Skip to main content

Potential Enhancement of Biofuel Production Through Enzymatic Biomass Degradation Activity and Biodiesel Production by Halophilic Microorganisms

  • Chapter
  • First Online:
Halophiles and Hypersaline Environments

Abstract

There are many economic and negative environmental impacts that need to be solved before biofuels become a viable replacement for some of the fossil fuel demand. One environmental problem is the great amount of water required for the production of biofuels. The use of halophilic/halotolerant algae can greatly reduce the amount of water required for biodiesel production. The use of halophiles and their enzymes for degrading cellulosic biomass might also help reduce the need for high temperatures and pH neutralization of the pretreated biomass before fermentation. Significant amounts of information have been discovered about extremophilic lignocellulolytic systems. Investigations of halophilic lignocellulolytic degradation are at their initial stages. Modern recombinant screening techniques and data mining of genomes have the potential to yield many halophilic lignocellulytic enzymes. Thus, there is great potential for developing biotechnologies with halophilic/halotolerant algae for the production of biodiesel as well as halophilic lignocellulytic enzymes for treating biomass.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Alleman D (2009) Non-traditional sources of water for coal-fired power plants. Ground Water Protection Council Annual Form, Salt Lake City, UT

    Google Scholar 

  • Averhoff B, Müller V (2010) Exploring research frontiers in microbiology: recent advances in halophilic and thermophilic extremophiles. Res Microbiol 161:506–514

    Article  PubMed  CAS  Google Scholar 

  • Bailey MJ, Biely P, Poutanen K (1992) Interlaboratory testing of methods for assay of xylanase activity. J Biotechnol 23:257–270

    Article  CAS  Google Scholar 

  • Barsanti L, Gualtieri P (2006) Algae: anatomy, biochemistry, and biotechnology. CRC/Taylor & Francis, Boca Raton, FL

    Google Scholar 

  • Beguin P, Aubert J-P (1994) The biological degradation of cellulose. FEMS Microbiol Rev 13:25–58

    Article  PubMed  CAS  Google Scholar 

  • Ben-Amotz A, Avron M (1983) Accumulation of metabolytes by halotolerant algae and its industrial potential. In: Ornston LN, Balows A, Baumann P (eds) Annual review of microbiology, vol 37. Annual Review Inc, Palo Alto, CA, pp 95–119

    Google Scholar 

  • Benner R, Moran MA, Hodson RE (1986) Biogeochemical cycling of lignocellulosic carbon in marine and freshwater ecosystems: contributions of relative procaryotes and eucaryotes. Limnol Oceanogr 31:89–100

    Article  Google Scholar 

  • Bhat MK, Bhat S (1997) Cellulose degrading enzymes and their potential industrial applications. Biotechnol Adv 15:583–620

    Article  PubMed  CAS  Google Scholar 

  • Biely P, Puls J, Schneider H (1985) Acetyl xylan esterases in fungal cellulolytic systems. FEBS Lett 186:80–84

    Article  CAS  Google Scholar 

  • Birbir M, Sesal C (2003) Extremely halophilic bacterial communities in Åžereflikoçhisar Salt Lake in Turkey. Turk J Biol 27:7–22

    Google Scholar 

  • Birbir M, Ogan A, Calli B, Mertoglu B (2004) Enzyme characteristics of extremely halophilic archaeal community in Tuzkoy Salt Mine, Turkey. World J Microbiol Biotechnol 20:613–621

    Article  CAS  Google Scholar 

  • Bolobova AV, Simankova MC, Markovich NA (1992) Cellulase complex of a new halophilic bacterium Halocella celluloytica. Microbiology (Russia) 61:557–562

    Google Scholar 

  • Bronnenmeier K, Kern A, Liebl W, Staudenbauer WL (1995) Purification of Thermotoga maritima enzymes for the degradation of cellulosic materials. Appl Environ Microbiol 61:1399–1407

    PubMed  CAS  Google Scholar 

  • Bucher VVC, Hyde KD, Pointing SB, Reddy CA (2004) Production of wood decay enzymes, mass loss and lignin solubilization in wood by marine ascomycetes and their anamorphs. Fungal Divers 15:1–14

    Google Scholar 

  • Clavero E, Hernandez-Marine M, Grimalt JO, Garcia-Pichel F (2008) Salinity tolerance of diatoms from thalassic hypersaline environments. J Phycol 36:1021–1034

    Article  Google Scholar 

  • Collins T, Gerday C, Feller G (2005) Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol Rev 29:3–23

