Skip to main content

2011 | OriginalPaper | Buchkapitel

Elastomeric Nanocomposites for Biomedical Applications

verfasst von : Nicole Fong, Anne Simmons, Laura Poole-Warren

Erschienen in: Recent Advances in Elastomeric Nanocomposites

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Elastomeric nanocomposites are gaining considerable attention as new materials for biomedical use. Elastomers such as polyesters, polyurethanes, and silicone rubber are excellent candidates as biomaterials in applications including tissue engineering due to properties such as their ease of synthesis and chemical manipulation, biodegradability and biocompatibility. However, when used alone these elastomers often fail to meet the mechanical and physical demands of the specific application. Elastomeric nanocomposites are composite materials comprising nano-sized reinforcements dispersed throughout the polymer matrix. The presence of such nanoparticles has been shown to improve the mechanical properties of the base elastomer as well as decrease their permeability properties making them more suitable for tissue engineering scaffolds and controlled drug release among other uses. Thus nanocomposite technology is creating greater applicability of elastomers for biomedical use, however continued research is required to better understand their behavior when material components are varied and the effect of nanoparticles on biological systems.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Yoda, R.: Elastomers for biomedical applications. J. Biomater. Sci. Polym. Ed. 9(6), 561–626 (1998)CrossRef Yoda, R.: Elastomers for biomedical applications. J. Biomater. Sci. Polym. Ed. 9(6), 561–626 (1998)CrossRef
2.
Zurück zum Zitat Serrano, M.C., Chung, E.J., Ameer, G.A.: Advances and applications of biodegradable elastomers in regenerative medicine. Adv. Funct. Mater. 20, 192–208 (2010)CrossRef Serrano, M.C., Chung, E.J., Ameer, G.A.: Advances and applications of biodegradable elastomers in regenerative medicine. Adv. Funct. Mater. 20, 192–208 (2010)CrossRef
3.
Zurück zum Zitat Denstedt, J.D., Wollin, T.A., Reid, G.: Biomaterials used in urology: current issues of biocompatibility, infection, and encrustation. J. Endourol. 12(6), 493–500 (1998)CrossRef Denstedt, J.D., Wollin, T.A., Reid, G.: Biomaterials used in urology: current issues of biocompatibility, infection, and encrustation. J. Endourol. 12(6), 493–500 (1998)CrossRef
4.
Zurück zum Zitat Lawrence, E.L., Turner, I.G.: Materials for urinary catheters: a review of their history and development in the UK. Med. Eng. Phys. 27, 443–453 (2005)CrossRef Lawrence, E.L., Turner, I.G.: Materials for urinary catheters: a review of their history and development in the UK. Med. Eng. Phys. 27, 443–453 (2005)CrossRef
5.
Zurück zum Zitat Blumstein, A.: Polymerization of adsorbed monolayers i preparation of the clay–polymer complex. J. Polym. Sci., Part A: Gen. Pap. 3(7), 2653–2664 (1965) Blumstein, A.: Polymerization of adsorbed monolayers i preparation of the clay–polymer complex. J. Polym. Sci., Part A: Gen. Pap. 3(7), 2653–2664 (1965)
6.
Zurück zum Zitat Blumstein, A.: Polymerization of adsorbed monolayers. ii. Thermal degradation of the inserted polymer. J. Polym. Sci., Part A: Gen. Pap. 3(7), 2665–2672 (1965) Blumstein, A.: Polymerization of adsorbed monolayers. ii. Thermal degradation of the inserted polymer. J. Polym. Sci., Part A: Gen. Pap. 3(7), 2665–2672 (1965)
7.
Zurück zum Zitat Blumstein, A., Billmeyer Jr., F.W.: Polymerization of adsorbed monolayers. iii. Preliminary structure studies in dilute solution of the insertion polymers. J. Polym. Sci., Part B: Polym. Phys. 4, 465–474 (1965) Blumstein, A., Billmeyer Jr., F.W.: Polymerization of adsorbed monolayers. iii. Preliminary structure studies in dilute solution of the insertion polymers. J. Polym. Sci., Part B: Polym. Phys. 4, 465–474 (1965)
8.
Zurück zum Zitat Usuki, A., Kawasumi, M., Kojima, Y., Okada, A., Kurauchi, T., Kamigaito, O.: Swelling behavior of montmorillonite cation exchanged for ω-amino acids by ε-caprolactam. J. Mater. Res. 8(5), 1174–1178 (1993)CrossRef Usuki, A., Kawasumi, M., Kojima, Y., Okada, A., Kurauchi, T., Kamigaito, O.: Swelling behavior of montmorillonite cation exchanged for ω-amino acids by ε-caprolactam. J. Mater. Res. 8(5), 1174–1178 (1993)CrossRef
9.
Zurück zum Zitat Usuki, A., Kawasumi, M., Kojima, Y., Fukushima, Y., Okada, A., Kurauchi, T., Kamigaito, O.: Synthesis of nylon 6-clay hybrid. J. Mater. Res. 8(5), 1179–1184 (1993)CrossRef Usuki, A., Kawasumi, M., Kojima, Y., Fukushima, Y., Okada, A., Kurauchi, T., Kamigaito, O.: Synthesis of nylon 6-clay hybrid. J. Mater. Res. 8(5), 1179–1184 (1993)CrossRef
10.
Zurück zum Zitat Kojima, Y., Usuki, A., Kawasumi, M., Okada, A., Kurauchi, T., Kamigaito, O.: Synthesis of nylon 6-clay hybrid by montmorillonite intercalated with ε-caprolactam. J. Polym. Sci., Part A: Polym. Chem. 31, 983–986 (1993)CrossRef Kojima, Y., Usuki, A., Kawasumi, M., Okada, A., Kurauchi, T., Kamigaito, O.: Synthesis of nylon 6-clay hybrid by montmorillonite intercalated with ε-caprolactam. J. Polym. Sci., Part A: Polym. Chem. 31, 983–986 (1993)CrossRef
11.
Zurück zum Zitat Kojima, Y., Usuki, A., Kawasumi, M., Okada, A., Fukushima, Y., Karauchi, T., Kamigaito, O.: Mechanical properties of nylon 6-clay hybrids. J. Mater. Res. 8(5), 1185–1189 (1993)CrossRef Kojima, Y., Usuki, A., Kawasumi, M., Okada, A., Fukushima, Y., Karauchi, T., Kamigaito, O.: Mechanical properties of nylon 6-clay hybrids. J. Mater. Res. 8(5), 1185–1189 (1993)CrossRef
12.
