Skip to main content

Microbial Synthesis of Metal Nanoparticles

  • Chapter
  • First Online:
Metal Nanoparticles in Microbiology

Abstract

One of the most important aspects in researching nanotechnology is the synthesis of metal nanoparticles of well-defined sizes, shapes and controlled monodispersity. The most common methods of preparation are based on harsh chemicals, such as strong reducing agents, surfactants, polymer capping agents and, occasionally, organic solvent systems, to achieve better results. Therefore, there is a necessity to develop an environment friendly nanoparticle formation processes which do not use toxic chemicals in their synthesis protocols. Researchers in the field of nanoparticle synthesis have, in consequence, turned to biological systems for inspiration. The production of metal and metal alloy nanoparticles by microbes is a consequence of detoxification pathways. Majority of this biosynthesis occurs under ambient conditions. This is in sharp contrast to the caustic reagents, high temperatures and pressures that are modernly utilized for industrial synthesis of the same kinds of materials. Moreover, in many cases the nanomaterials are produced under genetic control resulting in specific morphologies, sizes and crystallinities of the structures.

In this chapter, an overview of the use of microorganisms, such as bacteria, yeast and fungi, in the biosynthesis of metal nanoparticles is given and different mechanisms leading to the formation of nanoparticles are demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agnihotri M, Joshi S, Kumar AR, Zinjarde S, Kulkarni S (2009) Biosynthesis of gold nanoparticles by the tropical marine yeast Yarrowia lipolytica NCIM 3589. Mater Lett 63:1231–1234

    CAS  Google Scholar 

  • Ahmad A, Mukherjee P, Mandal D, Senapati S, Khan MI, Kumar R, Sastry M (2002) Enzyme mediated extracellular synthesis of CdS nanoparticles by the fungus Fusarium oxysporum. J Am Chem Soc 124:12108–12109

    PubMed  CAS  Google Scholar 

  • Ahmad A, Mukherjee P, Senapati S, Mandal D, Khan MI, Kumar R, Sastry M (2003a) Extracellular synthesis of silver nanoparticles of silver nanoparticles using the fungus Fusarium oxysporum. Colloids Surf B: Biointerfaces 28:313–318

    CAS  Google Scholar 

  • Ahmad A, Senapati S, Khan MI, Kumar S, Sastry M (2003b) Extracellular biosynthesis of monodisperse gold nanoparticles by a novel extremophilic actinomycete, Thermomonospora sp. Langmuir 19:3550–3553

    CAS  Google Scholar 

  • Ahmad A, Senapati S, Khan MI, Ramani R, Srinivas V, Sastry M (2003c) Intracellular synthesis of gold nanoparticles by a novel alkalotolerant actinomycete Rhodococcus species. Nanotechnology 14:8240828

    Google Scholar 

  • Ahmad A, Senapati S, Khan MI, Kumar S, Sastry M (2005) Extra-/intracellular biosynthesis of gold nanoparticles by an alkalotolerant fungus Tricothecium sp. J Biomed Nanotechnol 1:47–53

    CAS  Google Scholar 

  • Ahmad A, Jagadale T, Dhas V, Khan S, Patil S, Paricha R, Ravi V, Ogale S (2007) Fungus-based synthesis of chemically difficult-to-synthesize multifunctional nanoparticles of CuAlO2. Adv Mater 19:3295–3299

    CAS  Google Scholar 

  • Bai HJ, Zhang ZM, Guo Y, Yang GE (2009) Biosynthesis of cadmium sulfide nanoparticles by photosynthetic bacteria Rhodopseudomonas palustris. Colloids Surf B: Biointerfaces 70:142–146

    CAS  Google Scholar 

  • Balaji DS, Basavaraja S, Deshpande R, Mahesh DB, Prabhakar BK, Venkataraman A (2009) Extracellular biosynthesis of functionalized silver nanoparticles by strains of Cladosporium cladosporioides. Colloids Surf B: Biointerfaces 68:88–92

    CAS  Google Scholar 

  • Bansal V, Rautaray D, Ahmad A, Sastry M (2004) Biosynthesis of zirconia nanoparticles using the fungus Fusarium oxysporum. J Mater Chem 14:3303–3305

    CAS  Google Scholar 

  • Bansal V, Rautaray D, Bharde A, Ahire K, Sanyal A, Ahmad A, Sastry M (2005) Fungus-mediated biosynthesis of silica and titania particles. J Mater Chem 15:2583–2589