    Article  PubMed  CAS  Google Scholar 

  • Coughlan MP, Mayer F (1992) The cellulose-decomposing bacteria and their enzyme systems. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer K-H (eds) The prokaryotes, vol 1, 2nd edn. Springer, New York, pp 461–467

    Google Scholar 

  • Cox PM, Betts RA, Jones CD, Spall SA, Totterdell JJ (2000) Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408:184–187

    Article  PubMed  CAS  Google Scholar 

  • Danson MJ, Hough DW (1997) The structural basis of protein halophilicity. Comp Biochem Physiol A Physiol 117:307–312

    Article  Google Scholar 

  • DasSarma S, Arora P (2002) Halophiles. In: Encyclopedia of life sciences, vol 8. Nature Publishing Group, London, pp 485–466

    Google Scholar 

  • Dhawan S, Kaur J (2007) Microbial mannanases: an overview of production and applications. Crit Rev Biotechnol 27:197–216

    Article  PubMed  CAS  Google Scholar 

  • Eisenberg H, Mevarech M, Zaccai G (1992) Biochemical, structural, and molecular genetic aspects of halophilism. Adv Protein Chem 43:1–62

    Article  PubMed  CAS  Google Scholar 

  • Feinberg DA (1984) Fuel options from microalgae with representative chemical compositions. Solar Energy Research Institute, U.S. DOE, Golden, CO

    Book  Google Scholar 

  • Frei E, Preston RD (1968) Non-cellulosic structural polysaccharides in algal cell walls. III. Mannan in siphoneous green algae. Proc R Soc Lond B 169:127–145

    Article  CAS  Google Scholar 

  • Fujinami S, Fujisawa M (2010) Industrial applications of alkaliphiles and their enzymes – past, present and future. Environ Technol 31:845–856

    Article  PubMed  CAS  Google Scholar 

  • Fukushima T, Mizuki T, Echigo A, Inoue A, Usami R (2005) Organic solvent tolerance of halophilic α-amylase from a haloarchaeon, Haloarcula sp. strain S-1. Extremophiles 9:85–89

    Article  PubMed  CAS  Google Scholar 

  • Gao Z, Ruan L, Chen X, Zhang Y, Xu X (2010) A novel salt-tolerant endo-β-1,4-glucanase Cel5A in Vibrio sp. G21 isolated from mangrove soil. Appl Microbiol Biotechnol 87:1373–1382

    Article  PubMed  CAS  Google Scholar 

  • Gilbert HJ, Hazlewood GP (1993) Bacterial cellulases and xylanases. J Gen Microbiol 139:187–194

    CAS  Google Scholar 

  • Ginzburg B-Z (1993) Liquid fuel (oil) from halophilic algae: a renewable source of non-polluting energy. Renew Energy 3:249–252

    Article  CAS  Google Scholar 

  • Giridhar PV, Chandra TS (2010) Production of novel halo-alkali-thermo-stable xylanase by a newly isolated moderately halophilic and alkali-tolerant Gracilibacillus sp. TSCPVG. Process Biochem 45:1730–1737

    Article  CAS  Google Scholar 

  • Gomes J, Steiner W (2004) The biocatalytic potential of extremophiles and extremozymes. Food Technol Biotechnol 42:223–235

    CAS  Google Scholar 

  • González JM, Mayer F, Moran MA, Hodson RE, Whitman WB (1997a) Sagittula stellata gen. nov., sp. nov., a lignin-transforming bacterium from a coastal environment. Int J Syst Bacteriol 47:773–780

    Article  PubMed  Google Scholar 

  • González J, Mayer F, Moran MA, Hodson RE, Whitman WB (1997b) Microbulbifer hydrolyticus gen. nov., sp. nov., and Marinobacterium georgiense gen., nov., sp. nov., two marine bacteria from a lignin-rich pulp mill waste enrichment community. Int J Syst Bacteriol 47:369–376

    Article  PubMed  Google Scholar 

  • González ED, Vallejo OD, Anaya CM, Sánchez MM, González MC (2008) Production of two novel laccase isoforms by a thermotolerant strain of Pycnoporus sanguineus isolated from an oil-polluted tropical habitat. Int Microbiol 11:163–169

    PubMed  Google Scholar 

  • Govender L, Naidoo L, Setati ME (2009) Isolation of hydrolase producing bacteria from Sua pan solar salterns and the production of endo-1,4-β-xylanase from a newly isolated haloalkaliphilic Nesterenkonia sp. Afr J Biotechnol 8:5458–5466