Zurück zum Zitat Wang, Z., Pinnavaia, T.J.: Hybrid organic–inorganic nanocomposites: exfoliation of magadiite nanolayers in an elastomeric epoxy polymer. Chem. Mater. 10, 1820–1826 (1998)CrossRef Wang, Z., Pinnavaia, T.J.: Hybrid organic–inorganic nanocomposites: exfoliation of magadiite nanolayers in an elastomeric epoxy polymer. Chem. Mater. 10, 1820–1826 (1998)CrossRef
13.
Zurück zum Zitat Lan, T., Pinnavaia, T.J.: Clay-reinforced epoxy nanocomposites. Chem. Mater. 6, 2216–2219 (1994)CrossRef Lan, T., Pinnavaia, T.J.: Clay-reinforced epoxy nanocomposites. Chem. Mater. 6, 2216–2219 (1994)CrossRef
14.
Zurück zum Zitat Yano, K., Usuki, A., Okada, A.: Synthesis and properties of polyimide-clay hybrid films. J. Polym. Sci., Part A: Polym. Chem. 35, 2289–2294 (1997)CrossRef Yano, K., Usuki, A., Okada, A.: Synthesis and properties of polyimide-clay hybrid films. J. Polym. Sci., Part A: Polym. Chem. 35, 2289–2294 (1997)CrossRef
15.
Zurück zum Zitat Jo, B.W., Park, S.K., Kim, D.K.: Mechanical properties of nano-MMT reinforced polymer composite and polymer concrete. Constr. Build. Mater. 22, 14–20 (2008)CrossRef Jo, B.W., Park, S.K., Kim, D.K.: Mechanical properties of nano-MMT reinforced polymer composite and polymer concrete. Constr. Build. Mater. 22, 14–20 (2008)CrossRef
16.
Zurück zum Zitat Chang, J.-H., An, Y.U., Cho, D., Giannelis, E.P.: Poly(lactic acid) nanocomposites: comparison of their properties with montmorillonite and synthetic mica. Polymer 44, 3715–3720 (2003)CrossRef Chang, J.-H., An, Y.U., Cho, D., Giannelis, E.P.: Poly(lactic acid) nanocomposites: comparison of their properties with montmorillonite and synthetic mica. Polymer 44, 3715–3720 (2003)CrossRef
17.
Zurück zum Zitat Hule, R.A., Pochan, D.J.: Polymer nanocomposites for biomedical applications. MRS Bull. 32, 354–358 (2007) Hule, R.A., Pochan, D.J.: Polymer nanocomposites for biomedical applications. MRS Bull. 32, 354–358 (2007)
18.
Zurück zum Zitat Utracki, L.A.: Clay-Containing Polymeric Nanocomposites. Rapra Technology Limited, UK (2004) Utracki, L.A.: Clay-Containing Polymeric Nanocomposites. Rapra Technology Limited, UK (2004)
19.
Zurück zum Zitat Auffan, M., Rose, J., Bottero, J.-Y., Lowry, G.V., Jolivet, J.-P., Wiesner, M.R.: Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nat. Nanotechnol. 4(10), 634–641 (2009) Auffan, M., Rose, J., Bottero, J.-Y., Lowry, G.V., Jolivet, J.-P., Wiesner, M.R.: Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nat. Nanotechnol. 4(10), 634–641 (2009)
20.
Zurück zum Zitat Kato, M., Usuki, A.: Polymer-clay nanocomposites. In: Polymer-clay Nanocomposites. Wiley, New York (2000) Kato, M., Usuki, A.: Polymer-clay nanocomposites. In: Polymer-clay Nanocomposites. Wiley, New York (2000)
21.
Zurück zum Zitat Vaia, R.A., Ishii, H., Giannelis, E.P.: Synthesis and properties of two dimensional nanostructures by direct intercalation of polymer melts in layered silicates. Chem. Mater. 5, 1694–1696 (1993)CrossRef Vaia, R.A., Ishii, H., Giannelis, E.P.: Synthesis and properties of two dimensional nanostructures by direct intercalation of polymer melts in layered silicates. Chem. Mater. 5, 1694–1696 (1993)CrossRef
22.
Zurück zum Zitat Lamba, N.M.K., Woodhouse, K.A., Cooper, S.L., Lelah, M.D.: Polyurethanes in Biomedical Applications. CRC Press, London (1997) Lamba, N.M.K., Woodhouse, K.A., Cooper, S.L., Lelah, M.D.: Polyurethanes in Biomedical Applications. CRC Press, London (1997)
23.
Zurück zum Zitat Finnigan, B., Martin, B., Halley, P., Truss, R., Campbell, K.: Morphology and properties of thermoplastic polyurethane nancomposites incorporating hydrophilic layered silicates. Polymer 45, 2249–2260 (2004)CrossRef Finnigan, B., Martin, B., Halley, P., Truss, R., Campbell, K.: Morphology and properties of thermoplastic polyurethane nancomposites incorporating hydrophilic layered silicates. Polymer 45, 2249–2260 (2004)CrossRef
24.
Zurück zum Zitat Han, B., Cheng, A.M., Ji, G.D., Wu, S.S., Shen, J.: Effect of organophilic montmorillonite on polyurethane/montmorillonite nanocomposites. J. Appl. Polym. Sci. 91, 2536–2542 (2004)CrossRef Han, B., Cheng, A.M., Ji, G.D., Wu, S.S., Shen, J.: Effect of organophilic montmorillonite on polyurethane/montmorillonite nanocomposites. J. Appl. Polym. Sci. 91, 2536–2542 (2004)CrossRef
25.
Zurück zum Zitat Chang, J.-H., An, Y.U.: Nanocomposites of polyurethane with various organoclays: thermomechanical properties, morphology, and gas permeability. J. Polym. Sci., Part B: Polym. Phys. 40, 670–675 (2002)CrossRef Chang, J.-H., An, Y.U.: Nanocomposites of polyurethane with various organoclays: thermomechanical properties, morphology, and gas permeability. J. Polym. Sci., Part B: Polym. Phys. 40, 670–675 (2002)CrossRef
26.
Zurück zum Zitat Krikorian, V., Pochan, D.J.: Poly(l-lactic acid)/layered silicate nanocomposite: fabrication, characterization, and properties. Chem. Mater. 15, 4317–4324 (2003)CrossRef Krikorian, V., Pochan, D.J.: Poly(l-lactic acid)/layered silicate nanocomposite: fabrication, characterization, and properties. Chem. Mater. 15, 4317–4324 (2003)CrossRef
27.
