Skip to main content

Emerging Role of Plant Growth Promoting Rhizobacteria in Agrobiology

  • Chapter
  • First Online:
Bacteria in Agrobiology: Crop Ecosystems

Abstract

Plant growth promoting rhizobacteria (PGPR) colonize rhizosphere and reside in harmony with plants. These introduced or naturally occurring bacteria are known to enhance plant growth and yield components. Therefore, their potential has been exploited extensively to reduce the indiscriminate use of synthetic chemicals such as inorganic fertilizers, fungicides, and pesticides and prevent the accumulation of toxic, health hazardous chemicals in soil and water resources. Biological control of plant diseases and plant growth promotion approach becomes a prime focus of recent biotechnological trends in agro-ecosystem. Considerable research has been performed globally to exploit the functioning of beneficial bacterial communities in agro-industries. Further, advanced and better understanding of rhizobacteria will facilitate maintenance of natural soil structure, pure water resources, and increased productivity of agro- and forest-based industries to achieve their commercial success in sustainable ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aeron A, Pandey P, Maheshwari DK (2010) Differential response of sesame under influence of indigenous and non-indigenous rhizosphere competent fluorescent pseudomonads. Curr Sci 99(2):166–168

    Google Scholar 

  • Ahmad ZI, Ansar M, Tariq M, Anjum MS (2008) Effect of different rhizobium inoculation methods on performance of lentil in Pothowar region. Int J Agric Biol 10:81–84

    Google Scholar 

  • Akhromeiko AI, Shestakova VA (1958) The influence of rhizospheric microorganisms on the uptake and secretion of us and sulphur by the roots of arboreal. In: Proceedings of second UN Internal Conf Peace: Uses Atomic Energy seedlings. pp. 193–199

    Google Scholar 

  • Alagawadi AR, Gaur AC (1992) Inoculation of Azospirillum brasilense and phosphate solubilizing bacteria on yield of sorghum (Sorghum bicolor L. moench) in dry land. Trop Agric 69:347–350

    Google Scholar 

  • Arora NK, Kang SC, Maheshwari DK (2001) Isolation of siderophore producing strains of Rhizobium meliloti and their biocontrol potential against Macrophomina phaseolina that causes charcoal rot of groundnut. Curr Sci 81:673–677

    Google Scholar 

  • Arora NK, Khare E, Oh JH, Kang SC, Maheshwari DK (2008) Diverse mechanisms adopted by fluorescent Pseudomonas PGC2 during the inhibition of Rhizoctonia solani and Phytophthora capsici. World J Microbiol Biotechnol 24:581–585

    Google Scholar 

  • Arrebola E, Jacobs R, Korsten L (2010) Iturin A is the principal inhibitor in the biocontrol activity of Bacillus amyloliquefaciens PPCB004 against postharvest fungal pathogens. J Appl Microbiol 108(2):386–395

    PubMed  CAS  Google Scholar 

  • Asaka O, Shoda M (1996) Biocontrol of Rhizoctonia solani damping of tomato with Bacillus subtilis RB14. Appl Environ Microbiol 62(11):4081–4085

    PubMed  CAS  Google Scholar 

  • Ashrafuzzaman M et al. (2009) Efficiency of plant growth-promoting rhizobacteria (PGPR) for the enhancement of rice growth. Afr J Biotechnol 8(7):1247–1252

    CAS  Google Scholar 

  • Aslantas R, Cakmacki R, Sahin F (2007) Effect of plant growth promoting rhizobacteria on young apple tree growth and fruit yield under orchard conditions. Sci Hortic 111:371–377

    Google Scholar 

  • Ayala S, Rao EVSP (2002) Perspective of soil fertility management with a focus on fertilizer use for crop productivity. Curr Sci 82:797–807

    Google Scholar 

  • Baqual MF, Das PK (2006) Influence of biofertilizers on macronutrient uptake by the Mulberry plant and its impact on silkworm bioassay. Caspian J Env Sci 4(2):98–109

    Google Scholar 

  • Barker WW, Welch SA, Chu S, Banfield F (1998) Experimental observations of the effects of bacteria on aluminosilicate weathering. Am Miner 83:1551–1563

    CAS  Google Scholar 

  • Bashan Y (1998) Inoculants of plant growth promoting bacteria for use in agriculture. Biotech Adv 16:729–772

    CAS  Google Scholar 

  • Bashan Y, Holguin G (1997) Azospirillum-plant relationships: environmental and physiological advances (1990–1996). Can J Microbiol 43:102–121

    Google Scholar 

  • Bashan Y, Holguin G (1998) Proposal for the division of plant promoting rhizobacteria into two classification: biocontrol-PGPB (plant growth- promoting bacteria) and PGPB. Soil Biol Biochem 30:1225–1228

    CAS  Google Scholar 

  • Beall F, Tipping B (1989) Plant growth-promoting rhizobacteria in forestry. For Res Market Proc Ont For Res Com Toronto USA Abstr 177

    Google Scholar 

  • Belimov AA, Kojemiakov AP, Chuvarliyea CV (1995) Interaction between barley and mixed cultures of nitrogen fixing and phosphate solubilizing bacteria. Plant Soil 173:29–37

    CAS  Google Scholar 

  • Belimov AA, Safronova VI, Sergeyeva TA, Egorova TN, Matveyeva VA, Tsyganov VE, Borisov AY, Tikhonovich IA, Kluge C, Preisfeld A, Dietz KJ, Stepanok VV (2001) Characterization of plant growth promoting rhizobacteria isolated from polluted soil and containing 1-aminocyclopropane-1-carboxylate deaminase. Can J Microbiol 47:642–652

    PubMed  CAS  Google Scholar 

  • Belimov AA, Dodd IC, Hontzeas N, Theobald JC, Safronova VI, Davies WJ (2009) Rhizosphere bacteria containing 1-aminocyclopropane-1-carboxylate deaminase increase yield of plants grown in drying soil via both local and systemic hormone signaling. New Phytol 181:413–423

    PubMed  CAS  Google Scholar 

  • Bell CR, Dickie GA, Harvey WLG, Chan JWYF (1995) Endophytic bacteria in grapevine. Can J Microbiol 41:46–53

    CAS  Google Scholar 

  • Berg G, Zachow C, Lottmann J, Gotz M, Costa R, Smalla K (2005) Impact of plant species and site on rhizosphere-associated fungi antagonistic to Verticillium dahliae Kleb. Appl Environ Microbiol 71:4203–4213

    PubMed  CAS  Google Scholar 

  • Bertrand H, Nalin R, Bally R, Cleyet-Marel JC (2001) Isolation and identification of the most efficient plant growth-promoting bacteria associated with canola (Brassica mtpus). Biol Fert Soils 33:152–156

    Google Scholar 

  • Bharathi R, Vivekananthan R, Harish S, Ramanathan A, Samiyapan R (2004) Rhizobacteria-based bio-formulations for the management of fruit rot infection in chillies. Crop Prot 23:835–843

    Google Scholar 

  • Bhatia S, Maheshwari DK, Dubey RC, Arora DS, Bajpai VK, Kang SC (2008) Beneficial effects of fluorescent pseudomonads on seed germination, growth promotion, and suppression of charcoal rot in groundnut (Arachis hypogea L.). J Microbiol Biotechnol 18:1578–1583

    Google Scholar 

  • Biswas JC, Ladha JK, Dazzo FB (2000a) Rhizobia inoculation improves nutrient uptake and growth of lowland rice. Soil Sci Soc Am J 64:1644–1650

    CAS  Google Scholar 

  • Biswas JC, Ladha JK, Dazzo FB, Yanni YG, Rolfe BG (2000b) Rhizobial inoculation influences seedling vigor and yield of rice. Agron J 92:880–886

    Google Scholar 

  • Bolwerk A, Lagopodi AL, Wijfjes AH, Lamers GE, Chin AWTF, Lugtenberg BJJ, Bloemberg GV (2003) Interactions in the tomato rhizosphere of two Pseudomonas biocontrol strains with the phytopathogenic fungus Fusarium oxysporum f. sp. radicis-lycopersici. Mol Plant Microbe Interact 19:983–993

    Google Scholar 

  • Briat JF (1992) Iron assimilation and storage in prokaryotes. J Gen Microbiol 138:2475–2483

    PubMed  CAS  Google Scholar 

  • Briel BT, Borneman J, Triplett EW (1996) A newly discovered gene tfuA, involved in the production of the ribosomally synthesized peptide antibiotic trifolitoxin. J Bacteriol 178:4150–4157

    Google Scholar 

  • Broadbent P, Baker KF, Franks N, Holland J (1977) Effect of Bacillus spp. on increased growth of seedlings in steamed and in non-treated soil. Phytopathology 67:1027–1034