    CAS  Google Scholar 

  • Basavaraja S, Balaji SD, Lagashetty A, Rajasab AH, Venkataraman A (2008) Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium semitectum. Mater Res Bull 43:1164–1170

    CAS  Google Scholar 

  • Bäuerlein E (2003) Biomineralization of unicellular organisms: an unusual membrane biochemistry for the production of inorganic nano- and microstructures. Angew Chem Int Ed 42:614–641

    Google Scholar 

  • Baxter-Plant VS, Mikhereenko IP, Macaskie LE (2003) Sulphate-reducing bacteria, palladium and reductive dehalogenation of chlorinated aromatic compounds. Biodegradation 14:83–90

    PubMed  CAS  Google Scholar 

  • Beveridge TJ, Murray RGE (1980) Site of metal deposition in the cell wall of Bacillus subtilis. J Bacteriol 141:876–887

    PubMed  CAS  Google Scholar 

  • Bhainsa KC, D’Souza SF (2006) Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus. Colloids Surf B 47:160–164

    CAS  Google Scholar 

  • Bhambure R, Bule M, Shaligram N, Kamat M, Singhal R (2009) Extracellular biosynthesis of gold nanoparticles using Aspergillus niger – its characterization and stability. Chem Eng Technol 32:1036–1041

    CAS  Google Scholar 

  • Bharde A, Rautaray D, Bansal V, Ahmad A, Sarkar I, Yusuf SM, Sanyal M, Sastry M (2006) Extracellular biosynthesis of magnetite using fungi. Small 2:135–141

    PubMed  CAS  Google Scholar 

  • Birla SS, Tiwari VV, Gade AK, Ingle AP, Yadav AP, Rai MK (2009) Fabrication of silver nanoparticles by Phoma glomerata and its combined effect against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. Lett Appl Microbiol 48:173–179

    PubMed  CAS  Google Scholar 

  • Boisselier E, Astruc D (2009) Gold nanoparticles in nanomedicine:preparations, imaging, diagnostics, therapies and toxicity. Chem Soc Rev 38:1759–1782

    PubMed  CAS  Google Scholar 

  • Chen JC, Lin ZH, Ma XX (2003) Evidence of the production of silver nanoparticles via pretreatment of Phoma sp. 3.2883 with silver nitrate. Lett Appl Microbiol 37:105–108

    PubMed  CAS  Google Scholar 

  • Corma A, Garcia H (2008) Supported gold nanoparticles as catalysts for organic reactions. Chem Soc rev 37:2096–2126

    PubMed  CAS  Google Scholar 

  • Crookes-Goodson WJ, Slocik JM, Naik RR (2008) Bio-directed synthesis and assembly of nanomaterials. Chem Soc Rev 37:2403–2412

    PubMed  CAS  Google Scholar 

  • Cunningham DP, Lundie LL, Leon L Jr (1993) Precipitation of cadmium by Clostridium thermoaceticum. Appl Environ Microbiol 59:7–14

    PubMed  CAS  Google Scholar 

  • Dameron CT, Reese RN, Mehra RK, Kortan AR, Carroll PJ, Steigerwald ML, Brus LE, Winge DR (1989) Biosynthesis of cadmium sulfide quantum semiconductor crystallites. Nature 338:596–597

    CAS  Google Scholar 

  • de Windt W, Aelterman P, Verstraete W (2005) Bioreductive deposition of palladium (0) nanoparticles on Shewanella oneidensis with catalytic activity towards reductive dechlorination of polychlorinated biphenyls. Environ Microbiol 7:314–325

    PubMed  Google Scholar 

  • de Windt W, Boon N, van den Bulcke J, Rubberecht L, Prata F, Mast J, Hennebel T, Verstraete W (2006) Biological control of the size and reactivity of catalytic Pd(0) produced by Shewanella oneidensis. Antonie van Leeuwenhoek 90:377–389

    PubMed  CAS  Google Scholar 

  • Deplanche K, Macaskie LE (2008) Biorecovery of gold by Escherichia coli and Desulfovibrio desulfuricans. Biotechnol Bioeng 99:1055–1064

    PubMed  CAS  Google Scholar 

  • Duran N, Marcato PD, Alves OL, De Souza GHI, Esposito E (2005) Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. J Nanobiotechnol. doi:10.1186/1477-3155-3-8