Zurück zum Zitat Wang, Z., Massam, J., Pinnavaia, T.J. Epoxy-clay nanocomposites. In: Polymer–clay Nanocomposites. Wiley, New York (2000) Wang, Z., Massam, J., Pinnavaia, T.J. Epoxy-clay nanocomposites. In: Polymer–clay Nanocomposites. Wiley, New York (2000)
28.
Zurück zum Zitat LeBaron, P.C., Wang, Z., Pinnavaia, T.J.: Polymer-layered silicate nanocomposites: an overview. Appl. Clay Sci. 15, 11–29 (1999)CrossRef LeBaron, P.C., Wang, Z., Pinnavaia, T.J.: Polymer-layered silicate nanocomposites: an overview. Appl. Clay Sci. 15, 11–29 (1999)CrossRef
29.
Zurück zum Zitat Cullity, B.D., Stock, S.R.: Elements of X-Ray Diffraction, 3rd edn. Prentice-Hall, NJ (2001) Cullity, B.D., Stock, S.R.: Elements of X-Ray Diffraction, 3rd edn. Prentice-Hall, NJ (2001)
30.
Zurück zum Zitat Horiuchi, S.: Fundamentals of High-Resolution Transmission Electron Microscopy. Elsevier, Amsterdam (1994) Horiuchi, S.: Fundamentals of High-Resolution Transmission Electron Microscopy. Elsevier, Amsterdam (1994)
31.
Zurück zum Zitat Ozkoc, G., Kemaloglu, S., Quaedflieg, M.: Production of poly(lactic acid)/organoclay nanocomposite scaffolds by microcompounding and polymer/particle leaching. Polym. Compos. 31, 674–683 (2010) Ozkoc, G., Kemaloglu, S., Quaedflieg, M.: Production of poly(lactic acid)/organoclay nanocomposite scaffolds by microcompounding and polymer/particle leaching. Polym. Compos. 31, 674–683 (2010)
32.
Zurück zum Zitat Salahuddin, N.A.: Layered silicate/epoxy nanocomposites: synthesis, characterization and properties. Polym. Adv. Technol. 15, 251–259 (2004)CrossRef Salahuddin, N.A.: Layered silicate/epoxy nanocomposites: synthesis, characterization and properties. Polym. Adv. Technol. 15, 251–259 (2004)CrossRef
33.
Zurück zum Zitat Singh, M.K., Shokuhfar, T., de Almeida Gracio, J.J., Mendes de Sousa, A.C., Da Fonte Fereira, J.M., Garmestani, H., Ahzi, S.: Hydroxyapatite modified with carbon nanotube-reinforced poly(methyl methacrylate): a novel nanocomposite material for biomedical applications. Adv. Funct. Mater. 18(5), 694–700 (2008) Singh, M.K., Shokuhfar, T., de Almeida Gracio, J.J., Mendes de Sousa, A.C., Da Fonte Fereira, J.M., Garmestani, H., Ahzi, S.: Hydroxyapatite modified with carbon nanotube-reinforced poly(methyl methacrylate): a novel nanocomposite material for biomedical applications. Adv. Funct. Mater. 18(5), 694–700 (2008)
34.
Zurück zum Zitat Finnigan, B., Casey, P., Cookson, D., Halley, P., Jack, K., Truss, R., Martin, D.: Impact of controlled particle size nanofillers on the mechanical properties of segmented polyurethane nanocomposites. Int. J. Nanotechnol. 4, 496–515 (2007)CrossRef Finnigan, B., Casey, P., Cookson, D., Halley, P., Jack, K., Truss, R., Martin, D.: Impact of controlled particle size nanofillers on the mechanical properties of segmented polyurethane nanocomposites. Int. J. Nanotechnol. 4, 496–515 (2007)CrossRef
35.
Zurück zum Zitat Lai, M., Kim, J.-K.: Effects of epoxy treatment of organoclay on structure, thermo-mechanical and transport properties of poly(ethylene terephthalate-coethylene naphthalate)/organoclay nanocomposites. Polymer 46, 4722–4734 (2005) Lai, M., Kim, J.-K.: Effects of epoxy treatment of organoclay on structure, thermo-mechanical and transport properties of poly(ethylene terephthalate-coethylene naphthalate)/organoclay nanocomposites. Polymer 46, 4722–4734 (2005)
36.
Zurück zum Zitat Alexandre, M., Dubois, P.: Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater. Sci. Eng. 28, 1–63 (2000)CrossRef Alexandre, M., Dubois, P.: Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater. Sci. Eng. 28, 1–63 (2000)CrossRef
37.
Zurück zum Zitat Goodier, J.N.: Concentration of stress around spherical and cylindrical inclusions and flaws. J. Appl. Mech. 55, 39–44 (1933) Goodier, J.N.: Concentration of stress around spherical and cylindrical inclusions and flaws. J. Appl. Mech. 55, 39–44 (1933)
38.
Zurück zum Zitat Webb, A.R., Yang, J., Ameer, G.A.: Biodegradable polyester elastomers in tissue engineering. Expert Opin. Biol. Ther. 4(6), 801–812 (2004)CrossRef Webb, A.R., Yang, J., Ameer, G.A.: Biodegradable polyester elastomers in tissue engineering. Expert Opin. Biol. Ther. 4(6), 801–812 (2004)CrossRef
39.
Zurück zum Zitat Adams, R.K., Hoeschele, G.K., Witsiepe, W.K.: Thermoplastic polyether ester elastomers. In: Holden, G., Kricheldorf, H.R., Quirk, R.P. (eds.) Thermoplastic Elastomers. Hanser Verlag, Munich (2004) Adams, R.K., Hoeschele, G.K., Witsiepe, W.K.: Thermoplastic polyether ester elastomers. In: Holden, G., Kricheldorf, H.R., Quirk, R.P. (eds.) Thermoplastic Elastomers. Hanser Verlag, Munich (2004)
40.
Zurück zum Zitat Wang, Y., Ameer, G.A., Sheppard, B.J., Langer, R.: A tough biodegradable elastomer. Nat. Biotechnol 20(6), 602–606 (2002) Wang, Y., Ameer, G.A., Sheppard, B.J., Langer, R.: A tough biodegradable elastomer. Nat. Biotechnol 20(6), 602–606 (2002)
41.
Zurück zum Zitat Lim, S.T., Hyun, Y.H., Lee, C.H., Choi, H.J.: Preparation and characterization of microbial biodegradable poly(3-hydroxybutyrate)/organoclay nanocomposite. J. Mater. Sci. Lett. 22, 299–302 (2003)CrossRef Lim, S.T., Hyun, Y.H., Lee, C.H., Choi, H.J.: Preparation and characterization of microbial biodegradable poly(3-hydroxybutyrate)/organoclay nanocomposite. J. Mater. Sci. Lett. 22, 299–302 (2003)CrossRef
42.