    Google Scholar 

  • Brown ME (1974) Seed and root bacterization. Ann Rev Phytopathol 12:181–197

    CAS  Google Scholar 

  • Cakmacki R, Kantar F, Algur OF (1999) Sugar beet and barley yields in relation to Bacillus polymyxa and Bacillus megaterium var. phosphaticum inoculation. J Plant Nutr Soil Sci 162:437–442

    Google Scholar 

  • Carson KC, Meyer JM, Dilworth MJ (2000) Hydroxamate siderophores of root nodule bacteria. Soil Biol Biochem 32:11–21

    CAS  Google Scholar 

  • Cattelan AJ, Hartela PG, Fuhrmann JJ (1999) Screening for plant growth-promoting rhizobacteria to promote early soybean growth. Soil Sci Soc Am J 63:1670–1680

    CAS  Google Scholar 

  • Chabot R, Antoun H, Cescas MP (1993) Stimulation de la croissance du mais et de la laitue romaine par der microorganisms dissolvent le phosphore inorganique. Can J Microbiol 39:941–947

    Google Scholar 

  • Chakraborthy U, Chakraborthy BN, Basnet M, Chakraborthy AP (2009) Evaluation of Ochrobacterium anthropi TRS-2 and its talc based bioformulation for enhancement of growth of tea plants and management of brown root rot disease. J Appl Microbiol 107(2):625–634

    Google Scholar 

  • Chakraborty U, Purkayastha RP (1984) Role of rhizobiotoxine in protecting soybean roots from Macrophomina phaseolina. Can J Microbiol 30:285–289

    PubMed  CAS  Google Scholar 

  • Chandel S, Allan EJ, Woodward S (2010) Biological control of Fusarium oxysporum f.sp. lycopersici on tomato by Brevibacillus brevis. J Phytopathol 158:470–478

    CAS  Google Scholar 

  • Chandra S, Choure K, Dubey RC, Maheshwari DK (2007) Rhizosphere competent Mesorhizobium loti MP6 induces root hair curling of Indian mustard (Brassica compestris). Braz J Microbiol 38:124–130

    Google Scholar 

  • Chandrashekar DS, Shekar Shetty S, Datta RK (1996) Effect of inoculation with Acaulospora laevis, Bacillus megaterium var. phosphate-cum and Azospirillum brasilense using two sources of phosphorus on the growth and leaf yield of mulberry. Sericol 36(2):283–287

    Google Scholar 

  • Chang MM, Hadger LA, Horovitz D (1992) Molecular characterization of a pea β-1, 3-glucanase induced by Fusarium solani and chitosan challenge. Plant Mol Biol 20:609–618

    PubMed  CAS  Google Scholar 

  • Chanway CP (1997) Inoculation of tree roots with plant growth promoting rhizobacteria: an emerging technology for reforestation. For Sci 43:99–112

    Google Scholar 

  • Chanway CP, Holl FB (1994) Ecological growth response specificity of two Douglas-fir ecotypes inoculated with co-existent beneficial rhizosphere bacteria. Can J Bot 72:582–586

    Google Scholar 

  • Chanway CP, Shishido M, Nairn J, Jungwirth S, Markham J, Xiao G, Holl FB (2000) Endophytic colonization and field response of hybrid spruce seedlings after inoculation with plant growth promoting rhizobacteria. For Ecol Manage 133:81–88

    Google Scholar 

  • Chao WL (1990) Antagonistic activity of Rhizobium spp. against beneficial and plant pathogenic fungi. Lett Appl Microbiol 10:213–215

    Google Scholar 

  • Choudhary DK, Johri BN (2008) Interactions of Bacillus spp. and plants–with special reference to induced systemic resistance (ISR). Microbiol Res 164(5):493–513

    PubMed  Google Scholar 

  • Christiansen I, Graham PH (2002) Variation in nitrogen (N2) fixation among Andean bean (Phaseolus vulgaris L.) genotypes grown at two levels of phosphorus supply. Field Crops Res 73:133–142

    Google Scholar 

  • Colyer PD, Mount MS (1984) Bacterization of potatoes with Pseudomonas putida and its influence on postharvest soft rot diseases. Plant Dis 68:703–706

    Google Scholar 

  • Compant S, Duffy B, Nowak J, Clement C, Barka A (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71(9):4951–4959

    PubMed  CAS  Google Scholar 

  • Dakora FD, Philips DA (2002) Root exudates as mediators of mineral acquisition in low-nutrient environments. Plant Soil 245:35–47

    CAS  Google Scholar 

  • Das PK, Ghosh A, Katiyar RS, Sengupta AK (1990) Response of irrigated mulberry to Azotobacter and Azospirillum biofertilizers under graded levels of nitrogen. J Gen Microbiol 31:251–255

    Google Scholar 

  • Das PK, Choudhury PC, Gosh A, Katiyar RS, Mathur VB, Madhava Rao AR, Mazumder MK (1994) Studies on the effect of bacterial biofertilizer in irrigated mulberry (Morus alba). Ind J Seric 33(2):70–173

    Google Scholar 

  • Datta M, Banish S, Gupta RK (1982) Studies on the efficacy of a phytohormone producing phosphate solubilizing Bacillus firmus in augmenting paddy yield in acid soils of Nagaland. Plant Soil 69:365–373

    CAS  Google Scholar 

  • Davey ME, O’Toole AG (2000) Microbial biofilms: from ecology to molecular genetics. Microbiol Mol Biol Rev 64:847–867

    PubMed  CAS  Google Scholar 

  • de Freitas JR (2000) Yield and N assimilation of winter wheat (Triticum aestivum L. var Norstar) inoculated with rhizobacteria. Pedobiologia 44:97–104

    Google Scholar 

  • de Freitas JR, Germida JJ (1991) Pseudomonas cepacia and Pseudomonas putida as winter wheat inoculants for biocontrol of Rhizoctonia solani. Can J Microbiol 37:780–784

    Google Scholar 

  • de Freitas JR, Germida JJ (1992a) Growth promotion of winter wheat by fluorescent pseudomonads under field conditions. Soil Biol Biochem 24:1137–1146

    Google Scholar 

  • de Freitas JR, Germida JJ (1992b) Growth promotion of win-l by fluorescent pseudomonads under growth chamber B. Soil Biol Biochem 24:1127–1135

    Google Scholar 

  • de Freitas JR, Banerjee MR, Germida JJ (1997) Phosphate-solubilizing rhizobacteria enhance the growth and yield but not phosphorous uptake of canola (Brassica napus L.). Biol Fertil Soils 24:358–364

    Google Scholar 

  • de Frietas JR, Germida JJ (1990) Plant growth-promoting rhizobacteria for winter wheat. Can J Microbiol 36:265–272

    Google Scholar 

  • Defago G, Berling CH, Burger U, Hass D, Hahr G, Keel C, Voisard C, Wirthner PH, Wutrich B (1990) Suppression of black root rot of tobacco by a Pseudomonas strain: potential applications and mechanisms. In: Hornby D (ed) Biological control of soil-borne plant pathogens. CAB international, Oxfordshire, pp 93–108

    Google Scholar 

  • Deshwal VK, Dubey RC, Maheshwari DK (2003) Isolation of plant growth promoting Bradyrhizobium (Arachis sp.) with biocontrol potential against Macrophomina phaseolina causing charcoal root of peanut. Curr Sci 84:443–448

    Google Scholar 

  • Dey R, Pal KK, Bhatt DM, Chauhan SM (2004) Growth promotion and yield enhancement of peanut (Arachis hypogea L.) by application of plant growth-promoting rhizobacteria. Microbiol Res 15:371–394

    Google Scholar 

  • Dobbelaere S, Croonenborghs A, Thys A, Ptasek D, Vanderleyden J, Dutto P, Labandera-Gonzalez C, Caballero-Mellado Aguirre JF, Kapulnik Y, Brener S, Burclman S, Kadouri D, Sarig S, Okon Y (2001) Responses of agronomically important crops to inoculation with Azospirillum. Aust J Plant Physiol 28:871–879

    Google Scholar 

  • Doneche B, Marcantoni G (1992) The inhibition of Botrytis cinerea by soil bacteria. A new opportunity for biological control of grey rot Comptes Rendus de L’Académie des Sciences Série III. Sci Vie 314:279–283

    Google Scholar 

  • Dubey SK (1996) Combined effect of Bradyrhizobium japonicum and phosphate solubilizing Pseudomonas striata on nodulation, yield attributes and yield of rainfed soybean (Glycine max L.) under different sources of phosphorus in vertisols. Ind J Agric Sci 66:28–32

    Google Scholar 

  • Duhoon SS, Jain HC, Deshmukh MR, Goswami U (2001) Effect of organic and inorganic fertilizers along with biofertilizers on kharif sesame (Sesamum indicum L.) under different soils and locations in India. J Oilseeds Res 18(2):178–180

