Skip to main content
Erschienen in:
Buchtitelbild

2013 | OriginalPaper | Buchkapitel

1. Natural Polymers: Their Blends, Composites and Nanocomposites: State of Art, New Challenges and Opportunities

verfasst von : P. M Visakh, Aji P. Mathew, Sabu Thomas

Erschienen in: Advances in Natural Polymers

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The present chapter deals with a brief account on various types of natural polymers such as cellulose, chitin, starch, soy protein, casein, hemicelluloses, alginates, polylactic acid and polyhydroxyalkanoates etc. Blends, composites and nanocomposites based on these polymers have been very briefly discussed. Finally the applications, new challenges and opportunities of these biomaterials are also discussed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Crawford, R.L.: Lignin Biodegradation and Transformation. Wiley, New York (1981). ISBN 0-471-05743-6 Crawford, R.L.: Lignin Biodegradation and Transformation. Wiley, New York (1981). ISBN 0-471-05743-6
3.
4.
Zurück zum Zitat Charles, A. B, (ed.).: Vacuum Deposition onto Webs, Films, and Foils, 0(8155), p. 165. ISBN 0815515359 (2007) Charles, A. B, (ed.).: Vacuum Deposition onto Webs, Films, and Foils, 0(8155), p. 165. ISBN 0815515359 (2007)
5.
Zurück zum Zitat Stenius, P.: 1. Forest Products Chemistry. Papermaking Science and Technology. Fapet OY, Finland. p. 35. ISBN 952-5216-03-9 Stenius, P.: 1. Forest Products Chemistry. Papermaking Science and Technology. Fapet OY, Finland. p. 35. ISBN 952-5216-03-9
6.
Zurück zum Zitat Imai, M., Ikari, K., Suzuki, I.: High-performance hydrolysis of cellulose using mixed cellulose species and ultrasonication pretreatment. Biochem. Eng. J. 17, 19–23 (2003) Imai, M., Ikari, K., Suzuki, I.: High-performance hydrolysis of cellulose using mixed cellulose species and ultrasonication pretreatment. Biochem. Eng. J. 17, 19–23 (2003)
7.
Zurück zum Zitat Jarvis, M.: Cellulose stacks up. Nature 426, 611–612 (2003) Jarvis, M.: Cellulose stacks up. Nature 426, 611–612 (2003)
8.
Zurück zum Zitat Holtzapple, M.T.: Cellulose. In: Macrae, R., Robinson, R.K., Saddler, M.J. (eds.) Encyclopedia of Food Science Food Technology and Nutrition. London Academic Press, UK (1993) Holtzapple, M.T.: Cellulose. In: Macrae, R., Robinson, R.K., Saddler, M.J. (eds.) Encyclopedia of Food Science Food Technology and Nutrition. London Academic Press, UK (1993)
9.
Zurück zum Zitat Klemm, D., Philipp, B., Heinze, T., Heinze, U., Wagenknecht, W.: Comprehensive Cellulose Chemistry Fundamentals and Analytical Methods, vol. 1. Wiley-VCH, Germany (1998) Klemm, D., Philipp, B., Heinze, T., Heinze, U., Wagenknecht, W.: Comprehensive Cellulose Chemistry Fundamentals and Analytical Methods, vol. 1. Wiley-VCH, Germany (1998)
10.
Zurück zum Zitat Krässig, H.: Cellulose: Structure, Accessibility, and Reactivity Gordon and Breach Sci. Publishers, Switzerland (1993) Krässig, H.: Cellulose: Structure, Accessibility, and Reactivity Gordon and Breach Sci. Publishers, Switzerland (1993)
11.
Zurück zum Zitat Matthysse, A.G., Deschet, K., Williams, M., Marry, M., White, A.R., Smith, W.C.: A functional cellulose synthase from ascidian epidermis. Proc. Natl. Acad. Sci. 101, 986–991 (2004) Matthysse, A.G., Deschet, K., Williams, M., Marry, M., White, A.R., Smith, W.C.: A functional cellulose synthase from ascidian epidermis. Proc. Natl. Acad. Sci. 101, 986–991 (2004)
12.
Zurück zum Zitat Jonas, R., Farah, L.F.: Production and application of microbial cellulose. Polym. Degrad. Stab. 59, 101–106 (1998) Jonas, R., Farah, L.F.: Production and application of microbial cellulose. Polym. Degrad. Stab. 59, 101–106 (1998)
13.
Zurück zum Zitat Iguchi, M., Yamanaka, S., Budhiono, A.: Review bacterial cellulose—a masterpiece of nature’s arts. J. Mater. Sci. 35, 261–270 (2000) Iguchi, M., Yamanaka, S., Budhiono, A.: Review bacterial cellulose—a masterpiece of nature’s arts. J. Mater. Sci. 35, 261–270 (2000)
14.
Zurück zum Zitat Sreeramulu, G., Zhu, Y., Knol, W.: Kombucha fermentation and its antimicrobial activity. J. Agric. Food Chem 48, 2589–2594 (2000) Sreeramulu, G., Zhu, Y., Knol, W.: Kombucha fermentation and its antimicrobial activity. J. Agric. Food Chem 48, 2589–2594 (2000)
15.
Zurück zum Zitat Torres, F.G., Troncoso, O.P., Lopez, D., Grande, C., Gomez, C.M.: Reversible stress softening and stress recovery of cellulose networks. Soft Matter 5, 4185–4190 (2009) Torres, F.G., Troncoso, O.P., Lopez, D., Grande, C., Gomez, C.M.: Reversible stress softening and stress recovery of cellulose networks. Soft Matter 5, 4185–4190 (2009)
16.