Zurück zum Zitat Martin, D.P., Williams, S.F.: Medical applications of poly-4-hydroxybutyrate: a strong flexible absorbable biomaterial. Biochem. Eng. J. 16, 97–105 (2003)CrossRef Martin, D.P., Williams, S.F.: Medical applications of poly-4-hydroxybutyrate: a strong flexible absorbable biomaterial. Biochem. Eng. J. 16, 97–105 (2003)CrossRef
43.
Zurück zum Zitat Younes, H., Bravo-Grimaldo, E., Amsden, B.: Synthesis, characterization and in vitro degradation of a biodegradable elastomer. Biomaterials 25(22), 5261–5269 (2004)CrossRef Younes, H., Bravo-Grimaldo, E., Amsden, B.: Synthesis, characterization and in vitro degradation of a biodegradable elastomer. Biomaterials 25(22), 5261–5269 (2004)CrossRef
44.
Zurück zum Zitat Amsden, B., Wang, S., Wyss, U.: Synthesis and characterization of thermoset biodegradable elastomers based on star-poly(E-caprolactone-co-D, l-lactide). Biomacromolecules 5, 1399–1404 (2004)CrossRef Amsden, B., Wang, S., Wyss, U.: Synthesis and characterization of thermoset biodegradable elastomers based on star-poly(E-caprolactone-co-D, l-lactide). Biomacromolecules 5, 1399–1404 (2004)CrossRef
45.
Zurück zum Zitat Wainstein, M., Anderson, J., Elder, J.S.: Comparison of effects of suture materials on wound healing in a rabbit pyeloplasty model. Urology 49(2), 261–264 (1997)CrossRef Wainstein, M., Anderson, J., Elder, J.S.: Comparison of effects of suture materials on wound healing in a rabbit pyeloplasty model. Urology 49(2), 261–264 (1997)CrossRef
46.
Zurück zum Zitat Kluin, O.S., van der Mei, H.C., Busscher, H.J., Neut, D.: A surface-eroding antibiotic delivery system based on poly-(trimethylene carbonate). Biomaterials 30(27), 4738–4742 (2009)CrossRef Kluin, O.S., van der Mei, H.C., Busscher, H.J., Neut, D.: A surface-eroding antibiotic delivery system based on poly-(trimethylene carbonate). Biomaterials 30(27), 4738–4742 (2009)CrossRef
47.
Zurück zum Zitat Zhang, Y., Zhuo, R.-X.: Synthesis and drug release behavior of poly (trimethylene carbonate)–poly (ethylene glycol)–poly (trimethylene carbonate) nanoparticles. Biomaterials 26, 2089–2094 (2005)CrossRef Zhang, Y., Zhuo, R.-X.: Synthesis and drug release behavior of poly (trimethylene carbonate)–poly (ethylene glycol)–poly (trimethylene carbonate) nanoparticles. Biomaterials 26, 2089–2094 (2005)CrossRef
48.
Zurück zum Zitat Redenti, S., Neeley, W.L., Rompani, S., et al.: Engineering retinal progenitor cell and scrollable poly(glycerol-sebacate) composites for expansion and subretinal transplantation. Biomaterials 30(20), 3405–3414 (2009)CrossRef Redenti, S., Neeley, W.L., Rompani, S., et al.: Engineering retinal progenitor cell and scrollable poly(glycerol-sebacate) composites for expansion and subretinal transplantation. Biomaterials 30(20), 3405–3414 (2009)CrossRef
49.
Zurück zum Zitat Chen, Q.-Z., Bismarck, A., Hansen, U., et al.: Characterization of a soft elastomer poly(glycerol sebacate) designed to match the mechanical properties of myocardial tissue. Biomaterials 29, 47–57 (2008)CrossRef Chen, Q.-Z., Bismarck, A., Hansen, U., et al.: Characterization of a soft elastomer poly(glycerol sebacate) designed to match the mechanical properties of myocardial tissue. Biomaterials 29, 47–57 (2008)CrossRef
50.
Zurück zum Zitat Yang, J., Webb, A.R., Ameer, G.A.: Novel citric acid-based biodegradable elastomers for tissue engineering. Adv. Mater. 16(6), 511–516 (2004)CrossRef Yang, J., Webb, A.R., Ameer, G.A.: Novel citric acid-based biodegradable elastomers for tissue engineering. Adv. Mater. 16(6), 511–516 (2004)CrossRef
51.
Zurück zum Zitat Yang, J., Webb, A.R., Pickerill, S.J., et al.: Synthesis and evaluation of poly(dio citrate) biodegradable elastomers. Biomaterials 27, 1889–1898 (2006)CrossRef Yang, J., Webb, A.R., Pickerill, S.J., et al.: Synthesis and evaluation of poly(dio citrate) biodegradable elastomers. Biomaterials 27, 1889–1898 (2006)CrossRef
52.
Zurück zum Zitat Philip, S., Keshavarz, T., Roy, I.: Polyhydroxyalkanoates: biodegradable polymers with a range of applications. J. Chem. Technol. Biotechnol. 82, 233–247 (2007)CrossRef Philip, S., Keshavarz, T., Roy, I.: Polyhydroxyalkanoates: biodegradable polymers with a range of applications. J. Chem. Technol. Biotechnol. 82, 233–247 (2007)CrossRef
53.
Zurück zum Zitat Chen, D.Z., Tang, C.Y., Chan, K.C., et al.: Dynamic mechanical properties and in vitro bioactivity of PHBHV/HA nanocomposite. Compos. Sci. Technol. 67, 1617–1626 (2007)CrossRef Chen, D.Z., Tang, C.Y., Chan, K.C., et al.: Dynamic mechanical properties and in vitro bioactivity of PHBHV/HA nanocomposite. Compos. Sci. Technol. 67, 1617–1626 (2007)CrossRef
54.
Zurück zum Zitat Wouter, J.E., Habraken, M., Zhang, Z., et al.: Introduction of enzymatically degradable poly(trimethylene carbonate) microspheres into an injectable calcium phosphate cement. Biomaterials 29(16), 2464–2476 (2008)CrossRef Wouter, J.E., Habraken, M., Zhang, Z., et al.: Introduction of enzymatically degradable poly(trimethylene carbonate) microspheres into an injectable calcium phosphate cement. Biomaterials 29(16), 2464–2476 (2008)CrossRef
55.