    CAS  Google Scholar 

  • Huang X, Shao Z, Hong Y, Lin L, Li C, Huang F, Wang H, Liu Z (2010) Cel8H, a novel endoglucanase from the halophilic bacterium Halomonas sp. S66-4: molecular cloning, heterogonous expression, and biochemical characterization. J Microbiol 48:318–324

    Article  PubMed  CAS  Google Scholar 

  • Joseleau J, Comtat J, Ruel K (1992) Chemical structure of xylans and their interactions in the plant cell walls. In: Kusters van Someren MA, Beldman G, Visser J, Voragen AGJ (eds) Xylans and xylanases, progress in biotechnology. Elsevier, Amsterdam, pp 1–15

    Google Scholar 

  • Kamei I, Daikoku C, Tsutsumi Y, Kondo R (2008) Saline-dependent regulation of manganese peroxidase genes in the hypersaline-tolerant white rot fungus Phlebia sp. strain MG-60. Appl Environ Microbiol 74:2709–2716

    Article  PubMed  CAS  Google Scholar 

  • Kanekar PP, Joshi AA, Kelkar AS, Borgave SB, Sarnaik SS (2008) Alkaline Lonar Lake, India – a treasure of alkaliphilic and halophilic bacteria. In: Sengupta M, Dalwani R (eds) Proceedings of Taal 2007: 12 World Lake Conference. The Ministry of Environment and Forests of the Government of India, Jaipur, pp 1765–1774

    Google Scholar 

  • Karbalaei-Heidari HR, Ziaee A-A, Amoozegar AM (2007) Purification and biochemical characterization of a protease secreted by the Salinivibrio sp. strain AF-2004 and its behavior in organic solvents. Extremophiles 11:237–243

    Article  PubMed  CAS  Google Scholar 

  • Kulkarni N, Shendye A, Rao M (1999) Molecular and biotechnological aspects of xylanases. FEMS Microbiol Rev 23:411–456

    Article  PubMed  CAS  Google Scholar 

  • Lee RE (2008) Phycology, 3rd edn. Cambridge University Press, New York

    Google Scholar 

  • Li LH, Flora RM, King KW (1965) Individual roles of cellulase components derived from Trichoderma viride. Arch Biochem Biophys 111:439–447

    Article  PubMed  CAS  Google Scholar 

  • Li X, Kondo R, Sakai K (2002) Studies on hypersaline-tolerant white-rot fungi I: screening of lignin degrading fungi in hypersaline conditions. J Wood Sci 48:147–152

    Article  CAS  Google Scholar 

  • Li X, Kondo R, Sakai K (2003) Studies on hypersaline-tolerant white-rot fungi IV: effects of Mn2+ and NH +4 on manganese peroxidase production and Poly R-478 decolorization by the marine isolate Phlebia sp. MG-60 under saline conditions. J Wood Sci 49:355–360

    Article  CAS  Google Scholar 

  • Li J, Yuan H, Yang J (2009) Bacteria and lignin degradation. Front Biol 4:29–38

    Article  Google Scholar 

  • Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66:506–577

    Article  PubMed  CAS  Google Scholar 

  • Mevarech M, Frolow F, Gloss LM (2000) Halophilic enzymes: proteins with a grain of salt. Biophys Chem 86:155–164

    Article  PubMed  CAS  Google Scholar 

  • Miao X, Wu Q, Wu G, Zhao N (2003) Sucrose accumulation in salt-stressed cells of agp gene deletion-mutant in cyanobacterium Synechocystis sp. PP 6803. FEMS Microbiol Lett 218:71–77

    Article  PubMed  CAS  Google Scholar 

  • Molitoris HP, Buchalo AS, Kurchenko I, Nevo E, Rawal BS, Wasser SP, Oren A (2000) Physiological diversity of the first filamentous fungi isolated from the hypersaline Dead Sea. Fungal Divers 5:55–70

    Google Scholar 

  • Møller M, Kjeldsen K, Ingvorsen K (2010) Marinimicrobium haloxylanilyticum sp. nov., a new moderately halophilic, polysaccharide-degrading bacterium isolated from Great Salt Lake, Utah. Antonie Leeuwenhoek 98:553–565

    Article  PubMed  Google Scholar 

  • Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686

    Article  PubMed  CAS  Google Scholar 

  • Mutanda T, Ramesh D, Karthikeyan S, Kumari S, Anandraj A, Bux F (2011) Bioprospecting for hyper-lipid producing microalgal strains for sustainable biofuel production. Bioresour Technol 102:57–70