Zurück zum Zitat Torres, F.G., Grande, C.J., Troncoso, O.P., Gomez, C.M., Lopez, D.: Bacterial cellulose nanocomposites for biomedical applications; In: Kumar, S.A., Thiagarajan, S., Wang, F. (eds.) Biocompatible Nanomaterials: Synthesis, Characterization and Application in Analytical Chemistry. Nova Science Publishers, USA (2010) Torres, F.G., Grande, C.J., Troncoso, O.P., Gomez, C.M., Lopez, D.: Bacterial cellulose nanocomposites for biomedical applications; In: Kumar, S.A., Thiagarajan, S., Wang, F. (eds.) Biocompatible Nanomaterials: Synthesis, Characterization and Application in Analytical Chemistry. Nova Science Publishers, USA (2010)
17.
Zurück zum Zitat Ring, D.F., Nashed, W., Dow, T.: Liquid loaded pad for medical applications; US patent 4 588 400 (1986) Ring, D.F., Nashed, W., Dow, T.: Liquid loaded pad for medical applications; US patent 4 588 400 (1986)
18.
Zurück zum Zitat Dong, H., Strawhecker, K.E., Snyder, J.F., Orlicki, J.A., Reiner, R.S., Rudie, A.W.: Cellulose nanocrystals as a reinforcing material for electrospun poly(methyl methacrylate) fibers: formation, properties and nanomechanical characterization. Carbohydr. Polym. 87, 2488–2495 (2012) Dong, H., Strawhecker, K.E., Snyder, J.F., Orlicki, J.A., Reiner, R.S., Rudie, A.W.: Cellulose nanocrystals as a reinforcing material for electrospun poly(methyl methacrylate) fibers: formation, properties and nanomechanical characterization. Carbohydr. Polym. 87, 2488–2495 (2012)
19.
Zurück zum Zitat Cristiane, S., Rodrigues F.H.A., Neto,A.G.V.C., Pereira A.G.B., Fajardo, A.R., Radovanovic, E., Rubira, A.F., Muniz, E.C.: Nanocomposites based on poly(acrylamide-co-acrylate) and cellulose nanowhiskers. Eur. Polym. J. Macromol. Nanotechnol. 48, 454–463 (2012) Cristiane, S., Rodrigues F.H.A., Neto,A.G.V.C., Pereira A.G.B., Fajardo, A.R., Radovanovic, E., Rubira, A.F., Muniz, E.C.: Nanocomposites based on poly(acrylamide-co-acrylate) and cellulose nanowhiskers. Eur. Polym. J. Macromol. Nanotechnol. 48, 454–463 (2012)
20.
Zurück zum Zitat Svensson, A., Nicklasson, E., Harrah, T., Panilaitis, B., Kaplan, D.L., Brittberg, M., Gatenholm, P.: Bacterial cellulose as a potential scaffold for tissue engineering of cartilage. Biomaterials 26, 419–431 (2005) Svensson, A., Nicklasson, E., Harrah, T., Panilaitis, B., Kaplan, D.L., Brittberg, M., Gatenholm, P.: Bacterial cellulose as a potential scaffold for tissue engineering of cartilage. Biomaterials 26, 419–431 (2005)
21.
Zurück zum Zitat Andersson, J., Stenhamre, H., Bäckdahl, H., Gatenholm, P.: Behavior of human chondrocytes in engineered porous bacterial cellulose scaffolds. J. Biomed. Mater. Res., Part A 94, 1124–1132 (2010) Andersson, J., Stenhamre, H., Bäckdahl, H., Gatenholm, P.: Behavior of human chondrocytes in engineered porous bacterial cellulose scaffolds. J. Biomed. Mater. Res., Part A 94, 1124–1132 (2010)
22.
Zurück zum Zitat Czaja, W., Krystynowicza, A., Bielecki, S., Malcolm Brown Jr, R.: Microbial cellulose—the natural power to heal wounds. Biomaterials 27, 145–151 (2006) Czaja, W., Krystynowicza, A., Bielecki, S., Malcolm Brown Jr, R.: Microbial cellulose—the natural power to heal wounds. Biomaterials 27, 145–151 (2006)
23.
Zurück zum Zitat Czaja, W.K., Young, D.J., Kawecki, M., Brown Jr, R.M.: The future prospects of microbial cellulose in biomedical applications. Biomacromolecules 8, 1–12 (2007) Czaja, W.K., Young, D.J., Kawecki, M., Brown Jr, R.M.: The future prospects of microbial cellulose in biomedical applications. Biomacromolecules 8, 1–12 (2007)
24.
Zurück zum Zitat Cienchanska, D.: Multifunctional bacterial cellulose/chitosan composite materials for medical applications. Fibres Text. East. Eur. 12, 69–72 (2004) Cienchanska, D.: Multifunctional bacterial cellulose/chitosan composite materials for medical applications. Fibres Text. East. Eur. 12, 69–72 (2004)
25.
Zurück zum Zitat Legeza, V.I., Galenko-Yaroshevskii, V.P., Zinovev, E.V., Paramonov, B.A., Kreichman, G.S., Turkovskii, I.I., Gumenyuk, E.S., Karnovich, A.G., Khripunov, A.K.: Effects of new wound dressings on healing of thermal burns of the skin in acute radiation disease. Bull. Exp. Biol. Med. 138, 311–315 (2004) Legeza, V.I., Galenko-Yaroshevskii, V.P., Zinovev, E.V., Paramonov, B.A., Kreichman, G.S., Turkovskii, I.I., Gumenyuk, E.S., Karnovich, A.G., Khripunov, A.K.: Effects of new wound dressings on healing of thermal burns of the skin in acute radiation disease. Bull. Exp. Biol. Med. 138, 311–315 (2004)
26.
Zurück zum Zitat Wan, W.K., Millon, L.E.: Poly(vinyl alcohol)-bacterial cellulose nanocomposite; U.S. Patent Appl., Publ. US 2005037082 A1, 16 (2005) Wan, W.K., Millon, L.E.: Poly(vinyl alcohol)-bacterial cellulose nanocomposite; U.S. Patent Appl., Publ. US 2005037082 A1, 16 (2005)
27.
