclear magnetic resonance spectroscopy: extractants, metals, and phosphorus relaxation times. J Environ Qual 31:457–465

    CAS  PubMed  Google Scholar 

  • Changani KK, Ala-Korpela M, Fuller BJ, Mierisova S, Bryant DJ, Taylor-Robinson SD, Davidson BR, Bell JD (1999) Incorporation of metabolite prior knowledge for data analysis: biochemical implications of dynamic 31P NMR ex vivo pig liver studies. NMR Biomed 12:197–204

    CAS  PubMed  Google Scholar 

  • Condron LM, Frossard E, Newman RH, Tekely P, Morel J-L (1997) Use of 31P NMR in the study of soils and the environment. In: Nanny MA, Minear RA, Leenheer JA (eds) Nuclear magnetic resonance in environmental chemistry. Oxford University Press, New York, pp 247–271

    Google Scholar 

  • Condron LM, Turner BL, Cade-Menun BJ (2005) Chemistry and dynamics of soil organic phosphorus. In: Sims JT, Sharpley AN (eds) Phosphorus: agriculture and the environment. ASA, CSSA and SSSA, Madison, pp 87–122

    Google Scholar 

  • Conte P, Å mejkalová D, Piccolo A, Spaccini R (2008) Evaluation of the factors affecting direct polarization solid state 31P-NMR spectroscopy of bulk soils. Eur J Soil Sci 59:584–591

    CAS  Google Scholar 

  • Corbett RJT (1993) How to perform automated curve fitting to in vivo 31P magnetic resonance spectroscopic data. Magn Reson Mater Phys Biol Med 1:65–76

    CAS  Google Scholar 

  • Costello AJR, Glonek T, Myers TC (1976) 31P nuclear magnetic resonance-pH titrations of myo-inositol hexaphosphate. Carbohydr Res 46:159–171

    CAS  PubMed  Google Scholar 

  • Crouse DA, Sierzputowska-Gracz H, Mikkelsen RL (2000) Optimization of sample pH and temperature from phosphorus-31 nuclear magnetic resonance spectroscopy of poultry manure extracts. Commun Soil Sci Plant Anal 31:229–240

    CAS  Google Scholar 

  • Dai K, David MB, Vance GF, Krzyszowska AJ (1996) Characterization of phosphorus in a spruce-fir spodosol by phosphorus-31 nuclear magnetic resonance spectroscopy. Soil Sci Soc Am J 60:1943–1950

    CAS  Google Scholar 

  • Dalal RC (1977) Soil organic phosphorus. Adv Agron 29:83–117

    CAS  Google Scholar 

  • Derome AE (1987) Modern NMR techniques for chemistry research. Pergamon, Singapore

    Google Scholar 

  • Doolette AL, Smernik RJ, Dougherty WJ (2009) Spiking improved solution phosphorus-31 nuclear magnetic resonance identification of soil phosphorus compounds. Soil Sci Soc Am J 73:919–927

    CAS  Google Scholar 

  • Dougherty WJ, Smernik RJ, Chittleborough DJ (2005) Application of spin counting to the solid-state 31P NMR analysis of pasture soils with varying phosphorus content. Soil Sci Soc Am J 69:1–13

    Google Scholar 

  • Dougherty WJ, Smernik RJ, Bünemann EK, Chittleborough DJ (2007) On the use of HF pre-treatment of soils for 31P NMR analyses. Soil Sci Soc Am J 71:1111–1118

    CAS  Google Scholar 

  • Escudey M, Galindo G, Forster JE, Briceño M, Diaz P, Chang A (2001) Chemical forms of phosphorus of volcanic ash-derived soils in Chile. Commun Soil Sci Plant Anal 32:601–616

    CAS  Google Scholar 

  • Folch J (1942) The nature of the glycerophosphoric acid present in phosphatides. J Biol Chem 146:31–33