    Google Scholar 

  • Dunne C, Crowley JJ, Moenne-Locooz Y, Dowling DN, de Bruijn PJ, O’Gara F (1997) Biological control of Pythium ultimum by Stenotrophomonas maltopholia W81 is mediated by an extracellular proteolytic activity. Microbiology 143:3921–3931

    CAS  Google Scholar 

  • Ekin Z, Oguz F, Erman M, Ögün E (2009) The effect of Bacillus sp. OSU-142 inoculation at various levels of nitrogen fertilization on growth, tuber distribution and yield of potato (Solanum tuberosum L.). African. J Biotechnol 8(18):4418–4424

    CAS  Google Scholar 

  • Emmert EAB, Handelsman J (1999) Biocontrol of plant disease: a Gram-positive perspective. FEMS Microbiol Lett 171:1–9

    PubMed  CAS  Google Scholar 

  • Enebak SA, Wei G, Kloepper JW (1998) Effects of plant growth-promoting rhizobacteria on loblolly and slash pine seedlings. For Sci 44:139–144

    Google Scholar 

  • Fridlender M, Inbar J, Chet I (1993) Biological control of soil borne plant pathogens by β-1, 3-glucanase producing Pseudomonas cepacia. Soil Biol Biochem 25(9):1211–1221

    CAS  Google Scholar 

  • Frommel MI, Nowak J, Lazarovitis G (1991) Growth enhancement and developmental modifications of in vitro grown potato (Solatium luhcrosum ssp. tuhcrosum). Plant Physiol 9:928–936

    Google Scholar 

  • Frommel MI, Nowak J, Lazarovitis G (1993) Treatment of potato tubers with a growth promoting Pseudomonas spp.: plant growth responses and bacterium distribution in the rhizosphere. Plant Soil 150:51–60

    Google Scholar 

  • Gangwar SK, Thangavelu K (1992) Occurrence of mulberry disease in Tamil Nadu. Ind Phytopathol 44:545–549

    Google Scholar 

  • Garbeva P, van Veen JA, van Elas JD (2004) Assessment of the diversity and antagonism towards Rhizoctonia solani AG3 of Pseudomonas spp. in soil from different agricultural regimes. FEMS Microbiol Ecol 47:51–64

    PubMed  CAS  Google Scholar 

  • Garcia Lucas JA, Probanza A, Ramos B, Colon Flores JJ, Gutierrez Manero FJ (2004) Effects of plant growth promoting rhizobacteria (PGPRs) on the biological nitrogen fixation, nodulation and growth of Lupinus albus L. cv. Multolupa. Eng Life Sci 4(1):71–77

    Google Scholar 

  • Geels FP, Schippers B (1983) Reduction of yield depressions in high frequency potato cropping soil after seed tuber treatment with antagonistic fluorescent Pseudomonas spp. Phytopathol Z 108:207–214

    Google Scholar 

  • Geels FP, Lamers JG, Hoekstra O, Schippers B (1986) Potato plant response to seed tuber bacterization in the field in various rotations. Neth J Plant Pathol 92:257–272

    Google Scholar 

  • Gholami A, Shahsavani S, Nezarat S (2009) The effect of Plant Growth Promoting Rhizobacteria (PGPR) on germination, seedling growth and yield of maize. World Acad Sci Eng Tech 49:19–24

    Google Scholar 

  • Ghosh S, Penterman JN, Little RD, Chavez R, Glick BR (2003) Three newly isolated plant growth-promoting bacilli facilitate the seedling growth of canola Brassica campestris. Plant Physiol Biochem 41:277–281

    CAS  Google Scholar 

  • Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 47:109–117

    Google Scholar 

  • Glick BR, Jabcobson CB, Schwarze MMK, Pasternak JJ (1994) Does the enzyme 1-aminocyclopropane-1-carboxylate deaminase play a role in plant growth-promotion by Pseudomonas putida GR12-2. In: Ryder MH, Stephens PM, Bowen GD (eds) Improving plant productivity with rhizosphere bacteria. Commonwealth Scientific and Industrial Organization, Adelaide, Australia, pp 150–152

    Google Scholar 

  • Glick BR, Patten CL, Holguin G, Penrose DM (1999) Biochemical and genetic mechanism used by plant growth-promoting bacteria. Imperial College Press, London, UK

    Google Scholar 

  • Goldstein AH (1986) Bacterial solubilization of mineral phosphates: historical perspective and future prospects. Am J Alt Agric 1:57–65

    Google Scholar 

  • Goldstein AH, Liu ST (1987) Molecular cloning and regulation of a mineral phosphate solubilizing gene from Erwinia herbicola. Bioresour Technol 5:72–74

    CAS  Google Scholar 

  • González J, Lluch C (1992) Biología del Nitrógeno. Interacción Planta-Microorganismo, Rueda, Madrid, Spain

    Google Scholar 

  • Greiner R, Alminger LM (2001) Stereospecificity of myo-inositol hexakisphosphate dephosphorylation by phytate degrading enzymes of cereals. J Food Biochem 25:229–248

    CAS  Google Scholar 

  • Griffith M, Ewart KV (1995) Antifreeze proteins and their potential use in frozen foods. Biotechnol Adv 13(3):375–402

    PubMed  CAS  Google Scholar 

  • Grimes HD, Mount MS (1987) Influence of Pseudomonas putida on nodulation of Phaseolus vulgaris. Soil Biol Biochem 6:27–30

    Google Scholar 

  • Gulati SL, Mishra SK, Gulati N, Tyagi MC (2001) Effect of inoculation of plant growth promoting rhizobacteria on cowpea. Ind J Microbiol 41:223–224

    Google Scholar 

  • Gunasinghe WKRN, Karunaratne AM (2009) Interaction of Colletotrichum musae and Lasiodiplodia theobromae and their biocontrol by Pantoea agglomerans and Flavobacterium spp. in expression of crown rot of “Embul” banana. BioCont 54:587–596

    Google Scholar 

  • Gupta CP, Sharma A, Dubey RC, Maheshwari DK (2001a) Effect of metal ions on the growth of Pseudomonas aeruginosa and siderophore and protein production. Ind J Exp Biol 39:1318–1321

    CAS  Google Scholar 

  • Gupta CP, Dubey RC, Maheshwari DK (2002) Plant growth enhancement and suppression of Macrophomina phaseolina causing charcoal rot of peanut by fluorescent Pseudomonas. Biol Fert Soils 35:399–405

    CAS  Google Scholar 

  • Gupta A, Saxena AK, Gopal M, Tilak KVBR (2003) Effects of co-inoculation of plant growth promoting rhizobacteria and Bradyrhizobium sp. (Vigna) on growth and yield of green gram (Vigna radiata (L.) Wilczek. Trop Agr 80:28–35

    Google Scholar 

  • Gupta VP, Mishra S, Chowdary NB, Vindhya GS, Rajan RK (2008) Integration of plant growth promoting rhizobacteria and chemical elicitors for induction of systemic resistance in mulberry against multiple diseases. Arch Phytopathol Plant Prot 41(3):198–206

    CAS  Google Scholar 

  • Gutterson NI, Layton TJ, Zeigle JS, Warren GJ (1986) Molecular cloning of genetic determinants for inhibition of fungal growth by fluorescent pseudomonad. J Bacteriol 165:696–703

    PubMed  CAS  Google Scholar 

  • Gyaneshwar P, Kumar GN, Parekh LJ, Poole PS (2002) Role of soil microorganisms in improving P nutrition of plants. Plant Soil 245:83–93

    CAS  Google Scholar 

  • Hallaksela AM, Vaisanen O, Salkinoja-Salonen M (1991) Identification of Bacillus species isolated from Picea abies by physiological tests, phage typing and fatty acid analysis. Scand J For Res 6:365–377

    Google Scholar 

  • Halsall DM (1993) Inoculation of wheat straw to enhance lignocellulose breakdown and associated nitrogenase activity. Soil Biol Biochem 25:419–429

    CAS  Google Scholar 

  • Han HS, Lee KD (2005) Physiological responses of soybean-inoculation of Bradyrhizobium japonicum with PGPR in saline soil conditions. Res J Agric Biol Sci 1(3):216–221

    Google Scholar 

  • Hera C (1996) The role of inorganic fertilizers and their management practices. In: Rodriguez – Barrueco, C (eds) Fertil Environ 39:131–149

    Google Scholar 

  • Hervas A, Landa B, Datnoff LE, Jimenez-Diaz RM (1998) Effects of commercial and indigenous microorganisms on Fusarium wilt development in chickpea. Biol Control 13:166–176

    Google Scholar 

  • Howell RK (1987) Rhizobium induced mineral uptake in peanut tissues. J Plant Nutr 10:1297–1305

    CAS  Google Scholar 

  • Howie WJ, Echandi E (1983) Rhizobacteria: influence of cultivar and soil type on plant growth and yield of potato. Soil Biol 15:127–132