    Google Scholar 

  • Fayaz AM, Balaji K, Kalaichelvan PT, Venkatesan R (2009) Fungal based synthesis of silver nanoparticles- an effect of temperature on the size of particles. Colloids Surf B: Biointerfaces 74:123–126

    Google Scholar 

  • Fredrickson JK, Zachara JM, Kennedy DW, Liu C, Duff MC, Hunter DB, Dohnalkova A (2002) Influence of Mn oxides on the reduction of uranium(VI) by the metal-reducing bacterium Shewanella putrefaciens. Geochim Cosmochim Acta 66:3247–3262

    CAS  Google Scholar 

  • Gericke M, Pinches A (2006) Microbial production of gold nanoparticles. Gold Bull 39:22–27

    CAS  Google Scholar 

  • Gorby YA, Lovley DR (1992) Enzymatic uranium precipitation. Environ Sci Technol 26:205–207

    CAS  Google Scholar 

  • Gurunathan S, Kalishwaralal K, Vaidyanathan R, Deepak V, Pandian SRK, Muniyandi J, Hariharan N, Eom SH (2009) Biosynthesis, purification and characterization of silver nanoparticles using Escherichia coli. Colloids Surf B: Biointerfaces 74:328–335

    CAS  Google Scholar 

  • Holmes JD, Richardson DJ, Saed S, Evans-Gowing R, Russell DA, Sodeau JR (1997) Cadmium-specific formation of metal sulfide ‘Q-particle’ by Klebsiella pneumoniae. Microbiology 143:2521–2530

    PubMed  CAS  Google Scholar 

  • Husseiny MI, El-Aziz MA, Badr Y, Mahmoud MA (2007) Biosynthesis of gold nanoparticles using Pseudomonas aeruginosa. Spectrochim Acta Part A 67:1003–1006

    CAS  Google Scholar 

  • Ingle A, Rai M, Gate A, Bawaskar M (2009) Fusarium solani: a novel biological agent for the extracellular synthesis of silver nanoparticles. J Nanopart Res 11:2079–2085

    CAS  Google Scholar 

  • Joerger R, Klaus T, Granqvist CG (2000) Biologically produced silver carbon composite materials for optically functional thin-film coatings. Adv Mater 12:407–409

    CAS  Google Scholar 

  • Kalimuthu K, Babu RS, Venkataraman D, Bilal M, Gurunathan S (2008) Biosynthesis of silver nanoparticles by Bacillus licheniformis. Colloids Surf B Biointerfaces 65:150–153

    PubMed  CAS  Google Scholar 

  • Karbasian M, Atyabi SM, Siadat SD, Momen SB, Norouzian D (2008) Optimizing nano-silver formation by Fusarium oxysporum PTCC 5115 employing response surface methodology. Am J Agric Biol Sci 3:433–437

    Google Scholar 

  • Kashefi K, Tor JM, Nevin KP, Lovley DR (2001) Reductive precipitation of gold by dissimilatory Fe(III)-reducing Bacteria and Archaea. Appl Environ Microbiol 67:3275–3279

    PubMed  CAS  Google Scholar 

  • Kathiresan K, Manivannan S, Nabeel MA, Dhivya B (2009) Studies on silver nanoparticles synthesized by a marine fungus, Penicillium fellutanum isolated from coastal mangrove sediment. Colloids Surf B Biointerfaces 71:133–137

    PubMed  CAS  Google Scholar 

  • Klaus T, Joerger R, Olsson E, Granqvist CG (1999) Silver- based crystalline nanoparticles, microbially fabricated. Proc Natl Acad Sci U S A 96:13611–13614

    PubMed  CAS  Google Scholar 

  • Konishi Y, Tsukiyama T, Ohno K, Saitoh N, Nomura T, Nagamine S (2006) Intracellular recovery of gold by microbial reduction of AuCl ions using the anaerobic bacterium Shewanella algae. Hydrometallurgy 81:24–29

    CAS  Google Scholar 

  • Konishi Y, Ohno K, Saitoh N, Nomura T, Nagamine S, Takahashi Y, Uruga T (2007a) Bioreductive deposition of platinum nanoparticles on the bacterium Shewanella algae. J Biotechnol 128:648–653