    Article  PubMed  CAS  Google Scholar 

  • Niladevi KN, Jacob N, Prema P (2008) Evidence for a halotolerant-alkaline laccase in Streptomyces psammoticus: purification and characterization. Process Biochem 43:654–660

    Article  CAS  Google Scholar 

  • Nobles DR, Romanovicz DK, Brown RM Jr (2001) Cellulose in cyanobacteria. Origin of vascular plant cellulose synthase? Plant Physiol 127:529–542

    Article  PubMed  CAS  Google Scholar 

  • Oren A (2002) Halophilic microorganisms and their environments. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  • Oren A (2010) Industrial and environmental applications of halophilic microorganisms. Environ Technol 31:825–834

    Article  PubMed  CAS  Google Scholar 

  • Pikuta EV, Hoover RB, Tang J (2007) Microbial extremophiles at the limits of life. Crit Rev Microbiol 33:183–209

    Article  PubMed  CAS  Google Scholar 

  • Pimentel D, Marklein A, Toth MA, Karpoff MN, Paul GS, McCormack R, Kyriazis J, Krueger T (2009) Food versus biofuels: environmental and economic costs. Hum Ecol 37:1–12

    Article  Google Scholar 

  • Prakash S, Veeranagouda Y, Kyoung L, Sreeramulu K (2009) Xylanase production using inexpensive agricultural wastes and its partial characterization from a halophilic Chromohalobacter sp. TPSV 101. World J Microbiol Biotechnol 25:197–204

    Article  CAS  Google Scholar 

  • Prescott LM, Harley JP, Klein DA (1993) Microbial growth and metabolism and microorganisms and the environment. In: Prescott LM, Harley JP, Klein DA (eds) Microbiology, 2nd edn. Wm. C. Brown Publishers, Dubuque, pp 176–179

    Google Scholar 

  • Puls J, Schuseil J (1993) Chemistry of hemicelluloses: relationship between hemicellulose structure and enzymes required for hydrolysis. In: Coughlan M, Hazlewood G (eds) Hemicellulose and hemicellulases. Portland Press, London, pp 1–27

    Google Scholar 

  • Raghukumar C, Ticlo DD, Verma AK (2008) Treatment of colored effluents with lignin-degrading enzymes: an emerging role of marine-derived fungi. Crit Rev Microbiol 34:189–206

    Article  PubMed  CAS  Google Scholar 

  • Rees H, Grant S, Jones B, Grant WD, Heaphy S (2003) Detecting cellulase and esterase enzyme activities encoded. Extremophiles 7:415–421

    Article  PubMed  CAS  Google Scholar 

  • Reese ET (1976) History of the cellulase program at the U.S. Army Natick Development Center. Biotechnol Bioeng Symp 6:9–19

    PubMed  CAS  Google Scholar 

  • Rohban R, Amoozegar MA, Ventosa A (2009) Screening and isolation of halophilic bacteria producing extracellular hydrolyses from Howz Soltan Lake, Iran. J Ind Microbiol Biotechnol 36:333–340

    Article  PubMed  CAS  Google Scholar 

  • Saha B (2003) Hemicellulose bioconversion. J Ind Microbiol Biotechnol 30:279–291

    Article  PubMed  CAS  Google Scholar 

  • Sanchez-Porro C, Martin S, Mellado E, Ventosa A (2003) Diversity of moderately halophilic bacteria producing extracellular hydrolytic enzymes. J Appl Microbiol 94:295–300

    Article  PubMed  CAS  Google Scholar 

  • Schenk PM, Thomas-Hall SR, Stephens E, Marx UC, Mussgung JH, Posten C, Kruse O, Hankamer B (2008) Second generation biofuels: high-efficiency microalgae for biofuel production. Bioenerg Res 1:20–43

    Article  Google Scholar 

  • Schwarz WH (2001) The cellulosome and cellulose degradation by anaerobic bacteria. Appl Microbiol Biotechnol 56:634–649

    Article  PubMed  CAS  Google Scholar 

  • Setati ME (2010) Diversity and industrial potential of hydrolase-producing halophilic/halotolerant eubacteria. Afr J Biotechnol 9:1555–1560

    CAS  Google Scholar 

  • Shallom D, Shoham Y (2003) Microbial hemicellulases. Curr Opin Microbiol 6:219–228