Zurück zum Zitat de Vos, S.V.N., Koopmans, S.A., Hooymans, J.M.M., et al.: Poly(1, 3-trimethylene carbonate) networks as a resorbable scleral buckle. J. Controlled Release 132, e51–e52 (2008)CrossRef de Vos, S.V.N., Koopmans, S.A., Hooymans, J.M.M., et al.: Poly(1, 3-trimethylene carbonate) networks as a resorbable scleral buckle. J. Controlled Release 132, e51–e52 (2008)CrossRef
56.
Zurück zum Zitat Seal, B.L., Otero, T.C., Panitch, A.: Review of polymeric biomaterials for tissue and organ regeneration. Mater. Sci. Eng., R 34, 147 (2001) Seal, B.L., Otero, T.C., Panitch, A.: Review of polymeric biomaterials for tissue and organ regeneration. Mater. Sci. Eng., R 34, 147 (2001)
57.
Zurück zum Zitat Pego, A.P., Van Luyn, M.J.A., Brouwer, L.A. et al.: In vivo behavior of poly(1,3-trimethylene carbonate) and copolymers of 1,3-trimethylene carbonate or ε-caprolactone: degradation and tissue response. J. Biomed. Mater. Res., Part A 67A(3), 1044–1054 (2003) Pego, A.P., Van Luyn, M.J.A., Brouwer, L.A. et al.: In vivo behavior of poly(1,3-trimethylene carbonate) and copolymers of 1,3-trimethylene carbonate or ε-caprolactone: degradation and tissue response. J. Biomed. Mater. Res., Part A 67A(3), 1044–1054 (2003)
58.
Zurück zum Zitat Pego, A.P., Poot, A.A., Grijpma, D.W., Feijen, J.: In vitro degradation of trimethylene carbonate based (co)polymers. Macromol. Biosci. 2(9), 411–419 (2003)CrossRef Pego, A.P., Poot, A.A., Grijpma, D.W., Feijen, J.: In vitro degradation of trimethylene carbonate based (co)polymers. Macromol. Biosci. 2(9), 411–419 (2003)CrossRef
59.
Zurück zum Zitat Ribeiro, R., Ganguly, P., Darensbourg, D., et al.: Biomimetic study of a polymeric composite material for joint repair applications. J. Mater. Res. 22(6), 1632–1639 (2007)CrossRef Ribeiro, R., Ganguly, P., Darensbourg, D., et al.: Biomimetic study of a polymeric composite material for joint repair applications. J. Mater. Res. 22(6), 1632–1639 (2007)CrossRef
60.
Zurück zum Zitat Di, Y., Iannac, S., Sanguigno, L., Nicolais, L.: Barrier and mechanical properties of poly(caprolactone)/organoclay nanocomposites. Macromol. Symp. 228, 115–124 (2005) Di, Y., Iannac, S., Sanguigno, L., Nicolais, L.: Barrier and mechanical properties of poly(caprolactone)/organoclay nanocomposites. Macromol. Symp. 228, 115–124 (2005)
61.
Zurück zum Zitat Kim, H.-W.: Biomedical nanocomposites of hydroxyapatite/polycaprolactone obtained by surfactant mediation. J. Biomed. Mater. Res., Part A 83A(1), 169–177 Kim, H.-W.: Biomedical nanocomposites of hydroxyapatite/polycaprolactone obtained by surfactant mediation. J. Biomed. Mater. Res., Part A 83A(1), 169–177
62.
Zurück zum Zitat Fuchs, S., Jiang, X., Gotman, I., Makarov, C., Schmidt, H., Gutmanas, E.Y., Kirkpatrick, C.J. Influence of polymer content in Ca-deficient hydroxyapatite–polycaprolactone nanocomposites on the formation of microvessel-like structures. Acta. Biomater. 6(8), 3169–3177 (2010) Fuchs, S., Jiang, X., Gotman, I., Makarov, C., Schmidt, H., Gutmanas, E.Y., Kirkpatrick, C.J. Influence of polymer content in Ca-deficient hydroxyapatite–polycaprolactone nanocomposites on the formation of microvessel-like structures. Acta. Biomater. 6(8), 3169–3177 (2010)
63.
Zurück zum Zitat Webb, A.R., Kuma, V.A., Ameer, G.A.: Biodegradable poly(diol citrate) nanocomposite elastomers for soft tissue eingineering. J. Mater. Chem. 17, 900–906 (2007)CrossRef Webb, A.R., Kuma, V.A., Ameer, G.A.: Biodegradable poly(diol citrate) nanocomposite elastomers for soft tissue eingineering. J. Mater. Chem. 17, 900–906 (2007)CrossRef
64.
Zurück zum Zitat Gunatillake, P.A., Martin, D.J., Meijs, G.F., et al.: Designing biostable polyurethane elastomers for biomedical implants. Aust. J. Chem. 56, 545–557 (2003)CrossRef Gunatillake, P.A., Martin, D.J., Meijs, G.F., et al.: Designing biostable polyurethane elastomers for biomedical implants. Aust. J. Chem. 56, 545–557 (2003)CrossRef
65.
Zurück zum Zitat Boretos, J.W., Pierce, W.S.: Segmented polyurethane: a new elastomer for biomedical applications. Science 158, 1481–1482 (1967)CrossRef Boretos, J.W., Pierce, W.S.: Segmented polyurethane: a new elastomer for biomedical applications. Science 158, 1481–1482 (1967)CrossRef
66.
Zurück zum Zitat Boretos, J.W., Pierce, W.S., Baier, R.E., et al.: Surface and bulk characterization of a polyether urethane for artificial hearts. J. Biomed. Mater. Res. 9, 327–340 (1975)CrossRef Boretos, J.W., Pierce, W.S., Baier, R.E., et al.: Surface and bulk characterization of a polyether urethane for artificial hearts. J. Biomed. Mater. Res. 9, 327–340 (1975)CrossRef
67.
Zurück zum Zitat Simmons, A., Hyvarinen, J., Odell, R.A., et al.: Long-term in vivo biostability of poly(dimethylsilozane)/poly(hexamethylene oxide) mixed macrodiol-based polyurethane elastomers. Biomaterials 25, 4887–4900 (2004)CrossRef Simmons, A., Hyvarinen, J., Odell, R.A., et al.: Long-term in vivo biostability of poly(dimethylsilozane)/poly(hexamethylene oxide) mixed macrodiol-based polyurethane elastomers. Biomaterials 25, 4887–4900 (2004)CrossRef
68.
Zurück zum Zitat Hung, H.S., Hsu, S.-H.: Biological performances of poly(ether)urethane–silver nanocomposites. Nanotechnology 18, 1–9 (2007)CrossRef Hung, H.S., Hsu, S.-H.: Biological performances of poly(ether)urethane–silver nanocomposites. Nanotechnology 18, 1–9 (2007)CrossRef
69.