Zurück zum Zitat Sokolnicki, A.M., Fisher, R.J., Harrah, T.P., Kaplan, D.L.: Permeability of bacterial cellulose membranes. J. Membr. Sci. 272, 15–27 (2006) Sokolnicki, A.M., Fisher, R.J., Harrah, T.P., Kaplan, D.L.: Permeability of bacterial cellulose membranes. J. Membr. Sci. 272, 15–27 (2006)
28.
Zurück zum Zitat Charpentier, P.A., Maguire, A., Wan, W.: Surface modification of polyester to produce a bacterial cellulose-based vascular prosthetic device. Appl. Surf. Sci. 252, 6360–6367 (2006) Charpentier, P.A., Maguire, A., Wan, W.: Surface modification of polyester to produce a bacterial cellulose-based vascular prosthetic device. Appl. Surf. Sci. 252, 6360–6367 (2006)
29.
Zurück zum Zitat Klemm, D., Schumann, D., Udhardt, U., Marsch, S.: Bacterial synthesized cellulose—artificial blood vessels for microsurgery. Prog. Polym. Sci. 26, 1561–1603 (2001) Klemm, D., Schumann, D., Udhardt, U., Marsch, S.: Bacterial synthesized cellulose—artificial blood vessels for microsurgery. Prog. Polym. Sci. 26, 1561–1603 (2001)
30.
Zurück zum Zitat Backdahl, H., Helenius, G., Bodin, A., Nannmark, U., Johansson, B.R., Risberg, B., Gatenholm, P.: Mechanical properties of bacterial cellulose and interactions with smooth muscle cells. Biomaterials 27, 2141–2149 (2006) Backdahl, H., Helenius, G., Bodin, A., Nannmark, U., Johansson, B.R., Risberg, B., Gatenholm, P.: Mechanical properties of bacterial cellulose and interactions with smooth muscle cells. Biomaterials 27, 2141–2149 (2006)
31.
Zurück zum Zitat Wan, W.K., Hutter, J.L., Millon, L., Guhados, G.: Bacterial cellulose and its nanocomposites for biomedical applications. ACS Symp. Ser. 938, 221–241 (2006) Wan, W.K., Hutter, J.L., Millon, L., Guhados, G.: Bacterial cellulose and its nanocomposites for biomedical applications. ACS Symp. Ser. 938, 221–241 (2006)
32.
Zurück zum Zitat Iwamoto, S., Nakagaito, A.N., Yano, H., Nogi, M.: Optically transparent composites reinforced with plant fiber-based nanofibers. Appl. Phys. A Mater. Sci. Process. 81, 1109–1112 (2005) Iwamoto, S., Nakagaito, A.N., Yano, H., Nogi, M.: Optically transparent composites reinforced with plant fiber-based nanofibers. Appl. Phys. A Mater. Sci. Process. 81, 1109–1112 (2005)
33.
Zurück zum Zitat Ifuku, S., Nogi, M., Abe, K., Handa, K., Nakatsubo, F., Yano, H.: Surface modification of bacterial cellulose nanofibers for property enhancement of optically transparent composites: dependence on acetyl-group DS. Biomacromolecules 8, 1973–1978 (2007) Ifuku, S., Nogi, M., Abe, K., Handa, K., Nakatsubo, F., Yano, H.: Surface modification of bacterial cellulose nanofibers for property enhancement of optically transparent composites: dependence on acetyl-group DS. Biomacromolecules 8, 1973–1978 (2007)
34.
Zurück zum Zitat Yano, H., Sugiyama, J., Nakagaito, A.N., Nogi, M., Matsuura, T., Hikita, M., Handa, K.: Optically transparent composites reinforced with networks of bacterial nanofibers. Adv. Mater. 17, 153–155 (2005) Yano, H., Sugiyama, J., Nakagaito, A.N., Nogi, M., Matsuura, T., Hikita, M., Handa, K.: Optically transparent composites reinforced with networks of bacterial nanofibers. Adv. Mater. 17, 153–155 (2005)
35.
Zurück zum Zitat Podsiadlo, P., Sui, L., Elkasabi, Y., Burgardt, P., Lee, J., Miryala, A., Kusumaatmaja, W., Carman, M., Shtein, M., Kieffer, J., Lahann, J., Kotov, N.: Layer-by-layer assembled films of cellulose nanowires with antireflective properties. Langmuir 23, 7901–7906 (2007) Podsiadlo, P., Sui, L., Elkasabi, Y., Burgardt, P., Lee, J., Miryala, A., Kusumaatmaja, W., Carman, M., Shtein, M., Kieffer, J., Lahann, J., Kotov, N.: Layer-by-layer assembled films of cellulose nanowires with antireflective properties. Langmuir 23, 7901–7906 (2007)
36.
Zurück zum Zitat Legnani, C., Vilani, C., Calil, V.L., Barud, H.S., Quirino, W.G., Achete, C.A., Ribeiro, S.J.L., Cremona, M.: Bacterial cellulose membrane as flexible substrate for organic light emitting devices. Thin Solid Films 517, 1016–1020 (2008) Legnani, C., Vilani, C., Calil, V.L., Barud, H.S., Quirino, W.G., Achete, C.A., Ribeiro, S.J.L., Cremona, M.: Bacterial cellulose membrane as flexible substrate for organic light emitting devices. Thin Solid Films 517, 1016–1020 (2008)
37.
Zurück zum Zitat Svagan, A.J., Samir, M.A.S.A., Berglund, L.A.: Biomimetic foams of high mechanical performance based on nanostructured cell walls reinforced by native cellulose nanofibrils. Adv. Mater. 20, 1263–1269 (2008) Svagan, A.J., Samir, M.A.S.A., Berglund, L.A.: Biomimetic foams of high mechanical performance based on nanostructured cell walls reinforced by native cellulose nanofibrils. Adv. Mater. 20, 1263–1269 (2008)
38.