    Google Scholar 

  • Huang HC, Erickson RS (2007) Effect of seed treatment with Rhizobium leguminosarum on pythium damping-off, seedling height, root nodulation, root biomass, shoot biomass, and seed yield of pea and lentil. J Phytopathol 155:31–37

    Google Scholar 

  • Huang HC, Kokko EG, Yanke LJ, Phillippe RC (1993) Bacterial suppression of basal pod rot and end rot of dry peas caused by Sclerotinia sclerotorium. Can J Microbiol 39:227–233

    Google Scholar 

  • Idris EES, Bochow H, Ross H, Boriss F (2004) Use of Bacillus subtilis as biocontrol agent. 6. Phytohormone action of culture filtrate prepared from plant growth promoting Bacillus amyloliquefaciens FZB24, FZB42, FZB45 and Bacillus subtilis FZB37. J Plant Dis Prot 111:583–597

    CAS  Google Scholar 

  • Iswandi A, Bossier P, Vandenbcele J, Verstracte W (1987) Effect of seed inoculation with the rhizopseudomonad strain 7NSK2 on the root microbiota of maize (Zea mays) and barley (Hordeum vulgare). Biol Fert Soils 3:153–158

    Google Scholar 

  • Jacobson BJ, Zidack NK, Larson BJ (2004) The role of Bacillus based biological control agents in integrated pest management: plant diseases. Phytopathology 94:1272–1275

    Google Scholar 

  • Jacoud C, Job D, Wadoux P, Bally R (1999) Initiation of root growth stimulation by Azospirillum lipoferum CRT1during maize seed germination. Can J Microbiol 45:339–342

    CAS  Google Scholar 

  • Jacques P, Hbid C, Destain J, Razafindralambo H, Paquot M, Pauw E, Thonart P (1999) Optimization of biosurfactant lipopeptide production from Bacillus subtilis S499 by Plackett-Burman design. Appl Biochem Biotechnol 77:223–233

    Google Scholar 

  • Jadhav RS, Thaker NV, Desai A (1994) Involvement of the siderophore of cowpea Rhizobium in the iron nutrition of the peanut. World J Microbiol Biotechnol 10:360–361

    CAS  Google Scholar 

  • James DW Jr, Gutterson NI (1986) Multiple antibiotics produced by Pseudomonas fluorescens HV37a and their differential regulation by glucose. Appl Environ Microbiol 52:1183–1189

    PubMed  CAS  Google Scholar 

  • Ji X, Lu G, Gai Y, Zheng Ch MuZ (2008) Biological control against bacterial wilt and colonization of mulberry byan endophytic Bacillus subtilis strain. Microbiol Ecol 65:565–573

    CAS  Google Scholar 

  • Joshi FR, Archana G, Desai AJ (2006a) Siderophore cross-utilization amongst rhizospheric bacteria and role of their differential affinities for Fe3+ on growth stimulation under iron limited conditions. Curr Microbiol 53:141–147

    PubMed  CAS  Google Scholar 

  • Joshi KK, Kumar V, Dubey RC, Maheshwari DK (2006b) Effect of chemical fertilizer adaptive variants, Pseudomonas aeruginosa GRC2 and Azotobacter chroococcum AC1 on Macrophomina phaseolina causing charcoal rot of Brassica juncea. Kor J Environ Agric 25(3):228–235

    Google Scholar 

  • Joshi F, Kholiya S, Archana G, Desai AJ (2008) Siderophore cross-utilization amongst nodule isolates of the cowpea miscellany group and its effect on plant growth in the presence of antagonistic organisms. Microbiol Res 163:564–570

    PubMed  Google Scholar 

  • Joshi FR, Dhwani KD, Archana G, Desai AJ (2009) Enhanced survival of and nodule occupancy of Pigeon pea nodulating Rhizobium sp ST1 expressing fegA gene of Bradyrhizobium japonicum 61A152. On line J Boil Sci 9(2):40–51

    CAS  Google Scholar 

  • Juhnke ME, Mathre DE, Sands DC (1987) Identification and characterization of rhizosphere competent bacteria of wheat. Appl Environ Microbiol 53:2793–2799

    PubMed  CAS  Google Scholar 

  • Kaiser P (1995) Diazotrophic mixed cultures of Azospirillum brasilense and Enterobacter cloacae. In: Fendric I, Del Gallo M, Vanderleyden J, de Zamaroczy M (eds) Azospirillum VI and related microorganisms, genetics-physiology ecology, vol 37, NATO ASI Series G: Ecological Sciences. Springer, Berlin, Heidelberg, Germany, pp 207–212

    Google Scholar 

  • Kandasamy S, Loganathan K, Muthuraj R, Duraisamy S, Seetharaman S, Thiruvengadam R, Ponnusamy B, Ramasamy S (2009) Understanding the molecular basis of plant growth promotional effect of Pseudomonas fluorescens on rice through protein profiling. Prot Sci 7:47

    Google Scholar 

  • Karakurt H, Aslantas R (2010) Effects of some plant growth promoting rhizobacteria treated twice on flower thinning, fruit set and fruit properties on apple. Afr J Agric Res 5(5):384–388

    Google Scholar 

  • Karlidag H, Esitken A, Turan M, Sahin F (2007) Effect of root inoculation of plant growth promoting rhizobacteria (PGPR) on yield, growth and nutrient element contents of leaves of apple. Sci Hortic 114:16–20

    CAS  Google Scholar 

  • Kasiviswanathan K, Krisnaswami S, Venkataramu CV (1977) Studies of varietal cum spacing and nitrogen fertilisation on the leaf yield of mulberry under irrigated conditions in Karnataka state. Ind J Seric 16:10–18

    Google Scholar 

  • Kenny DR (1982) Nitrogen management of maximum efficiency and minimum pollution. In: Stevenson FJ (ed) Nitrogen in agricultural soils. Am Soc Agron, Madison, Wisconsin

    Google Scholar 

  • Khalid A, Arshad M, Zahir ZA (2004) Screening plant growth promoting rhizobacteria for improving growth and yield of wheat. J Appl Microbiol 96:473–480

    PubMed  CAS  Google Scholar 

  • Khammas KM, Kaiser P (1992) Pectin decomposition and associated nitrogen fixation by mixed cultures of Azospirillum and Bacillus species. Can J Microbiol 38:794–797

    PubMed  CAS  Google Scholar 

  • Khan MR, Talukdar NC, Thakuria D (2003) Detection of Azospirillum and PSB in rice rhizosphere soil by protein and antibiotic resistance profile and their effect on grain yield of rice. Ind J Biotechnol 2:246–250

    Google Scholar 

  • Khan A, Geetha R, Akolkar A, Pandya A, Archana G, Desai AJ (2006) Differential cross-utilization of heterologous siderophores by nodule bacteria of Cajanus cajan and its, possible role in growth under iron-limited conditions. Appl Soil Ecol 34:19–26

    Google Scholar 

  • Kloepper JW, Beauchamp CJ (1992) A review of issues related to measuring of plant roots by bacteria. Can J Microbiol 38:1219–1232

    Google Scholar 

  • Kloepper JW, Schorth MN (1978) Plant growth promoting rhizobacteria in radishes. In: Angers INRA (ed) Proc 4th Int Conf Plant Pathology Bacteria, staion de pathologie, vol 2. Gibert-Clary, Tours, France, pp 879–882

    Google Scholar 

  • Kloepper JW, Leong J, Teintze M, Schroth MN (1980) Pseudomonas siderophores: a mechanism explaining disease-suppressive soil. Curr Microbiol 4:317–320

    CAS  Google Scholar 

  • Kloepper JW, Hume DJ, Scher FM, Singeleton C, Tipping B, Laliberte M, Frauley K, Kutchaw T, Simonson C, Lifshitzr R, Zeleska I, Lee L (1988a) Plant growth-promoting rhizobacteria (PGPR) on canola (rape seed). Plant Dis 72:42–46

    Google Scholar 

  • Kloepper JW, Hume DJ, Scher FM, Singleton C, Tipping B, Lalibertre M, Frauley K, Kutchaw T, Simonson C, Lifshitz R, Zaleska I, Lee L (1988b) Plant growth-promoting rhizobacteria on potato plant development and yield. Phytopathology 70:1078–1082

    Google Scholar 

  • Kloepper JW, Lifshitz R, Zablotowich RK (1989) Free living bacterial inocula for enhancing crop productivity. Trends Biotechnol 7:39–43

    Google Scholar 

  • Kloepper JW, Rodriguez-Kabana R, McInroy JA, Collins DJ (1991) Analysis of populations and physiological characterization of microorganisms in rhizosphere of plants with antagonistic properties to phytopathogenic nematodes. Plant Soil 136:95–102