Zurück zum Zitat Jörg, M., Schierholz, H., Steinhauser, A., et al.: Controlled release of antibiotics from biomedical polyurethanes: morphological and structural features. Biomaterials 18(12), 839–844 (1997)CrossRef Jörg, M., Schierholz, H., Steinhauser, A., et al.: Controlled release of antibiotics from biomedical polyurethanes: morphological and structural features. Biomaterials 18(12), 839–844 (1997)CrossRef
70.
Zurück zum Zitat Pinchuk, L.: A review of the biostability and carcinogenicity of polyurethanes in medicine and the new generation of ‘biostable’ polyurethanes. J. Biomater. Sci., Polym. Ed. 6, 225–267 (1994)CrossRef Pinchuk, L.: A review of the biostability and carcinogenicity of polyurethanes in medicine and the new generation of ‘biostable’ polyurethanes. J. Biomater. Sci., Polym. Ed. 6, 225–267 (1994)CrossRef
71.
Zurück zum Zitat Anderson, J.M., Hiltner, A., Wiggins, M.J., et al.: Recent advances in biomedical polyurethane biostability and biodegradation. Polym. Int. 46, 163–171 (1998)CrossRef Anderson, J.M., Hiltner, A., Wiggins, M.J., et al.: Recent advances in biomedical polyurethane biostability and biodegradation. Polym. Int. 46, 163–171 (1998)CrossRef
72.
Zurück zum Zitat Poole-Warren, L.A., Farrugia, B., Fong, N., et al.: Controlling cell-material interactions with polymer nanocomposites by use of surface modifying additives. Appl. Surf. Sci. 255, 519–522 (2008)CrossRef Poole-Warren, L.A., Farrugia, B., Fong, N., et al.: Controlling cell-material interactions with polymer nanocomposites by use of surface modifying additives. Appl. Surf. Sci. 255, 519–522 (2008)CrossRef
73.
Zurück zum Zitat Fong, N., Simmons, A., Poole-Warren, L.A.: Antibacterial polyurethane nanocomposites using chlorhexidine diacetate as an organic modifier. Acta Biomater. 6(7), 2554–2561 (2010)CrossRef Fong, N., Simmons, A., Poole-Warren, L.A.: Antibacterial polyurethane nanocomposites using chlorhexidine diacetate as an organic modifier. Acta Biomater. 6(7), 2554–2561 (2010)CrossRef
74.
Zurück zum Zitat Styan, K., Abrahamian, M., Hume, E., Poole-Warren, L.A.: Antibacterial polyurethane organosilicate nanocomposites. Key Eng. Mater. 342–343, 757–760 (2007)CrossRef Styan, K., Abrahamian, M., Hume, E., Poole-Warren, L.A.: Antibacterial polyurethane organosilicate nanocomposites. Key Eng. Mater. 342–343, 757–760 (2007)CrossRef
75.
Zurück zum Zitat Da Silva, G.S., Ayres, E., Orefice, R.L., et al.: Controlled release of dexamethasone acetate from biodegradable and biocompatible polyurethane and polyurethane nanocomposite. J. Drug Targeting 17(5), 374–383 (2009)CrossRef Da Silva, G.S., Ayres, E., Orefice, R.L., et al.: Controlled release of dexamethasone acetate from biodegradable and biocompatible polyurethane and polyurethane nanocomposite. J. Drug Targeting 17(5), 374–383 (2009)CrossRef
76.
Zurück zum Zitat Shaikh, S., Birdi, A., Qutubuddin, S., et al.: Controlled release in transdermal pressure sensitive adhesives using organosilicate nanocomposites. Ann. Biomed. Eng. 35(12), 2130–2137 (2007)CrossRef Shaikh, S., Birdi, A., Qutubuddin, S., et al.: Controlled release in transdermal pressure sensitive adhesives using organosilicate nanocomposites. Ann. Biomed. Eng. 35(12), 2130–2137 (2007)CrossRef
77.
Zurück zum Zitat Rupp, M.E., Archer, G.L.: Coagulase-negative staphylococci: pathogens associated with medical progress. Clin. Infect. Dis. 19, 231–245 (1994) Rupp, M.E., Archer, G.L.: Coagulase-negative staphylococci: pathogens associated with medical progress. Clin. Infect. Dis. 19, 231–245 (1994)
78.
Zurück zum Zitat Xu, R., Manias, E., Snyder, A.J., Runt, J.: Low permeability biomedical polyurethane nanocomposites. J. Biomed. Mater. Res. 64A, 114–119 (2003)CrossRef Xu, R., Manias, E., Snyder, A.J., Runt, J.: Low permeability biomedical polyurethane nanocomposites. J. Biomed. Mater. Res. 64A, 114–119 (2003)CrossRef
79.
Zurück zum Zitat Williams, C.M., Nash, M.A., Poole-Warren, L.A.: Electrically conductive polyurethanes for biomedical applications. In: Nicolau, D.V. (ed.) Biomedical Applications of Micro- and Nanoengineering II, Proceedings of SPIE, 5651, 254 (2005) Williams, C.M., Nash, M.A., Poole-Warren, L.A.: Electrically conductive polyurethanes for biomedical applications. In: Nicolau, D.V. (ed.) Biomedical Applications of Micro- and Nanoengineering II, Proceedings of SPIE, 5651, 254 (2005)
80.
Zurück zum Zitat Colas, A., Curtis, J.: Silicone biomaterials: history and chemistry and medical applications of silicones. In: Ratner, B.D., Hoffman, A.S., Schoen, F.J., Lemons, J.E. (eds.) Biomaterials Science, 2nd edn. Elsevier, Amsterdam (2004) Colas, A., Curtis, J.: Silicone biomaterials: history and chemistry and medical applications of silicones. In: Ratner, B.D., Hoffman, A.S., Schoen, F.J., Lemons, J.E. (eds.) Biomaterials Science, 2nd edn. Elsevier, Amsterdam (2004)
81.
Zurück zum Zitat Sutinen, R., Laasanen, V., Paronen, P., Urtti, A.: pH-controlled silicone microspheres for controlled drug delivery. J. Control. Release 33, 163–171 (1995)CrossRef Sutinen, R., Laasanen, V., Paronen, P., Urtti, A.: pH-controlled silicone microspheres for controlled drug delivery. J. Control. Release 33, 163–171 (1995)CrossRef
82.