    Article  PubMed  CAS  Google Scholar 

  • Uffen RL (1997) Xylan degradation: a glimpse at microbial diversity. J Ind Microbiol Biotechnol 19:1–6

    Article  CAS  Google Scholar 

  • Uthandi S, Saad B, Humbard MA, Maupin-Furlow JA (2009) LccA, an archaeal laccase secreted as a highly-stable glycoprotein into the extracellular medium of Haloferax volcanii. Appl Environ Microbiol 76:733–743

    Article  PubMed  Google Scholar 

  • van den Burg B (2003) Extremophiles as a source for novel enzymes. Curr Opin Microbiol 6:213–218

    Article  PubMed  Google Scholar 

  • Voget S, Steele HL, Streit WR (2006) Characterization of a metagenome-derived halotolerant cellulase. J Biotechnol 126:26–36

    Article  PubMed  CAS  Google Scholar 

  • Vreeland RH, Piselli AF Jr, McDonnough S, Meyers SS (1998) Distribution and diversity of halophilic bacteria in a subsurface salt formation. Extremophiles 2:321–331

    Article  PubMed  CAS  Google Scholar 

  • Wainø M, Ingvorsen K (1999) Production of halostable β-mannanase and β-mannosidase by strain NN, a new extremely halotolerant bacterium. Appl Microbiol Biotechnol 52:675–680

    Article  Google Scholar 

  • Wainø M, Ingvorsen K (2003) Production of β-xylanase and β-xylosidase by the extremely halophilic archaeon Halorhabdus utahensis. Extremophiles 7:87–93

    PubMed  Google Scholar 

  • Wang C-Y, Hsieh Y-R, Ng C-C, Chan H, Lin H-T, Tzeng W-S, Shyu Y-T (2009) Purification and characterization of a novel halostable cellulase from Salinivibrio sp. strain NTU-05. Enzyme Microb Technol 44:373–379

    Article  CAS  Google Scholar 

  • Wang C-Y, Chan H, Lin H-T, Shyu Y-T (2010a) Production, purification and characterisation of a novel halostable xylanase from Bacillus sp. NTU-06. Ann Appl Biol 156:187–197

    Article  CAS  Google Scholar 

  • Wang J, Shao Z, Hong Y, Li C, Fu X, Liu Z (2010b) A novel β-mannanase from Pantoea agglomerans A021: gene cloning, expression, purification and characterization. World J Microbiol Biotechnol 26:1777–1784

    Article  CAS  Google Scholar 

  • Wejse P, Ingvorsen K, Mortensen K (2003) Purification and characterisation of two extremely halotolerant xylanases from a novel halophilic bacterium. Extremophiles 7:423–431

    Article  PubMed  CAS  Google Scholar 

  • Whitney SEC, Brigham JE, Darke AH, Grant Reid JS, Gidley MJ (1998) Structural aspects of the interaction of mannan-based polysaccharides with bacterial cellulose. Carbohydr Res 307:299–309

    Article  CAS  Google Scholar 

  • Wong KK, Tan LU, Saddler JN (1988) Multiplicity of β-1,4-xylanase in microorganisms: functions and applications. Microbiol Mol Biol Rev 52:305–317

    CAS  Google Scholar 

  • Wood TM (1975) Properties and mode of action of cellulases. Biotechnol Bioeng Symp 5:111–137

    PubMed  CAS  Google Scholar 

  • Woolard CR, Irvine RL (1995) Treatment of hypersaline wastewater in the sequencing batch reactor. Water Res 29:1159–1168

    Article  CAS  Google Scholar 

  • Yang C, Wang Z, Li Y, Niu Y, Du M, He X, Ma C, Tang H, Xu P (2010) Metabolic versatility of halotolerant and alkaliphilic strains of Halomonas isolated from alkaline black liquor. Bioresour Technol 101:6778–6784

    Article  PubMed  CAS  Google Scholar 

  • Zhou X, Chen H, Li Z (2004) CMCase activity assay as a method for cellulase adsorption analysis. Enzyme Microb Technol 35:455–459

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melanie R. Mormile .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Begemann, M.B., Mormile, M.R., Paul, V.G., Vidt, D.J. (2011). Potential Enhancement of Biofuel Production Through Enzymatic Biomass Degradation Activity and Biodiesel Production by Halophilic Microorganisms. In: Ventosa, A., Oren, A., Ma, Y. (eds) Halophiles and Hypersaline Environments. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20198-1_18

Download citation

Publish with us

Policies and ethics