    PubMed  CAS  Google Scholar 

  • Konishi Y, Tsukiyama T, Tachimi T, Saitoh N, Nomura T, Nagamine S (2007b) Microbial deposition of gold nanoparticles by the metal-reducing bacterium Shewanella algae. Electrochim Acta 53:186–192

    CAS  Google Scholar 

  • Kowshik M, Dashmukh N, Vogel W, Urban J, Kulkarni SK, Paknikar KM (2002a) Microbial synthesis of semiconductor CdS nanoparticles, their characterization, and their use in the fabrication of an ideal diode. Biotechnol Bioeng 78:583–588

    PubMed  CAS  Google Scholar 

  • Kowshik M, Vogel W, Urban J, Kulkarni SK, Pacnikar KM (2002b) Microbial synthesis of semiconductor PbS nanocrystallites. Adv Mater 14:815–818

    CAS  Google Scholar 

  • Kowshik M, Ashtaputre S, Kharrazi S, Vogel W, Urban J, Kulkarni SK, Paknikar KM (2003) Extracellular synthesis of silver nanoparticles by a silver-tolerant yeast strain MKY3. Nanotechnology 14:95–100

    CAS  Google Scholar 

  • Krutyakov YA, Kudrinskiy AA, Olenin AY, Lisichkin GV (2008) Synthesis and properties of silver nanoparticles:advances and prospects. Rus Chem Rev 77:233–257

    CAS  Google Scholar 

  • Kumar SA, Abyaneh MK, Gosavi SW, Kulkarni SK, Paricha R, Ahmad A, Khan MI (2007a) Nitrate reductase-mediated synthesis of silver nanoparticles from AgNO3. Biotechnol Lett 29:439–445

    CAS  Google Scholar 

  • Kumar SA, Ansary AA, Ahmad A, Khan MI (2007b) Biosynthesis of extracellular CdSe quantum dots by the fungus Fusarium oxysporum. J Biomedic Nanotechnol 3:190–194

    CAS  Google Scholar 

  • Labrenz M, Druschel GK, Thomsen-Ebert T, Gilbert B, Welch SA, Kemner KM, Logan GA, Summons RE, Stasio GD, Bond PL, Lai B, Kelly SD, Banfield JF (2000) Formation of sphalerite (ZnS) deposits in natural biofilms of sulfate-reducing bacteria. Science 290:1744–1747

    PubMed  CAS  Google Scholar 

  • Lang C, Schüler D, Faivre D (2007) Synthesis of magnetite nanoparticles for bio- and nanotechnology: genetic engineering and biomimetics of bacterial magnetosomes. Macromol Biosci 7:144–151

    PubMed  CAS  Google Scholar 

  • Lengke MF, Southam G (2006) Bioaccumulation of gold by sulfate-reducing bacteria cultured in the presence of gold(I)-thiosulfate compex. Geochim Cosmochim Acta 70:3646–3661

    CAS  Google Scholar 

  • Lengke MF, Fleet ME, Southam G (2006a) Morphology of gold nanoparticles synthesized by filamentous cyanobacteria from gold(I)-thiosulfate and gold(III)-chloride complexes. Langmuir 22:2780–2787

    PubMed  CAS  Google Scholar 

  • Lengke MF, Fleet ME, Southam G (2006b) Synthesis of platinum nanoparticles by reaction of filamentous cyanobacteria with platinum (IV)-chloride complex. Langmuir 22:7318–7323

    PubMed  CAS  Google Scholar 

  • Lengke MF, Ravel B, Fleet ME, Wanger G, Gordon RA, Southam G (2006c) Mechanisms of gold bioaccumulation by filamentous cyanobacteria from gold(III)-chloride complex. Environ Sci Technol 40:6304–6309

    PubMed  CAS  Google Scholar 

  • Liu C, Gorby YA, Zachara JM, Fredrickson JK, Brown CF (2002) Reduction kinetics of Fe(III), Co(III), U(VI), Cr(VI) and Tc(VII) in cultures of dissimilatory metal-reducing bacteria. Biotechnol Bioeng 80:637–649

    PubMed  CAS  Google Scholar 

  • Lloyd JR, Yong P, Macaskie LE (1998) Enzymatic recovery of elemental palladium by using sulfate-reducing bacteria. Appl Environ Microbiol 64:4607–4609