Zurück zum Zitat Yabuta, T., Bescher, E.P., Mackenzie, J.D., et al.: Synthesis of PDMS-based porous materials for biomedical applications. J. Sol-Gel. Sci. Technol. 26, 1219–1222 (2003)CrossRef Yabuta, T., Bescher, E.P., Mackenzie, J.D., et al.: Synthesis of PDMS-based porous materials for biomedical applications. J. Sol-Gel. Sci. Technol. 26, 1219–1222 (2003)CrossRef
83.
Zurück zum Zitat Keohan, F., Wei, X.F., Wongsarnpigoon, A., et al.: Fabrication and evaluation of conductive elastomer electrodes for neural stimulation. J. Biomater. Sci. Polym. Ed. 18(8), 1057–1073 (2007)CrossRef Keohan, F., Wei, X.F., Wongsarnpigoon, A., et al.: Fabrication and evaluation of conductive elastomer electrodes for neural stimulation. J. Biomater. Sci. Polym. Ed. 18(8), 1057–1073 (2007)CrossRef
84.
Zurück zum Zitat Vondracek, P., Dolezel, B.: Biostability of medical elastomers: a review. Biomaterials 5, 209–214 (1984)CrossRef Vondracek, P., Dolezel, B.: Biostability of medical elastomers: a review. Biomaterials 5, 209–214 (1984)CrossRef
85.
Zurück zum Zitat Meng, N., Zhou, N.-L., Zhang, S.-Q., Shen, J.: Synthesis and antifugal activities of polymer/montmorillonite–terbinafine hydrochloride nanocomposite films. Appl. Clay Sci. 46, 136–140 (2009)CrossRef Meng, N., Zhou, N.-L., Zhang, S.-Q., Shen, J.: Synthesis and antifugal activities of polymer/montmorillonite–terbinafine hydrochloride nanocomposite films. Appl. Clay Sci. 46, 136–140 (2009)CrossRef
86.
Zurück zum Zitat Meng, N., Zhou, N.-L., Zhang, S.-Q., Shen, J.: Synthesis and antimicrobial activities of polymer/montmorillonite–chlorhexidine acetate nanocomposite films. Appl. Clay Sci. 42, 667–670 (2009)CrossRef Meng, N., Zhou, N.-L., Zhang, S.-Q., Shen, J.: Synthesis and antimicrobial activities of polymer/montmorillonite–chlorhexidine acetate nanocomposite films. Appl. Clay Sci. 42, 667–670 (2009)CrossRef
87.
Zurück zum Zitat Thein-Han, W.-W., Shah, J., Misra, R.D.K.: Superior in vitro biological response and mechanical properties of an implantable nanostructured biomaterial: nanohydroxyapatite–silicone rubber composite. Acta Biomater. 5, 2668–2679 (2009)CrossRef Thein-Han, W.-W., Shah, J., Misra, R.D.K.: Superior in vitro biological response and mechanical properties of an implantable nanostructured biomaterial: nanohydroxyapatite–silicone rubber composite. Acta Biomater. 5, 2668–2679 (2009)CrossRef
88.
Zurück zum Zitat Depan, D., Kumar, B., Singh, R.P.: Preparation and characterization of novel hybrid of chitosan-g-PDMS and sodium montmorillonite. Appl. Biomater. 84B, 184–190 (2008)CrossRef Depan, D., Kumar, B., Singh, R.P.: Preparation and characterization of novel hybrid of chitosan-g-PDMS and sodium montmorillonite. Appl. Biomater. 84B, 184–190 (2008)CrossRef
89.
Zurück zum Zitat Zhou, N.-L., Liu, Y., Li, L., et al.: A new nanocomposite biomedical material of polymer/Clay–Cts–Ag nanocomposites. Curr. Appl. Phys. 7S1:e58–e62 (2007) Zhou, N.-L., Liu, Y., Li, L., et al.: A new nanocomposite biomedical material of polymer/Clay–Cts–Ag nanocomposites. Curr. Appl. Phys. 7S1:e58–e62 (2007)
90.
Zurück zum Zitat Zhou, N.-L., Fang, S., Xu, D., et al.: Montmorillonite–phosphatidyl choline/PDMS films: a novel antithrombogenic material. Appl. Clay Sci. 46, 401–403 (2009)CrossRef Zhou, N.-L., Fang, S., Xu, D., et al.: Montmorillonite–phosphatidyl choline/PDMS films: a novel antithrombogenic material. Appl. Clay Sci. 46, 401–403 (2009)CrossRef
91.
Zurück zum Zitat Bishop, E.T., O’Neill, W.P.: Block copolymers for use in blood pumps and oxygenators: preparation and characterization. In: Hasting, F.W., Harminson, C.T. (eds.) Artificial Heart Program Proceeding (1969) Bishop, E.T., O’Neill, W.P.: Block copolymers for use in blood pumps and oxygenators: preparation and characterization. In: Hasting, F.W., Harminson, C.T. (eds.) Artificial Heart Program Proceeding (1969)
92.
Zurück zum Zitat Kaszas, G., Puskas, J.E., Hager, W.G., Kennedy, J.P., Chen, C.C.: Electron pair donors in carbocationic polymerizations. III. Carbonation stabilization by external electron pair donors in isobutylene polymerization. J. Macromol. Sci., Pure Appl. Chem. 25, 1099 (1989) Kaszas, G., Puskas, J.E., Hager, W.G., Kennedy, J.P., Chen, C.C.: Electron pair donors in carbocationic polymerizations. III. Carbonation stabilization by external electron pair donors in isobutylene polymerization. J. Macromol. Sci., Pure Appl. Chem. 25, 1099 (1989)
93.
Zurück zum Zitat Pinchuk, L., Kahn, J., Martin, J.B., Wilson, G.J.: Transactions of the Sixth World Biomater Congress, p. 1452 (2001) Pinchuk, L., Kahn, J., Martin, J.B., Wilson, G.J.: Transactions of the Sixth World Biomater Congress, p. 1452 (2001)
94.
Zurück zum Zitat Pinchuk, L., Nott, S., Schwarz, M., Kamath, K.: US Patent 6 545 097 (2003) Pinchuk, L., Nott, S., Schwarz, M., Kamath, K.: US Patent 6 545 097 (2003)
95.
Zurück zum Zitat Pinchuk, L., Nott, S., Schwarz, M., Kamath, K.: US Patent 20030171496 (2003) Pinchuk, L., Nott, S., Schwarz, M., Kamath, K.: US Patent 20030171496 (2003)
96.
Zurück zum Zitat Silber, S.: Paclitaxel-eluting stents: are they all equal?: An analysis of six randomized controlled trials in De Novo Lesions of 3,319 patients. J. Intervent. Cardiol. 16(6), 485–490 (2003) Silber, S.: Paclitaxel-eluting stents: are they all equal?: An analysis of six randomized controlled trials in De Novo Lesions of 3,319 patients. J. Intervent. Cardiol. 16(6), 485–490 (2003)
97.