    CAS  Google Scholar 

  • Frossard E, Tekely P, Grimal JY (1994) Characterization of phosphate species in urban sewage sludges by high-resolution solid-state 31P NMR. Eur J Soil Sci 45:403–408

    CAS  Google Scholar 

  • Frossard E, Skrabal P, Sinaj S, Bangerter F, Traore O (2002) Forms and exchangeability of inorganic phosphate in composted solid organic wastes. Nutr Cycl Agroecosyst 62:103–113

    CAS  Google Scholar 

  • Fyfe CA (1983) Solid state NMR for chemists. CFC, Guelph

    Google Scholar 

  • Guggenberger G, Christensen BT, Rubæk G, Zech W (1996) Land-use and fertilization effects on P forms in two European soils: resin extraction and 31P-NMR analysis. Eur J Soil Sci 47:605–614

    CAS  Google Scholar 

  • Gungor K, Jurgensen A, Karthikeyan KG (2007) Determination of phosphorus speciation in dairy manure using XRD and XANES spectroscopy. J Environ Qual 36:1856–1863

    CAS  PubMed  Google Scholar 

  • Hawkes GE, Powlson DS, Randall EW, Tate KR (1984) A P-31 nuclear magnetic-resonance study of the phosphorus species in alkali extracts of soils from long-term field experiments. J Soil Sci 35:35–45

    CAS  Google Scholar 

  • He Z, Ohno T, Cade-Menun BJ, Erich MS, Honeycutt CW (2006) Spectral and chemical characterization of phosphates associated with humic substances. Soil Sci Soc Am J 70:1741–1751

    CAS  Google Scholar 

  • He Z, Cade-Menun B, Toor G, Fortuna A, Honeycutt C, Sims J (2007a) Comparison of phosphorus forms in wet and dried animal manures by solution phosphorus-31 nuclear magnetic resonance spectroscopy and enzymatic hydrolysis. J Environ Qual 36:1086–1095

    CAS  PubMed  Google Scholar 

  • He Z, Honeycutt C, Xing B, McDowell R, Pellechia P, Zhang T (2007b) Solid-state Fourier transform infrared and P-31 nuclear magnetic resonance spectral features of phosphate compounds. Soil Sci 172:501–515

    CAS  Google Scholar 

  • He Z, Honeycutt CW, Zhang T, Pellechia PJ, Caliebe WA (2007c) Distinction of metal species of phytate by solid-state spectroscopic techniques. Soil Sci Soc Am J 71:940–943

    CAS  Google Scholar 

  • He Z, Honeycutt CW, Griffin TS, Cade-Menun BJ, Pellechia PJ, Dou Z (2009) Phosphorus forms in conventional and organic dairy manure identified by solution and solid state 31P NMR spectroscopy. J Environ Qual 38:1909–1918

    CAS  PubMed  Google Scholar 

  • Hesterberg D, Zhou W, Hutchinson KJ, Beauchemin S, Sayers DE (1999) XAFS study of adsorbed and mineral forms of phosphate. J Synchrotron Radiat 6:636–638

    CAS  PubMed  Google Scholar 

  • Hinedi ZR, Chang AC (1989) Solubility and phosphorus-31 magic angle spinning nuclear magnetic resonance of phosphorus in sludge-amended soils. Soil Sci Soc Am J 53:1057–1061

    Google Scholar 

  • Hunger S, Cho H, Sims JT, Sparks DL (2004) Direct speciation of phosphorus in alum-amended poultry litter: solid-state 31P NMR investigation. Environ Sci Technol 38:674–681

    CAS  PubMed  Google Scholar 

  • Khare N, Hesterberg D, Beauchemin S, Wang S-L (2004) XANES determination of adsorbed phosphate distribution between ferrihydrite and boehmite in mixtures. Soil Sci Soc Am J 68:460–469