Zurück zum Zitat van den Berg, O., Schroeter, M., Capadona, J.R., Weder, C.: Nanocomposites based on cellulose whiskers and (semi)conducting conjugated polymers. Material Chememistry 17, 2746–2753 (2007) van den Berg, O., Schroeter, M., Capadona, J.R., Weder, C.: Nanocomposites based on cellulose whiskers and (semi)conducting conjugated polymers. Material Chememistry 17, 2746–2753 (2007)
39.
Zurück zum Zitat Agarwal, M., Lvov, Y., Varahramyan, K.: Conductive wood microfibres for smart paper through layer-by-layer nanocoating. Nanotechnology 17, 5319–5325 (2006) Agarwal, M., Lvov, Y., Varahramyan, K.: Conductive wood microfibres for smart paper through layer-by-layer nanocoating. Nanotechnology 17, 5319–5325 (2006)
40.
Zurück zum Zitat Kumar, M.N.V.R.: A review of chitin and chitosan applications. React. Funct. Polym. 46, 1–27 (2000) Kumar, M.N.V.R.: A review of chitin and chitosan applications. React. Funct. Polym. 46, 1–27 (2000)
41.
Zurück zum Zitat Kobayashi, S., Kiyosada, T., Shoda, S.-I.: Synthesis of artificial chitin: irreversible catalytic behavior of a glycosyl hydrolase through a transition state analogue substrate. J. Am. Chem. Soc. 118, 13113–13114 (1996) Kobayashi, S., Kiyosada, T., Shoda, S.-I.: Synthesis of artificial chitin: irreversible catalytic behavior of a glycosyl hydrolase through a transition state analogue substrate. J. Am. Chem. Soc. 118, 13113–13114 (1996)
42.
Zurück zum Zitat Sakamoto, J., Sugiyama, J., Kimura, S., Imai, T., Itoh, T., Watanabe, T., Kobayashi, S. Macromolecules, 33, 4155-4160 (2000) Sakamoto, J., Sugiyama, J., Kimura, S., Imai, T., Itoh, T., Watanabe, T., Kobayashi, S. Macromolecules, 33, 4155-4160 (2000)
43.
Zurück zum Zitat Kadokawa, J.-I.: Precision polysaccharide synthesis catalyzed by enzymes. Chem. Rev. 111, 4308–4345 (2011) Kadokawa, J.-I.: Precision polysaccharide synthesis catalyzed by enzymes. Chem. Rev. 111, 4308–4345 (2011)
44.
Zurück zum Zitat Paillet, M., Dufresne, A.: Macromolecules, 34, 6527–6530 (2001) Paillet, M., Dufresne, A.: Macromolecules, 34, 6527–6530 (2001)
45.
Zurück zum Zitat Ahmed Jalal, U., Masahiro, F., Shinichiro, S., Yasuo, G.: Outstanding reinforcing effect of highly oriented chitin whiskers in PVA nanocomposites. Carbohydr. Polym. 87, 799–805 (2012) Ahmed Jalal, U., Masahiro, F., Shinichiro, S., Yasuo, G.: Outstanding reinforcing effect of highly oriented chitin whiskers in PVA nanocomposites. Carbohydr. Polym. 87, 799–805 (2012)
46.
Zurück zum Zitat Phongying, S., Aiba, S., Chirachanchai, S.: Polymer, 48, 393–400 (2007) Phongying, S., Aiba, S., Chirachanchai, S.: Polymer, 48, 393–400 (2007)
47.
Zurück zum Zitat Noh, H.K., Lee, S.W., Kim, J.M., Oh, J.E., Kim, K.H., Chung, C.P., Choi, S.C., Park, W.H., Min, B.M.: Electrospinning of chitin nanofibers: degradation behavior and cellular response to normal human keratinocytes and fibroblasts. Biomaterials. Biomaterials 27, 3934–3944 (2006) Noh, H.K., Lee, S.W., Kim, J.M., Oh, J.E., Kim, K.H., Chung, C.P., Choi, S.C., Park, W.H., Min, B.M.: Electrospinning of chitin nanofibers: degradation behavior and cellular response to normal human keratinocytes and fibroblasts. Biomaterials. Biomaterials 27, 3934–3944 (2006)
48.
Zurück zum Zitat Park, K.E., Jung, S.Y., Lee, S.J., Min, B.M., Park, W.H.: Biomimetic nanofibrous scaffolds: preparation and characterization of chitin/silk fibroin blend nanofibers. Int. J. Biol. Macromol 38, 165–173 (2006) Park, K.E., Jung, S.Y., Lee, S.J., Min, B.M., Park, W.H.: Biomimetic nanofibrous scaffolds: preparation and characterization of chitin/silk fibroin blend nanofibers. Int. J. Biol. Macromol 38, 165–173 (2006)
49.
Zurück zum Zitat Park, K.E., Kang, H.K., Lee, S.J., Min, B.M., Park, W.H.: Biomimetic nanofibrous scaffolds: preparation and characterization of PGA/chitin blend nanofibers. Biomacromolecules 7, 635–643 (2006) Park, K.E., Kang, H.K., Lee, S.J., Min, B.M., Park, W.H.: Biomimetic nanofibrous scaffolds: preparation and characterization of PGA/chitin blend nanofibers. Biomacromolecules 7, 635–643 (2006)
50.
Zurück zum Zitat Shalumon, K.T., Binulal, N.S., Selvamurugan, N., Nair, S.V., Menon, D., Furuike, T., Tamura, H., Jayakumar, R.: Carbohydr. Polym. 77, 863–869 (2009) Shalumon, K.T., Binulal, N.S., Selvamurugan, N., Nair, S.V., Menon, D., Furuike, T., Tamura, H., Jayakumar, R.: Carbohydr. Polym. 77, 863–869 (2009)
51.