    Google Scholar 

  • Kloepper JW, Ryu CM, Zhang S (2004) Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94(11):1259–1266

    PubMed  CAS  Google Scholar 

  • Kropp BR, Thomas E, Pounder JI, Anderson AJ (1996) Increased emergence of spring wheat after inoculation with Pseudomonsy chlorarphis isolate 2E3 under field and laboratory conditions. Biol Fert Soil 23:200–206

    CAS  Google Scholar 

  • Kumar B, Dubey RC, Maheshwari DK (2005a) Biocontrol of Macrophomina phaseolina: prospects and constraints. In: Satyanarayana T, Johri BN (eds) Microbial diversity: current perspectives and potential applications. I.K. International Pvt Ltd, New Delhi, pp 471–492

    Google Scholar 

  • Kumar T, Kang SC, Maheshwari DK (2005b) Nematicidal activity of some fluorescent pseudomonads on cyst forming nematode, Heterodera cajani and growth of Sesamum indicum var. RT1. Agric Chem Biotechnol 48(4):161–166

    Google Scholar 

  • Kumar T, Bajpai VK, Maheshwari DK, Kang SC (2005c) Plant growth promotion and suppression of root disease complex due to Meloidogyne incognita and Fusarium oxysporum by fluorescent pseudomonads in tomato. Agric Chem Biotechnol 48(2):79–83

    Google Scholar 

  • Kumar S, Pandey P, Maheshwari DK (2009) Reduction in dose of chemical fertilizers and growth enhancement of sesame (Sesamum indicum L.) with application of rhizospheric competent Pseudomonas aeruginosa LES4. Eur J Soil Biol 45:334–340

    CAS  Google Scholar 

  • Kumar H, Bajpai VK, Dubey RC, Maheshwari DK, Sun Chul Kang SC (2010) Wilt disease management and enhancement of growth and yield of Cajanus cajan (L) var. Manak by bacterial combinations amended with chemical fertilizer. Crop Prot 29:591–598

    Google Scholar 

  • Lalande R, Bissonnette N, Coutlée D, Antoun H (1989) Identification of rhizobacteria from maize and determination of their plant-growth promoting potential. Plant Soil 115:7–11

    Google Scholar 

  • Lange L (2000) Microbes and microbial products in plant protection. In: Oral sessions of the 5th International Workshop on PGPR 125

    Google Scholar 

  • Laxmikumari M, Vijyalaxmi K, Subba Rao NS (1975) Interaction between Azotobacter species and fungi. In vitro studies Fusarium moniliforme sheld. J Phytopathol 75(1):27–30

    Google Scholar 

  • Lee KJ, Kamala-Kannan S, Sub HS, Seong CK, Lee GW (2008) Biological control of Phytophthora blight in red pepper (Capsicum annuum L.) using Bacillus subtilis. World J Microbiol Biotechnol 24:1139–1145

    CAS  Google Scholar 

  • Leyval C, Berthelin J (1989) Interaction between Laccaria laccata, Agrobacterium radiobacter and beech roots: influence on P, K, Mg and Fe mobilization from minerals and plant growth. Plant Soil 117:103–110

    CAS  Google Scholar 

  • Li L, Mo M, Qu Q, Luo H, Zang K (2007) Compounds inhibitory to the nematophagous fungi produced by Bacillus spp. strain H6 isolated from fungistatic soil. Eur J Plant Pathol 117:329–340

    CAS  Google Scholar 

  • Lifshitz R, Kloepper JW, Kozlwski M, Cacison J, Tipping EM, Zalestha I (1987) Growth promotion of canola (rape seed) seedling by a strain of Pseudomonas putida under gnotobiotic conditions. Can J Microbiol 33:390–395

    Google Scholar 

  • Lim HS, Kim SD (1995) The role and characterization of β-1, 3-glucanase in biocontrol of Fusarium solani by Pseudomonas stutzeri YLP-1. Curr Microbiol 33(4):295–301

    CAS  Google Scholar 

  • Lucy M, Reed E, Glick R (2004) Application of free living plant growth promoting rhizobacteria. Antonie Leeuwenhoek 86:1–25

    PubMed  CAS  Google Scholar 

  • Lugtenberg BJJ, Bloemberg GB (2004) In: Ramos JL (ed) Pseudomonas, vol 1. Kluwer, Academic Publishers, New York, pp 403–430

    Google Scholar 

  • Lumsden RD, Garica-ER LJA, Frias-T GA (1987) Suppression of damping-off caused by Pythium spp in soil from the indigenous Mexican chinampa agricultural system. Soil Biol Biochem 19:501–508

    Google Scholar 

  • Ma W, Guinel FC, Glick BR (2003) Rhizobium leguminosarum biovar viciae 1-aminocyclopropane-1-carboxylate deaminase promotes nodulation of pea plants. Appl Environ Microbiol 69:4396–4402

    PubMed  CAS  Google Scholar 

  • Madhaiyan M, Poonguzhali S, Ryu J, Sa T (2006) Regulation of ethylene levels in canola Brassica campestris) by 1-aminocyclopropane-1-carboxylate deaminase-containing Methylobacterium fujisawaense. Planta 224:268–278

    PubMed  CAS  Google Scholar 

  • Mafia RG, Alfenas AC, Ferreira EM, Binoti DHB, Mafia GMV, Mounteer AH (2009) Root colonization and interaction among growth promoting rhizobacteria isolates and eucalypts species. Rev Árvore 33(1) Viçosa Jan/Feb

    Google Scholar 

  • Mahmoud ALE, Abd-Alla MH (2001) Siderophore production by some microorganisms and their effect on Bradyrhizobium-Mung Bean symbiosis. Int J Agric Biol 03(2):157–162

    CAS  Google Scholar 

  • Mantelin S, Touraine B (2004) Plant growth-promoting bacteria and nitrate availability: impacts on root development and nitrate uptake. J Exp Bot 55:27–34

    PubMed  CAS  Google Scholar 

  • Maplestone PA, Campbell R (1989) Colonization of roots of wheat seedlings by bacilli proposed as biocontrol agents against take all. Soil Biol Biochem 21:543–550

    Google Scholar 

  • Mavingui P, Languerre G, Berge O, Heulin T (1992) Genetic and phenotypic diversity of Bacillus polymyxa in soil and in the wheat rhizosphere. Appl Environ Microbiol 58:1894–1903

    PubMed  CAS  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2001) Stimulation of the growth of tomato, pepper and mung bean plants by the plant growth-promoting bacterium Enterobacter cloacae CAL3. Biol Agric Hort 19:261–274

    Google Scholar 

  • McInroy JA, Kloepper JW (1995) Survey of indigenous bacterial endophytes from cotton and sweet corn. Plant Soil 173:337–342

    CAS  Google Scholar 

  • Meena B, Radhajeyalakshmi R, Marimuthu T, Vidhyasekaran P, Velazhahan R (2002) Biological control of groundnut late leaf spot and rust by seed and foliar applications of a powder formulation of Pseudomonas fluorescens. Biocontrol Sci Technol 12:195–204

    Google Scholar 

  • Meena B, Marimuthu T, Velazhahan R (2006) Role of fluorescent Pseudomonads in plant growth promotion and biological control of late leaf spot of groundnut. Acta Phytopathol Entom Hung 41(3–4):203–212

    Google Scholar 

  • Mei R, Chen B, Lu S, Chen Y (1990) Field application of yield increasing bacteria (Y1B). Chin J Microecol 2:45–49

    Google Scholar 

  • Mia MAB, Shamsuddin ZH, Wahab Z, Marziah M (2005) High-yielding and quality banana production through plant growth-promoting rhizobacterial inoculation. Fruits 60:179–185

    Google Scholar 

  • Milus EA, Rothrock CS (1993) Rhizosphere colonization of wheat by selected soil bacteria over diverse environments. Can J Microbiol 39:335–341

    Google Scholar 

  • Misaghi IJ, Donndelinger CR (1990) Endophytic bacteria in symptom-free cotton plants. Phytopathology 9:808–811

    Google Scholar 

  • Mishra PK, Mishra S, Selvakumar G, Bisht JK, Kundu S, Gupta HS (2009) Coinoculation of Bacillus thuringeinsis-KR1 with Rhizobium leguminosarum enhances plant growth and nodulation of pea (Pisum sativum L) and lentil (Lens culinaris L). World J Microbiol Biotechnol 25(5):753–761

    Google Scholar 

  • Mohammad G, Prasad R (1988) Influence of microbial fertilizers on biomass accumulation in polypotted Eucalyptus camaldulcnxis Dehn. seedlings. J Trop For 4:47–77

    Google Scholar 

  • Nagendra Kumar TD, Sukumar J (2001) Response of M-5 mulberry (Morus indica L) to inoculation with phosphate solubilizing bacteria and fungi. Bull Int Acad Seri 5(1):54–58