    PubMed  CAS  Google Scholar 

  • Lovley DR, Phillips EJ (1992) Reduction of uranium by Desulfovibrio desulfuricans. Appl Environ Microbiol 58:850–856

    PubMed  CAS  Google Scholar 

  • Maliszewska I, Sadowski Z (2009) Synthesis and antibacterial activity of silver nanoparticles. J Phys: Conf Ser. doi:10.1088/1742-6596/146/1/0112024

    Google Scholar 

  • Maliszewska I, Szewczyk K, Waszak K (2009) Biological synthesis of silver nanoparticles. J Phys: Conf Ser. doi:10.1088/1742-6596/146/1/012025

    Google Scholar 

  • Marshall MJ, Beliaev AS, Dohnalkova AC, Kennedy DW, Shi L, Wang Z, Boyanov MI, Lai B, Kemner KM, McLean JS, Reed SB, Culley DE, Bailey VL, Simonson CJ, Saffarini DA, Romine MF, Zachara JM, Fredrickson JK (2006) c-Type of cytochrome-dependent formation of U(IV) nanoparticles by Shewanella oneidensis. PLoS Biol 4:1–17

    Google Scholar 

  • Michel C, Brugna M, Aubert C, Bernadac A, Bruschi M (2001) Enzymatic reduction of chromate: comparative studies using sulfate-reducing bacteria: key role of polyheme cytochromes c and hydrogenases. Appl Microbiol Biotechnol 55:95–100

    PubMed  CAS  Google Scholar 

  • Mokhari N, Daneshpajouh S, Seedbagheri S, Atashdehghan R, Abdi K, Sarkar S, Minaian S, Shahverdi HR, Shahverdi AR (2009) Biological synthesis of very small nanoparticles by culture supernatant of Klebsiella pneumoniae: the effects of visible-light irradiation and the liquid mixing process. Mater Res Bull 44:1415–1421

    Google Scholar 

  • Moon JW, Roh Y, Lauf RJ, Vali H, Yeary L, Phelps TJ (2007) Microbial preparation of metal-substituted magnetite nanoparticles. J Microbial Methods 70:150–158

    CAS  Google Scholar 

  • Mukerjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI, Parischa R, Ajayakumar PV, Alam M, Kumar R, Sastry M (2001a) Fungus mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: a novel biological approach to nanoparticle synthesis. Nano Lett 1:515–519

    Google Scholar 

  • Mukerjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI, Ramani R, Parischa R, Ajayakumar PV, Alam M, Sastry M, Kumar R (2001b) Bioreduction of AuCl 4 ions by the fungus Verticillium sp. and the surface trapping of the gold nanoparticles formed. Angew Chem Int Ed 40:3585–3588

    Google Scholar 

  • Mukherjee P, Senapati S, Mandal D, Ahmad A, Khan MI, Kumar R, Sastry M (2002) Extracellular synthesis of gold nanoparticles by the fungus Fusarium oxysporum. ChemBioChem 5:461–463

    Google Scholar 

  • Mukherjee P, Roy M, Dey GK, Mukherjee PK, Ghatak J, Tyagi AK, Kale SP (2008) Green synthesis of highly stabilized nanocrystalline silver particles by a non-pathogenic and agriculturally important fungus T. asperellum. Nanotechnology. doi:10.1088/0957-4484/19/7/075103

    Google Scholar 

  • Mulvaney P (1996) Surface plasmon spectroscopy of nanosized metal particles. Langmuir 12:788–800

    CAS  Google Scholar 

  • Murray CB, Kagan CR, Bawendi MG (2000) Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annu Rev Mater Sci 30:545–610

    CAS  Google Scholar 

  • Nair B, Pradeep T (2002) Coalescence of nanoclusters and formation of submicron crystallites assisted by Lactobacillus strains. Cryst Growth Des 2:293–298

    CAS  Google Scholar 

  • Nakajima A (2003) Accumulation of gold by microorganisms. World J Microbiol Biotechnol 19:369–374

    CAS  Google Scholar 

  • Nangia Y, Wangoo N, Goyal N, Shekhawat G, Suri CR (2009a) A novel bacterial isolate Stenotrophomonas maltophilia as living factory for synthesis of gold nanoparticles. Microb Cell Fact 8:1–7