Zurück zum Zitat Bhattarai, N., Edmondson, D., Veiseh, O., Matsen, F.A., Zhang, M.: Electrospun chitosan-based nanofibers and their cellular compatibility. Biomaterials 26, 6176–6184 (2005) Bhattarai, N., Edmondson, D., Veiseh, O., Matsen, F.A., Zhang, M.: Electrospun chitosan-based nanofibers and their cellular compatibility. Biomaterials 26, 6176–6184 (2005)
52.
Zurück zum Zitat Subramaniyan, A., Vu, D., Larsen, G.F., Lin, H.Y. J. Biomater. Sci. Poly. Ed. 7, 861–873 (2005) Subramaniyan, A., Vu, D., Larsen, G.F., Lin, H.Y. J. Biomater. Sci. Poly. Ed. 7, 861–873 (2005)
53.
Zurück zum Zitat Mo, X., Chen, Z., Weber, H.J.: Front. Mater. Sci. 1, 20–23 (2007) Mo, X., Chen, Z., Weber, H.J.: Front. Mater. Sci. 1, 20–23 (2007)
54.
Zurück zum Zitat Zhang, Y.Z., Venugopal, J.R., El-Turki, A., Ramakrishna, S., Su, B., Lim, C.T.: Electrospun biomimetic nanocomposite nanofibers of hydroxyapatite/chitosan for bone tissue engineering. Biomaterials 29, 4314–4322 (2008) Zhang, Y.Z., Venugopal, J.R., El-Turki, A., Ramakrishna, S., Su, B., Lim, C.T.: Electrospun biomimetic nanocomposite nanofibers of hydroxyapatite/chitosan for bone tissue engineering. Biomaterials 29, 4314–4322 (2008)
55.
Zurück zum Zitat Yang, D., Jin, Y., Zhou, Y., Ma, G., Chen, X., Lu, F.Nie.: In situ mineralization of hydroxyapatite on electrospun chitosan-based nanofibrous scaffolds. Macromolcule. Biosci. 8, 239–246 (2008) Yang, D., Jin, Y., Zhou, Y., Ma, G., Chen, X., Lu, F.Nie.: In situ mineralization of hydroxyapatite on electrospun chitosan-based nanofibrous scaffolds. Macromolcule. Biosci. 8, 239–246 (2008)
56.
Zurück zum Zitat Whistler, R.L., BeMiller, J.N., Paschall, B.F.: Starch: chemistry and technology. Academic Press, New York (1984) Whistler, R.L., BeMiller, J.N., Paschall, B.F.: Starch: chemistry and technology. Academic Press, New York (1984)
57.
Zurück zum Zitat Liao, H., Wu, C.: New biodegradable blends prepared from polylactide, titanium tetraisopropylate, and starch. J Appl. Poly. Sci. 108, 2280–2289 (2008) Liao, H., Wu, C.: New biodegradable blends prepared from polylactide, titanium tetraisopropylate, and starch. J Appl. Poly. Sci. 108, 2280–2289 (2008)
58.
Zurück zum Zitat Carr. L., Parra, D., Ponce, P., Lugão, A., Buchler, P.: Influence of fibers on the mechanical properties of cassava starch foams. J. Polym. Environ. 14, 179–183 (2006) Carr. L., Parra, D., Ponce, P., Lugão, A., Buchler, P.: Influence of fibers on the mechanical properties of cassava starch foams. J. Polym. Environ. 14, 179–183 (2006)
59.
Zurück zum Zitat Gattin, R., Copinet, A., Bertrand, C., Couturier, Y.: Biodegradation study of a starch and poly(lactic acid) co-extruded material in liquid, composting and inert mineral media. Int. Biodeterior. Biodegradation 50, 25–31 (2002) Gattin, R., Copinet, A., Bertrand, C., Couturier, Y.: Biodegradation study of a starch and poly(lactic acid) co-extruded material in liquid, composting and inert mineral media. Int. Biodeterior. Biodegradation 50, 25–31 (2002)
60.
Zurück zum Zitat Wang. L.; Shogren, R. L.; Carriere, C.: Poly. Eng. Sci. 40, 499–506 (2000) Wang. L.; Shogren, R. L.; Carriere, C.: Poly. Eng. Sci. 40, 499–506 (2000)
61.
Zurück zum Zitat Averous, L.: Biodegradable multiphase systems based on plasticized starch. J. Macromol. Sci.-Poly. Rev. C44, 231-274 (2004) Averous, L.: Biodegradable multiphase systems based on plasticized starch. J. Macromol. Sci.-Poly. Rev. C44, 231-274 (2004)
62.
Zurück zum Zitat Vidal, R., Martinez, P., Mulet, E.: Environmental assessment of biodegradable multilayer film derived from carbohydrate polymers. J. Polym. Environ. 15, 159–168 (2007) Vidal, R., Martinez, P., Mulet, E.: Environmental assessment of biodegradable multilayer film derived from carbohydrate polymers. J. Polym. Environ. 15, 159–168 (2007)
63.
Zurück zum Zitat Martin. O.; Schwach. E.; Avérous. L.; Couturier. Y.: properties of biodegradable multilayer films based on plasticized wheat starch. Starch–Stärke 53, 372–380 (2001) Martin. O.; Schwach. E.; Avérous. L.; Couturier. Y.: properties of biodegradable multilayer films based on plasticized wheat starch. Starch–Stärke 53, 372–380 (2001)
64.
Zurück zum Zitat Gattin, R., Copinet, A., Bertrand, C., Couturier, Y.: Int. Biodeterior. Biodegradation 50, 25–31 (2002) Gattin, R., Copinet, A., Bertrand, C., Couturier, Y.: Int. Biodeterior. Biodegradation 50, 25–31 (2002)
65.
Zurück zum Zitat Famá, Lucía., Gañan Rojo, Piedad., Bernal, Celina., Goyanes, Silvia.: Biodegradable starch based nanocomposites with low water vapor permeability and high storage modulus. Carbohydr. Polym. 87(3), 1989–1993 (2012) Famá, Lucía., Gañan Rojo, Piedad., Bernal, Celina., Goyanes, Silvia.: Biodegradable starch based nanocomposites with low water vapor permeability and high storage modulus. Carbohydr. Polym. 87(3), 1989–1993 (2012)
66.