    CAS  Google Scholar 

  • Koopmans GF, Chardon WJ, McDowell RW (2007) Phosphorus movement and speciation in a sandy soil profile after long-term animal manure applications. J Environ Qual 36:305–315

    CAS  PubMed  Google Scholar 

  • Kruse J, Leinweber P (2008) Phosphorus in sequentially extracted fen peat soils: a K-edge X-ray absorption near-edge structure (XANES) spectroscopy study. J Plant Nutr 171:613–620

    CAS  Google Scholar 

  • Kruse J, Leinweber P, Eckhardt K-U, Godlinski F, Hu Y, Zuin L (2009) Phosphorus L2, 3-edge XANES: overview of reference compounds. J Synchrotron Radiat 16:247–259

    CAS  PubMed  Google Scholar 

  • Lombi E, Susini J (2009) Synchrotron-based techniques for plant and soil science: opportunities challenges and future perspectives. Plant Soil 320:1–35

    CAS  Google Scholar 

  • Lombi E, Scheckel KG, Armstrong RD, Forrester S, Cutler JN, Paterson D (2006) Speciation and distribution of phosphorus in a fertilized soil: a synchrotron-based investigation. Soil Sci Soc Am J 70:2038–2048

    CAS  Google Scholar 

  • Makarov MI, Malysheva TI, Haumaier L, Alt HG, Zech W (1997) The forms of phosphorus in humic and fulvic acids of a toposequence of alpine soils in the northern Caucasus. Geoderma 80:61–73

    CAS  Google Scholar 

  • Makarov MI, Haumaier L, Zech W (2002a) The nature and origins of diester phosphates in soils: a 31P-NMR study. Biol Fertil Soils 35:136–146

    CAS  Google Scholar 

  • Makarov MI, Haumaier L, Zech W (2002b) Nature of soil organic phosphorus: an assessment of peak assignments in the diester region of 31P NMR spectra. Soil Biol Biochem 34:1467–1477

    CAS  Google Scholar 

  • Maniara G, Rajamoorthi K, Rajan S, Stockton GW (1998) Method performance and validation for quantitative analysis by 1H and 31P NMR spectroscopy. Applications to analytical standards and agricultural chemicals. Anal Chem 70:4921–4928

    CAS  PubMed  Google Scholar 

  • McBeath TM, Smernik RJ, Lombi E, McLaughlin MJ (2006) Hydrolysis of pyrophosphate in a highly calcareous soil: a solid-state phosphorus-31 NMR study. Soil Sci Soc Am J 70:856–862

    CAS  Google Scholar 

  • McDowell RW, Stewart I (2005a) Peak assignments for phosphorus-31 nuclear magnetic resonance spectroscopy in pH range 5–13 and their application in environmental samples. Chem Ecol 21:211–226

    CAS  Google Scholar 

  • McDowell RW, Stewart I (2005b) An improved technique for the determination of organic phosphorus in sediments and soils by 31P nuclear magnetic resonance spectroscopy. Chem Ecol 21:11–22

    CAS  Google Scholar 

  • McDowell RW, Stewart I (2006) The phosphorus composition of contrasting soils in pastoral, native and forest management in Otago, New Zealand: sequential extraction and 31P NMR. Geoderma 130:176–189

    CAS  Google Scholar 

  • McDowell RW, Brookes PC, Mahieu N, Poulton PR, Johnston AE, Sharpley AN (2002a) The effect of soil acidity on potentially mobile phosphorus in a grassland soil. J Agric Sci 139:27–36

    CAS  Google Scholar 

  • McDowell RW, Condron LM, Mahieu N, Brookes PC, Poulton PR, Sharpley AN (2002b) Analysis of potentially mobile phosphorus in arable soils using solid state nuclear magnetic resonance. J Environ Qual 31:450–456

    CAS  PubMed  Google Scholar 

  • McDowell RW, Condron LM, Mahieu N (2003a) Analysis of phosphorus in sequentially extracted grassland soils using solid state NMR. Commun Soil Sci Plant Anal 34:1623–1636