    Google Scholar 

  • Nangia Y, Wangoo N, Sharma S, Wu JS, Dravid V, Shekhawat GS, Suri CR (2009b) Facile biosynthesis of phosphate capped gold nanoparticles by a bacterial isolate Stenotrophomonas maltophilia. Appl Phys Lett 94:233901-1–233901-3

    Google Scholar 

  • Nikhil SS, Bule M, Bhambure R, Singhal S, Singh SK, Szakacs PA (2009) Biosynthesis of silver nanoparticles using aqueous extract from the compactin producing fungal strain. Process Biochem 44:939–943

    Google Scholar 

  • Parikh RY, Singh S, Prasad BLV, Patde MS, Sastry M, Shouche YS (2008) Extracellular synthesis of crystalline silver nanoparticles and molecular evidence of silver resistance Morganella sp: towards understanding biochemical synthesis mechanisms. Chem Bio Chem 9:1415–1422

    PubMed  CAS  Google Scholar 

  • Pighi L, Pumbel T, Schinner F (1989) Selective accumulation of silver by fungi. Biotechnol Lett 11:275–280

    CAS  Google Scholar 

  • Pimprikar PS, Joshi SS, Kumar AR, Zinjarde SS, Kulkarni SK (2009) Influence of biomass and gold salt concentration on nanoparticle synthesis by the tropical marine yeast Yarrowia lipolytica NCIM 3589. Colloids Surf B: Biointerfaces 74:309–316

    CAS  Google Scholar 

  • Pollmann K, Merroun M, Raff J, Hennig C, Selenska-Pobell S (2006) Manufacturing and characterization of Pd nanoparticles formed on immobilized bacterial cells. Lett Appl Microbiol 43:39–45

    PubMed  CAS  Google Scholar 

  • Prabhu N, Revathi N, Darsana R, Sruthi M, Chinnaswamy P, Innocent DJP (2009) Antibacterial activities of silver nanoparticles synthesized by Aspergillus fumigatus. Icfai Univ J Biotechnol III(2):50–55

    Google Scholar 

  • Rafii F, Hehman GL, Shahveri AR (2005) Factors affecting nitroreductase activity in the biological reduction of nitrocompounds. Curr Enz Inhibit 1:223–230

    Google Scholar 

  • Reese RN, Winge DR (1988) Sulfide stabilization of the cadmium-γ-glutamyl peptide complex of Schizosaccharomyces pombe. J Biol Chem 263:12832–12835

    PubMed  CAS  Google Scholar 

  • Riddin TL, Gericke M, Whiteley CG (2006) Analysis of the inter- and extracellular formation of platinum nanoparticles by Fusarium oxysporum f. sp. lycopersici using response surface methodology. Nanotechnology 17:3482–3489

    PubMed  CAS  Google Scholar 

  • Riddin TL, Govender Y, Gericke M, Whiteley CG (2009) Two different hydrogenase enzymes from sulphate-reducing bacteria are responsible for the bioreductive mechanism of platinum into nanoparticles. Enzyme Microbiol Technol 45:267–273

    CAS  Google Scholar 

  • Roh Y, Lauf RJ, McMillan AD, Zhang C, Rawn CJ, Bai J, Phelps TJ (2001) Microbial synthesis and characterization of metal-substituted magnetites. Solid State Commun 118:529–534

    CAS  Google Scholar 

  • Sadowski Z, Maliszewska I, Grochowalska B, Polowczyk I, Koźlecki T (2008) Synthesis of silver nanoparticles using microorganisms. Mater Sci Poland 26:419–424

    CAS  Google Scholar 

  • Sanghi R, Verma P (2009) Biomimetic synthesis and characterization of protein capped nanoparticles. Biores Technol 100:501–504

    CAS  Google Scholar 

  • Sastry M, Ahmad A, Khan MI, Kumar R (2003) Biosynthesis of metal nanoparticles using fungi and actinomycete. Curr Sci 85:162–170

    CAS  Google Scholar 

  • Senapati S, Ahmad A, Khan MI, Sastry M, Kumar R (2005) Extracellular biosynthesis of bimetallic Au-Ag alloy nanoparticles. Small 1:517–520

    PubMed  CAS  Google Scholar 

  • Shahverdi AR, Minaeian S, Shahverdi HR, Jamalifar H, Nohi AA (2007) Rapid synthesis of silver nanoparticles using culture supernatants of Enterobacteria: a novel biological approach. Process Biochem 42:919–923