Zurück zum Zitat Glycine max. Multilingual Multiscript Plant Name Database Glycine max. Multilingual Multiscript Plant Name Database
67.
Zurück zum Zitat Riaz, Mian.N.: Soy Applications in Food. CRC Press, Boca Raton (2006). ISBN 0-8493-2981-7 Riaz, Mian.N.: Soy Applications in Food. CRC Press, Boca Raton (2006). ISBN 0-8493-2981-7
68.
Zurück zum Zitat Liu, D., Chen, H., Chang, P.R., Qinglin, W., Li, K., Guan, L.: Biomimetic soy protein nanocomposites with calcium carbonate crystalline arrays for use as wood adhesive. Bioresour. Technol. 101(15), 6235–6241 (2010) Liu, D., Chen, H., Chang, P.R., Qinglin, W., Li, K., Guan, L.: Biomimetic soy protein nanocomposites with calcium carbonate crystalline arrays for use as wood adhesive. Bioresour. Technol. 101(15), 6235–6241 (2010)
69.
Zurück zum Zitat Kumar, P., Sandeep, K.P., Alavi, S., Truong, V.D., Gorga, R.E.: Preparation and characterization of bio-nanocomposite films based on soy protein isolate and montmorillonite using melt extrusion. Food Eng. 100(3), 480–489 (2010) Kumar, P., Sandeep, K.P., Alavi, S., Truong, V.D., Gorga, R.E.: Preparation and characterization of bio-nanocomposite films based on soy protein isolate and montmorillonite using melt extrusion. Food Eng. 100(3), 480–489 (2010)
70.
Zurück zum Zitat Jong, L., Peterson, S.C.: Effects of soy protein nanoparticle aggregate size on the viscoelastic properties of styrene–butadiene composites. Compos. A Appl. Sci. Manuf. 39(11), 1768–1777 (2008) Jong, L., Peterson, S.C.: Effects of soy protein nanoparticle aggregate size on the viscoelastic properties of styrene–butadiene composites. Compos. A Appl. Sci. Manuf. 39(11), 1768–1777 (2008)
71.
Zurück zum Zitat Su, J.-F., Yuan, X.Y., Huang, Z., Xia, W.L.: Properties stability and biodegradation behaviors of soy protein isolate/poly (vinyl alcohol) blend films. Polym. Degrad. Stab. 95(7), 1226–1237 (2010) Su, J.-F., Yuan, X.Y., Huang, Z., Xia, W.L.: Properties stability and biodegradation behaviors of soy protein isolate/poly (vinyl alcohol) blend films. Polym. Degrad. Stab. 95(7), 1226–1237 (2010)
72.
Zurück zum Zitat Kumar, R., Zhang, L.: Aligned ramie fiber reinforced arylated soy protein composites with improved properties. Compos. Sci. Technol. 69(5), 555–560 (2009) Kumar, R., Zhang, L.: Aligned ramie fiber reinforced arylated soy protein composites with improved properties. Compos. Sci. Technol. 69(5), 555–560 (2009)
73.
Zurück zum Zitat Mariani, P.D.S.C., Allganer, K., Oliveira, F.B., Cardoso, E.J.B.N., Innocentini-Mei, L.H.: Effect of soy protein isolate on the thermal, mechanical and morphological properties of poly (ɛ-caprolactone) and corn starch blends. Polym. Testing 28(8), 824–829 (2009) Mariani, P.D.S.C., Allganer, K., Oliveira, F.B., Cardoso, E.J.B.N., Innocentini-Mei, L.H.: Effect of soy protein isolate on the thermal, mechanical and morphological properties of poly (ɛ-caprolactone) and corn starch blends. Polym. Testing 28(8), 824–829 (2009)
74.
Zurück zum Zitat Vega-Lugo, A.-C., Lim, L.T.: Controlled release of allyl isothiocyanate using soy protein and poly(lactic acid) electrospun fibers. Food Res. Int. 42(8), 933–940 (2009) Vega-Lugo, A.-C., Lim, L.T.: Controlled release of allyl isothiocyanate using soy protein and poly(lactic acid) electrospun fibers. Food Res. Int. 42(8), 933–940 (2009)
75.
Zurück zum Zitat Wang,W., Wang, A.: Preparation, characterization and properties of superabsorbent nanocomposites based on natural guar gum and modified rectorite. Carbohydr. Polym. 77, 4, 19, 891–897 (2009) Wang,W., Wang, A.: Preparation, characterization and properties of superabsorbent nanocomposites based on natural guar gum and modified rectorite. Carbohydr. Polym. 77, 4, 19, 891–897 (2009)
76.
Zurück zum Zitat Peles, Z., Zilberman, M.: Novel soyprotein wound dressings with controlled antibiotic release: Mechanical and physical properties. Acta Biomater. 8(1), 209–217 (2012) Peles, Z., Zilberman, M.: Novel soyprotein wound dressings with controlled antibiotic release: Mechanical and physical properties. Acta Biomater. 8(1), 209–217 (2012)
77.
Zurück zum Zitat Frinault, A., Gallant, D.J., Bouchet, B., Dumont, J.P.: Preparation of casein films by a modified wet spinning process. J. Food Sci. 62(4), 744–747 (1997) Frinault, A., Gallant, D.J., Bouchet, B., Dumont, J.P.: Preparation of casein films by a modified wet spinning process. J. Food Sci. 62(4), 744–747 (1997)
78.
Zurück zum Zitat Fox, P.F., Kelly, A.L.: The caseins. In: Yada R.Y (ed.) Proteins In Food Processing. Woodhead Publishing Ltd and CRC Press LLC, Cambridge, UK (2004) Fox, P.F., Kelly, A.L.: The caseins. In: Yada R.Y (ed.) Proteins In Food Processing. Woodhead Publishing Ltd and CRC Press LLC, Cambridge, UK (2004)
79.