    CAS  Google Scholar 

  • McDowell RW, Mahieu N, Brookes PC, Poulton PR (2003b) Mechanisms of phosphorus solubilisation in a limed soil as a function of pH. Chemosphere 51:685–692

    CAS  PubMed  Google Scholar 

  • McDowell RW, Stewart I, Cade-Menun BJ (2006) An examination of spin-lattice relaxation times for analysis of soil and manure extracts by liquid state phosphorus-31 nuclear magnetic resonance spectroscopy. J Environ Qual 35:293–302

    CAS  PubMed  Google Scholar 

  • McDowell RW, Cade-Menun B, Stewart I (2007) Organic phosphorus speciation and pedogenesis: analysis by solution 31P nuclear magnetic resonance spectroscopy. Eur J Soil Sci 58:1348–1357

    CAS  Google Scholar 

  • Metz K, Dunphy L (1996) Absolute quantitation of tissue phospholipids using 31P NMR spectroscopy. J Lipid Res 37:2251–2265

    CAS  PubMed  Google Scholar 

  • Murphy PNC, Bell A, Turner BL (2009) Phosphorus speciation in temperate basaltic grassland soils by solution P-31 NMR spectroscopy. Eur J Soil Sci 60:638–651

    CAS  Google Scholar 

  • Neal C, Neal M, Wickham H (2000) Phosphate measurement in natural waters: two examples of analytical problems associated with silica interference using phosphomolybdic acid methodologies. Sci Total Environ 251–252:511–522

    PubMed  Google Scholar 

  • Newman RH, Condron LM (1995) Separating subspectra from cross-polarization magic-angle spinning nuclear magnetic resonance spectra by proton spin relaxation editing. Solid State Nucl Magn Reson 4:259–266

    CAS  PubMed  Google Scholar 

  • Newman RH, Tate KR (1980) Soil phosphorus characterization by 31P nuclear magnetic resonance. Commun Soil Sci Plant Anal 11:835–842

    CAS  Google Scholar 

  • Peak D, Sims JT, Sparks DL (2002) Solid-state speciation of natural and alum-amended poultry litter using XANES spectroscopy. Environ Sci Technol 36:4253–4261

    CAS  PubMed  Google Scholar 

  • Preston CM (1996) Applications of NMR to soil organic matter analysis: history and prospects. Soil Sci 161:144–166

    CAS  Google Scholar 

  • Puppato A, DuPré DB, Stolowich N, Yappert MC (2007) Effect of temperature and pH on 31P nuclear magnetic resonances of phospholipids in cholate micelles. Chem Phys Lipids 150:176–185

    CAS  PubMed  Google Scholar 

  • Šárka M, Mika A-K (2001) MR spectroscopy quantitation: a review of frequency domain methods. NMR Biomed 14:247–259

    Google Scholar 

  • Sato S, Solomon D, Hyland C, Ketterings QM, Lehmann J (2005) Phosphorus speciation in manure and manure-amended soils using XANES spectroscopy. Environ Sci Technol 39:7485–7491

    CAS  PubMed  Google Scholar 

  • Shand C, Cheshire M, Bedrock C, Chapman P, Fraser A, Chudek J (1999) Solid-phase 31P NMR spectra of peat and mineral soils, humic acids and soil solution components: influence of iron and manganese. Plant Soil 214:153–163

    CAS  Google Scholar 

  • Shober AL, Hesterberg DL, Sims JT, Gardner S (2006) Characterization of phosphorus species in biosolids and manures using XANES spectroscopy. J Environ Qual 35:1983–1993

    CAS  PubMed  Google Scholar 

  • Smernik RJ, Baldock JA (2005) Does solid-state 15N NMR spectroscopy detect all soil organic nitrogen? Biogeochemistry 75:507–528