    Google Scholar 

  • Neilands JB, Nakamura K (1991) Detection, determination, isolation, characterization and regulation of microbial iron chelates. In: Winkelmann G (ed) CRC handbook of microbial iron chelates. CRC Press, London, pp 1–14

    Google Scholar 

  • O’Neill GA, Chanway CP, Axelrood PE, Radley RA, Holl FB (1992) Growth response specificity of spruce inoculated with coexistent rhizosphere bacteria. Can J Bot 70:2347–2353

    Google Scholar 

  • O’Sullivan DJ, O’Gara F (1992) Traits of fluorescent Pseudomonas spp. involved in suppression of plant root pathogens. Microbiol Rev 56:662–676

    PubMed  Google Scholar 

  • Okon Y, Labandera-Gonzalez CA (1994) Agronomic applications of Azospirillum: an evaluation of 20 years worldwide field inoculation. Soil Biol Biochem 26:1591–1601

    CAS  Google Scholar 

  • Omar SA, Abd-Alla MH (1994) Enhancement of faba bean nodulation, nitrogen fixation, and growth by different microorganisms. Biol Plant 36:295–300

    CAS  Google Scholar 

  • Ongena M, Jacques P (2007) Bacillus lipopetides: versatile weapons for plant disease biocontrol. Trends Microbiol 16(3):115–125

    Google Scholar 

  • Pal SS (1998) Interaction of an acid tolerant strain of phosphate solubilizing bacteria with a few acid tolerant crops. Plant Soil 198:169–177

    CAS  Google Scholar 

  • Pal KK, Dey R, Bhatt DM, Chauhan SM (2000) Plant growth promoting fluorescent pseudomonads enhanced peanut growth, yield and nutrient uptake. In: Proceedings of the Fifth International PGPR Workshop, 29 October to 2 September, 2000.Cordoba, Argentina

    Google Scholar 

  • Pal KK, Tilak KVBR, Saxena AK, Dey R, Singh S (2001) Suppression of maize root disease caused by Macrophomina phaseolina, Fusarium moniliforme and Fusarium graminearum by plant growth-promoting rhizobacteria. Microbiol Res 156:209–223

    PubMed  CAS  Google Scholar 

  • Pan Q, Te YS, Kuc J (1991) A technique for detection of chitinases, β-1, 3-glucanases and protein patterns after single separation using PAGE or isoelectric focusing. Phytopathology 81:970–974

    CAS  Google Scholar 

  • Pandey P, Maheshwari DK (2007a) Two-species microbial consortium for growth promotion of Cajanus cajan. Curr Sci 92(8):1137–1142

    CAS  Google Scholar 

  • Pandey P, Maheshwari DK (2007b) Bioformulation of Burkholderia sp. MSSP multispecies consortium growth promotion Cajanus cajan. Can J Microbiol 53:213–222

    PubMed  CAS  Google Scholar 

  • Pandey RK, Bahl RK, Rao PRT (1986) Growth stimulation effects of nitrogen fixing bacteria (biofertilizer) on oak seedlings. Ind For 112:75–79

    Google Scholar 

  • Parmar N, Dadarwal KR (2000) Stimulation of plant growth of chickpea by inoculation of fluorescent Pseudomonads. J Appl Microbiol 86:36–44

    Google Scholar 

  • Patel VA, Vaishnav MV (1987) Assessment of losses in groundnut due to rust and tikka leaf spots in Gujarat. Res J Guj Agric Univ 12:52–53

    Google Scholar 

  • Pedraza RO, Motok J, Salazar SM, Ragout AL, Mentel MI, Tortora ML, Guerrero-Molina MF, Winik BC, Diaz-Ricci JC (2010) Growth-promotion of strawberry plants inoculated with Azospirillum brasilense. World J Microbiol Biotechnol 26:265–272

    Google Scholar 

  • Peña-Cabriales JJ, Alexander M (1983) Growth of Rhizobium in unamended soil. Soil Sci Soc Am J 47:81–84

    Google Scholar 

  • Peng GX, Tan ZY, Wang ET, Reinhold-Hurek B, Chen WF, Chen WX (2002) Identification of isolates from soybean nodules in Xinjiang region as Sinorhizobium xinjiangense and genetic differentiations of S. xinjiangense from Sinorhizobium fredii. Int J Syst Evol Microbiol 52:457–462

    PubMed  CAS  Google Scholar 

  • Perrot X, Stachelin C, Broughton WJ (2000) Molecular basis of symbiotic promiscuity. Microbiol Mol Biol Rev 64:180–201

    Google Scholar 

  • Planziski J, Innes RW, Rolfe BG (1985) Expression of Rhizobium trifoli early nodulation genes on maize and rice plants. J Bacteriol 163:812–815

    Google Scholar 

  • Podile AR, Dube HC (1988) Plant growth-promoting activity of Bacillus subtilis strain AF1. Curr Sci 57:183–186

    Google Scholar 

  • Pokojska-Burdziej A (1982) The effect of microorganisms, microbial metabolites and plant growth regulators (IAA and GA) on the growth of pine seedlings (Pinus sylvestris L.). Pol J Soil Sci 15:137–143

    CAS  Google Scholar 

  • Polyanskaya LM, Vedina OT, Lysak LV, Zvyagintev DG (2000) The growth-promoting effect of Btijcrinckia mobilis and Closiridium sp. cultures on some agricultural crops. Microbiology 71:109–115

    Google Scholar 

  • Porbanza A, Lucas Garcia JA, Ruiz Palomino M, Ramos B, Gutierrez Manero FJ (2002) Pinus pinea L. seedling growth and bacterial rhizosphere structure after inoculation with PGPR Bacillus (B. licheniformix CECT 5106 and B. pumilix CECT 5105). Appl Soil Ecol 20:75–84

    Google Scholar 

  • Rabindran R, Vidhyasekaran P (1996) Development of powder formulation of Pseudomonas Pf ALR 2 for the management of rice sheath blight. Crop Prot 15:715–721

    Google Scholar 

  • Rangarajan M, Santhanakrishnan P (1995) Plant growth promoting rhizobacteria and biofertilizers increase the fresh leaf yield and nutrient content in Morus alba. pp 189–195. In: Adholeya A, Singh S (Eds) Mycorrhizae: biofertilizers for the future. Proceedings of the Third National Conference on Mycorrhiza, New Delhi; India: 13–15 March 1995. New Delhi. pp.548

    Google Scholar 

  • Raupach GS, Kloepper JW (2000) Biocontrol of cucumber diseases in the field by plant growth-promoting rhizobacteria with and without methyl bromide fumigation. Plant Dis 84:1073–1075

    CAS  Google Scholar 

  • Rebafka FP, Batino A, Marschner H (1993) Phosphorus seed coating increases phosphorus uptake, early growth and yield of pearl millet (Pennisetum glaucum (L.) R. Br.) grown on an acid sandy soil in Niger. West Africa Fert Res 35:151–160

    CAS  Google Scholar 

  • Reddy MS, Ryu CM, Zhang S, Yan Z, Kloepper JW (2001) Aqueous formulation of plant growth-promoting rhizobacteria for control of foliar pathogens. Phytopathology 91:79–85

    Google Scholar 

  • Rediers H, Rainey PB, Vanderleyden J, De Mot R (2005) Unraveling the secret lives of bacteria: use of in vivo expression technology and differential fluorescence induction promoter traps as tools for exploring niche specific gene expression. Microbiol Mol Biol Rev 69:217–261

    PubMed  CAS  Google Scholar 

  • Reinhold-Hurek B, Hurek T (2000) Reassessment of the taxonomic structure of the diazotrophic genus Azoarcus sensu lato and description of three new genera and new species, Azovibrio restrictus gen. nov., sp. nov., Azospira oryzae gen. nov., sp. nov. and Azonexus fungiphilus gen. nov., sp. nov. Int J Sys Evol Microbiol 50:649–659

    CAS  Google Scholar 

  • Remans R, Croonenborghs A, Gutierrez RT, Michiels J, Vanderleyden J (2007) Effects of plant growth-promoting rhizobacteria on nodulation of Phaseolus vulgaris L. are dependent on plant P nutrition. Eur J Plant Pathol 119:341–351

    CAS  Google Scholar 

  • Roberts DE, Dery PD, Mao W, Hebrar PK (1997) Use of a colonization deficient strain of Escherichia coli in strain combination of biocontrol of cucumber seedling diseases. J Phytopathol 145:461–463

    Google Scholar 

  • Robson AD, O’Hara GW, Abbott LK (1981) Involvement of phosphorus in nitrogen fixation by subterranean clover (Trifolium subterraneum L.). Aust J Plant Physiol 28:427–436

    Google Scholar 

  • Rodelas B, González-López J, Martínez-Toledo MV, Pozo C, Salmerón V (1999) Influence of Rhizobium/Azotobacter and Rhizobium/Azospirillum combined inoculation on mineral composition of faba bean (Vicia faba L). Biol Fertil Soils 29(2):165–169