Zurück zum Zitat Walstra, P., Wouters, J., Geurts, T.: Dairy Science and Technology, 2nd edn. CRC Press LLC, New York, USA (2006) Walstra, P., Wouters, J., Geurts, T.: Dairy Science and Technology, 2nd edn. CRC Press LLC, New York, USA (2006)
80.
Zurück zum Zitat Dickinson, E.: Casein in emulsions: interfacial properties and interactions. Int. Dairy J. 9, 305–312(1999) Dickinson, E.: Casein in emulsions: interfacial properties and interactions. Int. Dairy J. 9, 305–312(1999)
81.
Zurück zum Zitat Horn, D.S.: Casein interactions: casting light on the black boxes, the structure in dairy products. Int. Dairy J. 8, 171–177 (1998) Horn, D.S.: Casein interactions: casting light on the black boxes, the structure in dairy products. Int. Dairy J. 8, 171–177 (1998)
82.
Zurück zum Zitat Farrell, H.M., Malin, E.L., Brown, E.M., Mora-Gutierrezt. A.: Review of the chemistry of αs2-casein and the generation of the homologous molecular model to explain its properties. J. Dairy Sci. 92, 1338–1353 (2009) Farrell, H.M., Malin, E.L., Brown, E.M., Mora-Gutierrezt. A.: Review of the chemistry of αs2-casein and the generation of the homologous molecular model to explain its properties. J. Dairy Sci. 92, 1338–1353 (2009)
83.
Zurück zum Zitat Ginger, M.R., Grignor, M.R.: Comparative aspects of milk caseins. Comp. Biochem. Physiol B Biochem. Mol. Biol. 124(2), 133–145 (1999) Ginger, M.R., Grignor, M.R.: Comparative aspects of milk caseins. Comp. Biochem. Physiol B Biochem. Mol. Biol. 124(2), 133–145 (1999)
84.
Zurück zum Zitat Chen, H.: Functional properties and applications of edible films made of milk proteins. Dairy Sci. 78, 2563–2583 (1995) Chen, H.: Functional properties and applications of edible films made of milk proteins. Dairy Sci. 78, 2563–2583 (1995)
85.
Zurück zum Zitat Pojanavaraphan, T., Magaraphan, R., Chiou, B.S., Schiraldi, D.A.: Development of biodegradable foamlike materials based on casein and sodium montmorillonite clay. Biomacromolecules 11, 2640–2646 (2010) Pojanavaraphan, T., Magaraphan, R., Chiou, B.S., Schiraldi, D.A.: Development of biodegradable foamlike materials based on casein and sodium montmorillonite clay. Biomacromolecules 11, 2640–2646 (2010)
86.
Zurück zum Zitat Usov, A.I.: Alginic acids and alginates: analytical methods used for their estimation and characterization of composition and primary structure. Russ. Chem. Rev. 68, 957–966 (1999) Usov, A.I.: Alginic acids and alginates: analytical methods used for their estimation and characterization of composition and primary structure. Russ. Chem. Rev. 68, 957–966 (1999)
87.
Zurück zum Zitat Chèze-Lange, H., Beunard, D., Dhulster, P., Guillochon, D., Cazé, A.M., Morcellet, M., Saude, N., Junter, G.A.: Production of microbial alginate in a membrane bioreactor. Enzyme Microb. Technol. 30, 656–661 (2002) Chèze-Lange, H., Beunard, D., Dhulster, P., Guillochon, D., Cazé, A.M., Morcellet, M., Saude, N., Junter, G.A.: Production of microbial alginate in a membrane bioreactor. Enzyme Microb. Technol. 30, 656–661 (2002)
88.
Zurück zum Zitat Hernández-Carmona, G., McHuge, D.J., Arvizu-Higuera, D.L., Rodríguez-Montesinos, Y.E.: Pilot plant scale extraction of alginate from Macrocystis pyrifera. 1. Effect of pre-extraction treatments on yield and quality of alginate. J. Appl. Phycol. 10, 507–513 (1999) Hernández-Carmona, G., McHuge, D.J., Arvizu-Higuera, D.L., Rodríguez-Montesinos, Y.E.: Pilot plant scale extraction of alginate from Macrocystis pyrifera. 1. Effect of pre-extraction treatments on yield and quality of alginate. J. Appl. Phycol. 10, 507–513 (1999)
89.
Zurück zum Zitat Gómez, C.G., Pérez Lambrecht, M.V., Lozano, J.E., Rinaudo, M., Villar, M.A.: Influence of extraction-purification conditions on final properties of alginates obtained from brown algae (Macrocystis pyrifera). Int. J. Biol. Macromol. 44, 365–371 (2009) Gómez, C.G., Pérez Lambrecht, M.V., Lozano, J.E., Rinaudo, M., Villar, M.A.: Influence of extraction-purification conditions on final properties of alginates obtained from brown algae (Macrocystis pyrifera). Int. J. Biol. Macromol. 44, 365–371 (2009)
90.
Zurück zum Zitat Usov, A.I.: Alginic acids and alginates: analytical methods used for their estimation and characterization of composition and primary structure. Russ. Chem. Rev. 68, 957–966 (1999) Usov, A.I.: Alginic acids and alginates: analytical methods used for their estimation and characterization of composition and primary structure. Russ. Chem. Rev. 68, 957–966 (1999)
91.
Zurück zum Zitat Chèze-Lange, H., Beunard, D., Dhulster, P., Guillochon, D., Cazé, A.M., Morcellet, M., Saude, N., Junter, G.A.: Production of microbial alginate in a membrane bioreactor. Enzyme Microb. Technol. 30, 656–661 (2002) Chèze-Lange, H., Beunard, D., Dhulster, P., Guillochon, D., Cazé, A.M., Morcellet, M., Saude, N., Junter, G.A.: Production of microbial alginate in a membrane bioreactor. Enzyme Microb. Technol. 30, 656–661 (2002)
92.