    Google Scholar 

  • Smernik RJ, Dougherty WJ (2007) Identification of phytate in phosphorus-31 nuclear magnetic resonance spectra – the need for spiking. Soil Sci Soc Am J 71:1045–1050

    CAS  Google Scholar 

  • Smernik RJ, Oades JM (2000a) The use of spin counting for determining quantitation in solid state 13C NMR spectra of natural organic matter 1. Model systems and the effects of paramagnetic impurities. Geoderma 96:101–129

    CAS  Google Scholar 

  • Smernik RJ, Oades JM (2000b) The use of spin counting for determining quantition in solid state 13C NMR spectra of natural organic matter 2. HF-treated soil fractions. Geoderma 96:159–171

    CAS  Google Scholar 

  • Tate KR, Newman RH (1982) Phosphorus fractions of a climosequence of soils in New Zealand tussock grassland. Soil Biol Biochem 14:191–196

    CAS  Google Scholar 

  • Tiessen H, Moir JO (1993) Characterization of available P by sequential extraction. In: Carter MR (ed) Soil sampling and methods of analysis. Lewis, Boca Raton, pp 75–86

    Google Scholar 

  • Toor GS, Peak JD, Sims JT (2005) Phosphorus speciation in broiler litter and turkey manure produced from modified diets. J Environ Qual 34:687–697

    CAS  PubMed  Google Scholar 

  • Turner B (2008) Soil organic phosphorus in tropical forests: an assessment of the NaOH-EDTA extraction procedure for quantitative analysis by solution 31P NMR. Eur J Soil Sci 59:453–466

    CAS  Google Scholar 

  • Turner GL, Smith KA, Kirkpatrick RJ, Oldfieldt E (1986) Structure and cation effects on phosphorus-31 NMR chemical shifts and chemical-shift anisotropies of orthophosphates. J Magn Reson 70:408–415

    CAS  Google Scholar 

  • Turner BL, Mahieu N, Condron LM (2003a) Quantification of myo-inositol hexakisphosphate in alkaline soil extracts by solution 31P NMR spectroscopy and spectral deconvolution. Soil Sci 168:469–478

    CAS  Google Scholar 

  • Turner BL, Mahieu N, Condron LM (2003b) Phosphorus-31 nuclear magnetic resonance spectral assignments of phosphorus compounds in soil NaOH-EDTA extracts. Soil Sci Soc Am J 67:497–510

    CAS  Google Scholar 

  • Turner BL, Mahieu N, Condron LM (2003c) The phosphorus composition of temperate pasture soils determined by NaOH-EDTA extraction and solution 31P NMR spectroscopy. Org Geochem 34:1199–1210

    CAS  Google Scholar 

  • Turner BL, Cade-Menun BJ, Condron LM, Newman S (2005) Extraction of soil organic phosphorus. Talanta 66:294–306

    CAS  PubMed  Google Scholar 

  • Turner BL, Newman S, Reddy KR (2006) Overestimation of organic phosphorus in wetland soils by alkaline extraction and molybdate colorimetry. Environ Sci Technol 40:3349–3354

    CAS  PubMed  Google Scholar 

  • Veeman WS (1997) Nuclear magnetic resonance, a simple introduction to the principles and applications. Geoderma 80:225–242

    CAS  Google Scholar 

  • Williams RJP, Giles RGF, Posner AM (1981) Solid state phosphorus N.M.R. spectroscopy of minerals and soils. J Chem Soc Chem Comm:1051–1052

    Google Scholar 

  • Yoder CH, Schaeffer CD (1987) Introduction to multinuclear NMR. Benjamin Cummings, Menlo Park

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald J. Smernik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Doolette, A.L., Smernik, R.J. (2011). Soil Organic Phosphorus Speciation Using Spectroscopic Techniques. In: Bünemann, E., Oberson, A., Frossard, E. (eds) Phosphorus in Action. Soil Biology, vol 26. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15271-9_1

Download citation

Publish with us

Policies and ethics