    CAS  Google Scholar 

  • Rodriguez-Barrueco CE, Cervantes NS, Subbarao NS, Rodriguez-Caceres E (1991) Growth promoting effect of Azospirillum brasilense on Casuarina cunninghamiana Miq. seedlings. Plant Soil 135:121–124

    Google Scholar 

  • Romero D, de Vicente A, Rakotoaly RH, Dufour SE, Veening JW, Arrebola E, Cazorla FM, Kuipers OP, Paquot M, Perez-Garcia A (2007) The iturin and fungycin families of lipopeptides are key factors in antagonism of Bacillus subtilis towards Podosphaera fusca. Mol Plant Microbe Interact 20(4):430–440

    PubMed  CAS  Google Scholar 

  • Rosas BS, Javier AA, Marisa R, Correa NS (2006) Phosphate solubilizing Pseudomonas putida can influence the rhizobia legume symbiosis. Soil Biol Biochem 38:3502–3505

    CAS  Google Scholar 

  • Ryu CM, Farag MA, Hu CH, Reddy M, Wei HX, Pare PW, Kloepper J (2003) Bacterial volatiles promote growth in Arabidopsis. Proc Nat Acad Sci USA 100:4927–4932

    PubMed  CAS  Google Scholar 

  • Sahin F, Cakmacki R, Kantar F (2004) Sugarbeet and barley yields in relation to inoculation with N2-fixing and phosphate solubilizing bacteria. Plant Soil 265:123–129

    CAS  Google Scholar 

  • Sailaja PR, Podile AR, Reddanna P (1997) Biocontrol strain of Bacillus subtilis AF 1 rapidly induces lipoxygenase in groundnut (Arachis hypogaea L) compared to crown rot pathogen Aspergillus niger. Eur J Plant Pathol 104(2):125–132

    Google Scholar 

  • Santhi A, Sivakumar CV (1995) Biocontrol potential of Pseudomonas fluorescens (Migula) against root knot nematode, Meloidogyne incognita (Kofoid and White, 1919) Chitwood, 1949 on tomato. J Biol Control 9:113–115

    Google Scholar 

  • Sarvanan VV, Subramoniam SR, Raj SA (2003) Assessing in vitro solubilization potential of different zinc solubilizing bacterial isolates. Braz J Microbiol 34:121–125

    Google Scholar 

  • Sarvanankumar D, Vijayakumar C, Kumar N, Samiyappan R (2007) PGPR-induced defense responses in the tea plant against blister blight disease. Crop Prot 26(4):556–565

    Google Scholar 

  • Saubidet MI, Fatta N, Barneix AJ (2002) The effect of inoculation with Azospirillum brasilense on growth and nitrogen utilization by wheat plants. Plant Soil 245:215–222

    CAS  Google Scholar 

  • Schippers B, Bakker AW, Bakker PAHM (1987) Interaction of deleterious and beneficial rhizosphere microorganism and the effect of cropping practices. Annu Rev Phytopathol 25:339–358

    Google Scholar 

  • Schroth MN, Hancock JG (1982) Disease-suppressive soil and root-colonizing bacteria. Science 216:1376–1381

    PubMed  CAS  Google Scholar 

  • Schroth MN, Weinhold AR (1986) Root-colonizing bacteria and plant health. Horts 21:1295–1298

    Google Scholar 

  • Shaharoona B, Arshad M, Zahir ZA (2006) Effect of plant growth promoting rhizobacteria containing ACC-deaminase on maize (Zea mays L.) growth under axenic conditions and on nodulation in mung bean (Vigna radiata L.). Lett Appl Microbiol 42:155–159

    PubMed  CAS  Google Scholar 

  • Shende ST, Apte RG, Singh T (1977) Influence of Azotobacter on germination of rice and cotton seed. Curr Sci 46:675

    Google Scholar 

  • Sheng XF, He LY (2006) Solubilization of potassium-bearing minerals by a wild-type strain of Bacillus edaphicus and its mutants and increased potassium uptake by wheat. Can J Microbiol 52:66–72

    PubMed  CAS  Google Scholar 

  • Shenker M, Hadar Y, Chen Y (1999) Kinetics of iron complexing and metal exchange in solution by rhioferrin, a fungal siderophore. Soil Sci Soc Am J 63:1681–1687

    CAS  Google Scholar 

  • Shishido M, Chanway CP (2000) Colonization and growth of out-planted spruce seedlings pre-inoculated with plant growth-promoting rhizobacteria in the greenhouse. Can J For Rev 30:848–854

    Google Scholar 

  • Shishido M, Breuil C, Chanway CP (1999) Endophytic colonization of spruce by plant growth-promoting rhizobacteria. FEMS Microbiol Ecol 29:191–196

    CAS  Google Scholar 

  • Siddiqui IA, Ehteshamul-Haque S (2000) Use of Pseudomonas aeruginosa for the control of root rot-root knot disease complex in tomato. Nematol Medit 28:189–192

    Google Scholar 

  • Siddiqui IA, Ehetshamul-ZHaque S, Shahid Shaukat S (2001) Use of Rhizobacteria in the control of root rot-root knot disease complex of mungbean. J Phytopathol 149:337–346

    Google Scholar 

  • Sikora RA (1988) Interrelationship between plant health promoting rhizobacteria, plant parasitic nematodes and soil microorganisms. Med Fac Landbouww Rijksuniv Gent 53(2):867–878

    Google Scholar 

  • Singh N, Pandey P, Dubey RC, Maheshwari DK (2008) Biological control of root rot fungus Macrophomina phaseolina and growth enhancement of Pinus roxburghii (Sarg.) by rhizosphere competent Bacillus subtilis BN1. World J Microbiol Biotechnol 24:1669–1679

    Google Scholar 

  • Singh N, Kumar S, Bajpai VK, Dubey RC, Maheshwari DK (2010) Biological control of Macrophomina phaseolina by chemotactic fluorescent Pseudomonas aeruginosa PN1 and its plant growth promontory activity in chir-pine. Crop Prot 29:1142–1147

    Google Scholar 

  • Smiley RW (1981) Non-target effects of pesticides on turf grasses. Plant Dis 65:17–23

    CAS  Google Scholar 

  • Smith RS (1992) Legume inoculant formulation and application. Can J Microbiol 38:485–492

    Google Scholar 

  • Spaink HP (2000) Root nodulation and infection factors produced by rhizobial bacteria. Annu Rev Microbiol 54:257–288

    PubMed  CAS  Google Scholar 

  • Sperberg JI (1958) The incidence of apatite-solubilizing organisms in the rhizosphere and soil. Aust J Agric Res Econ 9:778

    Google Scholar 

  • Sudha SN, Jayakumar R, Sekar V (1999) Introduction and expression of the cry1Ac gene of Bacillus thuringiensis in a cereal-associated bacterium Bacillus polymyxa. Curr Microbiol 38:163–167

    PubMed  CAS  Google Scholar 

  • Sudhakar P, Chattopadhyay GN, Gangwar SK, Ghosh JK (2000a) Effect of foliar application of Azotobacter, Azospirillum and Beijerinckia on leaf yield and quality of mulberry (Morus alba). J Agric Sci 134:227–234

    Google Scholar 

  • Sudhakar P, Gangwar SK, Satpathy B, Sahu PK, Ghosh JK, Saratchandra B (2000b) Evaluation of some nitrogen fixing bacteria for control of foliar diseases of mulberry (Morus alba). Ind J Seri 39:9–11

    Google Scholar 

  • Suslow TV, Schrolh MN (1982) Rhizobacteria effects on sugar beets seed application and root colonization on yield. Phytopathology 72:199–206

    Google Scholar 

  • Tahmatsidou V, O’Sullivan J, Cassells AC, Voyiatzis D, Paroussi G (2006) Comparison of AFM and PGPR inoculants for the suppression of Verticillium wilt of strawberry (Fragaria x ananassa cv. Selva). Appl Soil Ecol 32:316–324

    Google Scholar 

  • Tang WH (1994) Yield increasing bacteria (YIB) and biological control of sheath blight of rice. In: Ryder MH, Stephens PM, Bowen GD (eds) Improving plant productivity with rhizosphere bacteria. Commonwealth scientific and industrial research organization, Adelaide, Australia, pp 267–278

    Google Scholar 

  • Terouchi N, Syono K (1990) Rhizobium attachment and curling in asparagus, rice and oat plants. Plant Cell Physiol 31:119–127

    Google Scholar 

  • Tittabutr P, Awaya JD, Li QX, Borthakur D (2008) The cloned 1-aminocyclopropane-1-carboxylate (ACC) deaminase gene from Sinorhizobium sp. strain BL3 in Rhizobium sp. strain TAL1145 promotes nodulation and growth of Leucaena leucocephala. Syst Appl Microbiol 31:141–150