    CAS  Google Scholar 

  • Shaligram NS, Bule M, Bhambure R, Singhal RS, Singh SK, Szakacs G, Pandey A (2009) Biosynthesis of silver nanoparticles using aqueous extract from the compactin producing fungal strain. Process Biochem 44:939–943

    CAS  Google Scholar 

  • Shankar SS, Ahmad A, Parischa S, Sastry M (2003) Bioreduction of chloroaurate ions by geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes. J Mater Chem 13:1822–1826

    CAS  Google Scholar 

  • Shiying H, Guo Z, Zhang Y, Zhang S, Wang J, Gu N (2007) Biosynthesis of gold nanoparticles using the bacteria Rhodopseudomonas capsulata. Mater Lett 61:3984–3987

    Google Scholar 

  • Shiying H, Zhang Y, Guo Z, Gu N (2008) Biological synthesis of gold nanowires using extract of Rhodopseudomonas capsulata. Biotechnol Prog 24:476–480

    Google Scholar 

  • Slawson RM, Trevors JT, Lee H (1992) Silver accumulation and resistance in Pseudomonas stutzeri. Arch Microbial 158:398–404

    CAS  Google Scholar 

  • Sweeney RY, Mao C, Gao X, Burt JL, Belcher AM, Georgiou G, Iverson BL (2004) Bacterial biosynthesis of cadmium sulfide nanocrystals. Chem Biol 11:1553–1559

    PubMed  CAS  Google Scholar 

  • Vigneshwaran N, Kathe AA, Varadajan PV, Nachane RP, Balasubramanya RH (2006) Biomimetics of silver nanoparticles by white rot fungus, Phaenerochaete chrysosporium. Colloids Surf B: Biointerfaces 53:55–59

    CAS  Google Scholar 

  • Vigneshwaran N, Ashtaputre NM, Varadarajan PV, Nachane RP, Paralikar KM, Balasubramanya RH (2007) Biological synthesis of silver nanoparticles using the fungus Aspergillus flavus. Mater Lett 61:1413–1418

    CAS  Google Scholar 

  • Woolfolk CA, Whiteley HR (1962) Reduction of inorganic compounds with molecular hydrogen by Micrococcus lactilyticus. I. Stoichiometry with compounds of arsenic, selenium, tellurium, transition and other elements. J Bacterial 84:647–658

    CAS  Google Scholar 

  • Xie J, Lee JY, Wang DIC, Ting YP (2007) High-yield synthesis of complex gold nanostructures in a fungal system. J Phys Chem C 111:16858–16865

    CAS  Google Scholar 

  • Yan S, He W, Sun C, Zhang X, Zhao H, Li Z, Zhou W, Tian X, Sun X, Han X (2009) The biomimetic synthesis of zinc phosphate nanoparticles. Dyes Pigm 80:254–258

    CAS  Google Scholar 

  • Yanke LJ, Bryant RD, Laishley EJ (1995) Hydrogenase of Clostridium pasteurianum as a novel selenite reductase. Anaerobe 1:61–67

    PubMed  CAS  Google Scholar 

  • Yong P, Rowson NA, Farr JPG, Harris IR, Macaskie LE (2002a) Bioaccumulation of palladium by Desulfovibrio desulfuricans. J Chem Technol Biotechnol 77:593–601

    CAS  Google Scholar 

  • Yong P, Rowson NA, Farr JPG, Harris IR, Macaskie LE (2002b) Bioreduction and biocrystallization of palladium by Desulfovibrio desulfuricans NCIMB 8307. Biotechnol Bioeng 20:369–379

    Google Scholar 

  • Zadvorny OA, Zorin NA, Gogotov IN (2006) Transformation of metals and metal ions by hydrogenases from phototrophic bacteria. Arch Microbiol 184:279–285

    PubMed  CAS  Google Scholar 

  • Zhang H, Li Q, Lu Y, Sun D, Lin X, Deng X, He N, Zheng S (2005) Biosorption and bioreduction of diamine silver complex by Corynebacterium. J Chem Technol Biotechnol 80:285–290

    CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by MN i SW Grant No. N N 507 5150 38.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irena Maliszewska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Maliszewska, I. (2011). Microbial Synthesis of Metal Nanoparticles. In: Rai, M., Duran, N. (eds) Metal Nanoparticles in Microbiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18312-6_7

Download citation

Publish with us

Policies and ethics