Zurück zum Zitat Pinchuk, L., Kahn, J., Martin, J.B., Wilson, G.J.: Transactions of the World Biomaterials Congress, p. 1452 (2001) Pinchuk, L., Kahn, J., Martin, J.B., Wilson, G.J.: Transactions of the World Biomaterials Congress, p. 1452 (2001)
98.
Zurück zum Zitat Feng, D., Higashihara, T., Cheng, G., Cho, J.C., Faust, R.: Block copolymers by the combination of cationic and anionic polymerizations for biomedical applications. Macromol. Symp. 245–246(1), 14–21 (2006)CrossRef Feng, D., Higashihara, T., Cheng, G., Cho, J.C., Faust, R.: Block copolymers by the combination of cationic and anionic polymerizations for biomedical applications. Macromol. Symp. 245–246(1), 14–21 (2006)CrossRef
99.
Zurück zum Zitat Ranade, S.V., Richard, R.E., Helmus, M.N.: Styrenic block copolymers for biomaterial and drug delivery applications. Acta Biomater. 1, 137–144 (2005)CrossRef Ranade, S.V., Richard, R.E., Helmus, M.N.: Styrenic block copolymers for biomaterial and drug delivery applications. Acta Biomater. 1, 137–144 (2005)CrossRef
100.
Zurück zum Zitat Hasegawa, N., Usuki, A.: Arranged microdomain structure induced by clay silicate layers in block copolymer-clay nanocomposites. Polym. Bull. 51, 77–83 (2003)CrossRef Hasegawa, N., Usuki, A.: Arranged microdomain structure induced by clay silicate layers in block copolymer-clay nanocomposites. Polym. Bull. 51, 77–83 (2003)CrossRef
101.
Zurück zum Zitat Ganguly, A., De Sarkar, M., Bhowmick, A.K.: Thermoplastic elastomeric nanocomposites from poly [styrene-(ethylene-co-butylene)-styrene] triblock copolymer and clay: preparation and characterization. J. Appl. Polym. Sci. 100, 2040–2052 (2006)CrossRef Ganguly, A., De Sarkar, M., Bhowmick, A.K.: Thermoplastic elastomeric nanocomposites from poly [styrene-(ethylene-co-butylene)-styrene] triblock copolymer and clay: preparation and characterization. J. Appl. Polym. Sci. 100, 2040–2052 (2006)CrossRef
102.
Zurück zum Zitat Styan, K.E., Martin, D.J., Poole-Warren, L.A.: In vitro fibroblast response to polyurethane organosilicate nanocomposites. J. Biomed. Mater. Res. 86A, 571–582 (2008)CrossRef Styan, K.E., Martin, D.J., Poole-Warren, L.A.: In vitro fibroblast response to polyurethane organosilicate nanocomposites. J. Biomed. Mater. Res. 86A, 571–582 (2008)CrossRef
103.
Zurück zum Zitat Da Silva, G.R., Da Silva-Cunha, A., Behar-Cohen Jr., F., et al.: Biodegradation of polyurethanes and nanocomposites to non-cytotoxic degradation products. Polym. Degrad. Stab. 95, 491–499 (2010)CrossRef Da Silva, G.R., Da Silva-Cunha, A., Behar-Cohen Jr., F., et al.: Biodegradation of polyurethanes and nanocomposites to non-cytotoxic degradation products. Polym. Degrad. Stab. 95, 491–499 (2010)CrossRef
104.
Zurück zum Zitat Dutta, S., Karak, N., Saikia, J.P., Konwar, B.K.: Biocompatible epoxy modified bio-based polyurethane nanocomposites: mechanical property, cytotoxicity and biodegradation. Bioresour. Technol. 100, 6391–6397 (2009)CrossRef Dutta, S., Karak, N., Saikia, J.P., Konwar, B.K.: Biocompatible epoxy modified bio-based polyurethane nanocomposites: mechanical property, cytotoxicity and biodegradation. Bioresour. Technol. 100, 6391–6397 (2009)CrossRef
105.
Zurück zum Zitat Lanone, S., Boczkowski, J.: Biomedical applications and potential health risks of nanomaterials: molecular mechanisms. Curr. Mol. Med. 6, 651–663 (2006)CrossRef Lanone, S., Boczkowski, J.: Biomedical applications and potential health risks of nanomaterials: molecular mechanisms. Curr. Mol. Med. 6, 651–663 (2006)CrossRef
106.
Zurück zum Zitat Fischer, H.C., Chan, W.C.W.: Nanotoxicity: the growing need for in vivo study. Curr. Opin. Biotechnol. 18, 565–571 (2007)CrossRef Fischer, H.C., Chan, W.C.W.: Nanotoxicity: the growing need for in vivo study. Curr. Opin. Biotechnol. 18, 565–571 (2007)CrossRef
107.
Zurück zum Zitat Smart, S., Cassady, A.I., Lu, G.Q., Martin, D.J.: The biocompatibility of carbon nanotubes. Carbon 44, 1034–1047 (2006)CrossRef Smart, S., Cassady, A.I., Lu, G.Q., Martin, D.J.: The biocompatibility of carbon nanotubes. Carbon 44, 1034–1047 (2006)CrossRef
108.
Zurück zum Zitat Lam, C.-W., James, J.R., McCluskey, R., Hunter, R.L.: Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol. Sci. 77, 126–134 (2004)CrossRef Lam, C.-W., James, J.R., McCluskey, R., Hunter, R.L.: Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol. Sci. 77, 126–134 (2004)CrossRef
109.
Zurück zum Zitat Warheit, D.B., Laurence, B.R., Reed, K.L., et al.: Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats. Toxicol. Sci. 77(1), 117–25 (2004)CrossRef Warheit, D.B., Laurence, B.R., Reed, K.L., et al.: Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats. Toxicol. Sci. 77(1), 117–25 (2004)CrossRef
110.
Zurück zum Zitat Muller, J., Huaux, F., Moreau, N., et al.: Respiratory toxicity of multi-wall carbon nanotubes. Toxicol. Appl. Pharmacol. 207(3), 221–31 (2005) Muller, J., Huaux, F., Moreau, N., et al.: Respiratory toxicity of multi-wall carbon nanotubes. Toxicol. Appl. Pharmacol. 207(3), 221–31 (2005)
Metadaten
Titel
Elastomeric Nanocomposites for Biomedical Applications
verfasst von
Nicole Fong
Anne Simmons
Laura Poole-Warren
Copyright-Jahr
2011
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-642-15787-5_10

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.