    PubMed  CAS  Google Scholar 

  • Umakant CG, Bagyaraj DJ (1998) Response of mulberry saplings to inoculation with VA Mycorrhizal fungi and Azotobacter. Sericologia 38(1):669–675

    Google Scholar 

  • Unni BG, Bora U, Singh HR, Dileep Kumar BS, Devi B, Wanna SB, Bhau BS, Bora A, Neog K, Chakravarthy R (2008) High yield and quality silk fibre production by muga silkworm, Antharaea assama through the application of plant growth promoting Rhizobacteria. Curr Sci 94(6):768–774

    CAS  Google Scholar 

  • Vadez V, Lasso JH, Beck DP, Drevon JJ (1999) Variability of N2-fixation in common bean (Phaseolus vulgaris L.) under P deficiency is related to P use efficiency. Euphytica 106:231–242

    Google Scholar 

  • Vaidya RJ, Shah IM, Vyas PR, Chhatpar HS (2001) Production of chitinase and its optimization from a novel isolate Alcaligenes xylosoxydans: potential in antifungal biocontrol. World J Microbiol Biotechnol 17:691–696

    CAS  Google Scholar 

  • Validov S, Mavrodi O, De La Fuente L, Boronin A, Weller D, Thomasho L, Mavrodi D (2005) Antagonistic activity among 2, 4-diacetyl phloroglucinol producing fluorescent Pseudomonas sp. FEMS Microbiol Lett 242:249–256

    PubMed  CAS  Google Scholar 

  • Valiente C, Diaz K, Gacitúa S, Martinez M, Sanfuentes E (2008) Control of charcoal root rot in Pinus radiata nurseries with antagonistic bacteria. World J Microbiol Biotechnol 24(4):557–568

    Google Scholar 

  • Valverde A, Burgos A, Fiscella T, Rivas R, Velaquez E, Rodriguez-Barrueco C, Cervantes E, Chamber M, Igual JM (2006) Differential effects of co-inoculation with Pseudomonas jessenii PS06 (a phosphate-solubilizing bacterium) and Mesorhizobium ciceri C-2/2 strains on the growth and seed yield of chickpea under greenhouse and field conditions. Plant Soil 287:43–50

    CAS  Google Scholar 

  • Van Peer R, Schippers B (1998) Plant growth responses to bacterization with selected Pseudomonas spp. strains and rhizosphere microbial development in hydroponic cultures. Can J Microbiol 35:456–463

    Google Scholar 

  • Vasantharajan VN, Bhat JV (1967) Interrelations of soil micro-organisms and mulberry: Phytohormone production by soil and rhizosphere bacteria and their effect on plant growth. Plant Soil 27(2):262–272

    Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as bio fertilizers. Plant Soil 255:571–586

    CAS  Google Scholar 

  • Vidhyasekaran P, Muthamilan M (1995) Development of formulations of Pseudomonas fluorescens for control of chickpea wilt. Plant Dis 79:782–786

    Google Scholar 

  • Vidhyasekaran P, Rabindran R, Muthamilan M, Nayar K, Rajappan K, Subramanian N, Vasumathi K (1997a) Development of powder formulation of Pseudomonas fluorescens for control of rice blast. Plant Pathol 46:291–297

    Google Scholar 

  • Vidhyasekaran P, Sethuraman K, Rajappan K, Vasumathi K (1997b) Powder formulations of Pseudomonas fluorescens to control pigeon pea wilt. Biol Control 8:166–171

    Google Scholar 

  • Vijayan K, Chakraborti SP, Ghosh PD (2007) Foliar application of Azotobactor chroococcum increases leaf yield under saline conditions in mulberry (Morus spp). Sci Hortic 113:307–331

    CAS  Google Scholar 

  • Vivekanathan R, Ravi M, Ramanathan A, Samiyappan R (2004) Lytic enzymes induced by Pseudomonas fluorescens and other biocontrol organisms mediated defense against the anthracnose pathogen in mango. World J Microbiol Biotechnol 20:235–244

    Google Scholar 

  • Wang Y, Brown HN, Crowley DE, Szaniszlo PJ (1993) Evidence for direct utilization of a siderophore, ferrioxamine B, in axenically grown cucumber. Plant Cell Environ 16:579–585

    CAS  Google Scholar 

  • Welch SA, Vandevivere P (1994) Effect of microbial and other naturally occurring polymers on mineral dissolution. Geomicrobiol J 37:463–464

    Google Scholar 

  • Weller DM (1988) Biological control of soil borne pathogens in the rhizosphere with bacteria. Annu Rev Phytopathol 26:279–407

    Google Scholar 

  • Weller DM, Cook RJ (1986) Suppression of take all the wheat by seed treatment with fluorescent pseudomonads. Phytopathology 23:23–54

    Google Scholar 

  • Westcott SW, Kluepfel DA (1993) Inhibition of Criconemella xenoplax egg hatch by Pseudomonas aureofaciens. Phytopathology 83:245–1249

    Google Scholar 

  • Wiehe W, Hoflich G (1995) Survival of plant growth-promoting rhizosphere bacteria in the different crops and migration to non-inoculated plant under field condition in northern East Germany. Microbiol Res 150:201–206

    Google Scholar 

  • Williams GE, Asher MJC (1996) Selection of rhizobacteria for the control of Pythium ultimum and Aphanomyces cochlioides on sugarbeet seedlings. Crop Prot 15:479–486

    Google Scholar 

  • Wipat A, Harwood CR (1999) The Bacillus subtilis genome sequence: the molecular blueprint of a soil bacterium. FEMS Microbiol Ecol 28:1–9

    CAS  Google Scholar 

  • Xu G-W, Gross DC (1986) Selection of fluorescent pseudomonads antagonistic to Erwinia carotovora and suppressive of potato seed piece decay. Phytopathology 76:414–422

    Google Scholar 

  • Yadav RD, Nagendra Kumar TD (1989) Azospirillum – A Low Input Biofertilizer Technology for Mulberry. Indian Silk 28(1):31–33

    Google Scholar 

  • Yanni YG, Rizk RY, Corich V, Squartini A, Dazzo FB (1995) Endorhizosphere colonization and growth promotion of Indica and Japonica rice varieties by Rhizobium leguminosarum bv. trifolii. In: Proceedings of 15th North American Symbiotic Nitrogen-Fixation Conference. North Carolina State University, Raleigh, NC.

    Google Scholar 

  • Yanni YG, Rizk RY, Corich V, Squartini A, Ninke K, Hollingsworth SP, Orgambide G, de Bruijn F, Stoltzfus R, Buckley D, Schmidt T, Mateos PF, Ladha JK, Dazzo FB (1997) Natural endophytic association between Rhizobium leguminosarum bv. trifolii and rice roots and assessment of its potential to promote rice growth. Plant Soil 194:99–114

    CAS  Google Scholar 

  • Yoshida S, Hiradate S, Tsukamoto T, Hatakeda K, Shirata A (2001) Antimicrobial activity of culture filtrate of Bacillus amyloliquefaciens RC-2 isolated Mulberry leaves. Phytopathol 91(2):181–187

    CAS  Google Scholar 

  • Yusran Y, Volker R, Mueller T (2009) Effects of Pseudomonas sp. “Proradix” and Bacillus amyloliquefaciens FZB42 on the establishment of AMF infection, nutrient acquisition and growth of tomato affected by Fusarium oxysporum Schlecht f.sp. radicis-lycopersici Jarvis and Shoemaker. In: The proceedings of the international plant nutrition colloquium XVI

    Google Scholar 

  • Zaady EA, Perevoltsky A (1995) Enhancement of growth and establishment of oak seedlings (Quercus ithaburensis Decaisne) by inoculation with Azospirillum brasiliense. For Ecol Manage 72:81–83

    Google Scholar 

  • Zaady EA, Perevoltsky A, Okon Y (1993) Promotion of plant growth by inoculum with aggregated and single cell culture suspensions of Azospirillum brasilense Cd. Soil Biol Biochem 25:819–823

    Google Scholar 

  • Zehnder GW, Murphy JF, Sikora EJ, Kloepper JW (2001) Application of rhizobacteria for induced resistance. Eur J Plant Pathol 107:39–50

    Google Scholar 

Download references

Acknowledgement

Thanks are due to UCOST (Dehradun), UGC, and CSIR (New Delhi) for providing financial support in the form of research project to DKM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. K. Maheshwari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Aeron, A., Kumar, S., Pandey, P., Maheshwari, D.K. (2011). Emerging Role of Plant Growth Promoting Rhizobacteria in Agrobiology. In: Maheshwari, D. (eds) Bacteria in Agrobiology: Crop Ecosystems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18357-7_1

Download citation

Publish with us

Policies and ethics