Zurück zum Zitat Draget, K.I., Taylor, C.: Chemical, physical and biological properties of alginates and their biomedical implications. Food Hydrocolloids 25, 251–256 (2011) Draget, K.I., Taylor, C.: Chemical, physical and biological properties of alginates and their biomedical implications. Food Hydrocolloids 25, 251–256 (2011)
93.
Zurück zum Zitat Gong, J.P., Katsuyama, Y., Kurokawa, T., Osada, Y.: Double network hydrogels with extremely high mechanical strength. Adv. Mater. 15, 1155–1158 (2003) Gong, J.P., Katsuyama, Y., Kurokawa, T., Osada, Y.: Double network hydrogels with extremely high mechanical strength. Adv. Mater. 15, 1155–1158 (2003)
94.
Zurück zum Zitat Hampson, F.C., Farndale, A., Strugala, V., Sykes, J., Jolliffe, I.G., Dettmar, P.W.: Alginate rafts and their characterisation. Int. J. Pharm. 294, 137–147 (2005) Hampson, F.C., Farndale, A., Strugala, V., Sykes, J., Jolliffe, I.G., Dettmar, P.W.: Alginate rafts and their characterisation. Int. J. Pharm. 294, 137–147 (2005)
95.
Zurück zum Zitat Becker, T.A., Preul, M.C., Bichard, W.D., Kipke, D.R., McDougall, C.G.: Calcium alginate gel as a biocompatible material for endovascular arteriovenous malformation embolization: six-month results in an animal model. Neurosurgery 56, 793–803 (2005) Becker, T.A., Preul, M.C., Bichard, W.D., Kipke, D.R., McDougall, C.G.: Calcium alginate gel as a biocompatible material for endovascular arteriovenous malformation embolization: six-month results in an animal model. Neurosurgery 56, 793–803 (2005)
96.
Zurück zum Zitat Thomas, A., Harding, K.G., Moore, K.: Alginates from wound dressings activate human macrophages to secret tumour necrosis factor-∝. Biomaterials 21, 1797–1802 (2000) Thomas, A., Harding, K.G., Moore, K.: Alginates from wound dressings activate human macrophages to secret tumour necrosis factor-∝. Biomaterials 21, 1797–1802 (2000)
97.
Zurück zum Zitat Paul, W., Sharma, C.P.: Chitosan and alginate wound dressings: a short review. Trends Biomater. Artif. Organs 18, 18–23 (2004) Paul, W., Sharma, C.P.: Chitosan and alginate wound dressings: a short review. Trends Biomater. Artif. Organs 18, 18–23 (2004)
99.
Zurück zum Zitat Martone, P.T., Estevez, J.M., Lu, F., Ruel, K., Denny, M.W, Somerville, C., Ralph, J.: Discovery of lignin in seaweed reveals convergent evolution of cell-wall architecture. Curr. Biol. CB19 (2), 169–75. doi:10.1016/j.cub.2008.12.031. ISSN0960-9822. PMID19167225 (2009) Martone, P.T., Estevez, J.M., Lu, F., Ruel, K., Denny, M.W, Somerville, C., Ralph, J.: Discovery of lignin in seaweed reveals convergent evolution of cell-wall architecture. Curr. Biol. CB19 (2), 169–75. doi:10.​1016/​j.​cub.​2008.​12.​031. ISSN0960-9822. PMID19167225 (2009)
100.
Zurück zum Zitat Sjöström, E.: Wood Chemistry: Fundamentals and Applications. Academic Press, ISBN (1993). 012647480X Sjöström, E.: Wood Chemistry: Fundamentals and Applications. Academic Press, ISBN (1993). 012647480X
102.
Zurück zum Zitat Darie, R.N., Cazacu, G., Vasile, C.: Melt processing and physico-chemical characterisation of some synthetic polymer (PVA)/natural polymer (lignin) systems, Iasi Academic Days, Progress in Organic and Polymer Chemistry,22nd (edn.), Iasi, Oct 8–10 (2009) Darie, R.N., Cazacu, G., Vasile, C.: Melt processing and physico-chemical characterisation of some synthetic polymer (PVA)/natural polymer (lignin) systems, Iasi Academic Days, Progress in Organic and Polymer Chemistry,22nd (edn.), Iasi, Oct 8–10 (2009)
103.
Zurück zum Zitat Ciolacu, D., Darie, R.N., Cazacu, G.: Polymeric systems based on lignin—poly(vinyl alcohol), in Binders, composites and other applications based on Lignins. In: Totolin, M., Cazacu, G (eds.), pp. 170–194. PIM Publising, Iasi, ISBN 606-520-740-3 (2010) Ciolacu, D., Darie, R.N., Cazacu, G.: Polymeric systems based on lignin—poly(vinyl alcohol), in Binders, composites and other applications based on Lignins. In: Totolin, M., Cazacu, G (eds.), pp. 170–194. PIM Publising, Iasi, ISBN 606-520-740-3 (2010)
104.
Zurück zum Zitat Baumberger, S., Lapierre, C., Monties, B., Della Valle, G.: Use of kraft lignin as filler for starch films. Polym. Degrad. Stab. 59, 273–277 (1998) Baumberger, S., Lapierre, C., Monties, B., Della Valle, G.: Use of kraft lignin as filler for starch films. Polym. Degrad. Stab. 59, 273–277 (1998)
105.
Zurück zum Zitat Stevens, E.S., Willett, J.L., Shogren, R.L.: Thermoplastic starch—kraft lignin—glycerol blends. J. Biobased Mat. Bioen. 1(3), 351–359 (2007) Stevens, E.S., Willett, J.L., Shogren, R.L.: Thermoplastic starch—kraft lignin—glycerol blends. J. Biobased Mat. Bioen. 1(3), 351–359 (2007)
106.
Zurück zum Zitat Tian, D., Hu, W., Zheng, Z., Liu, H., Xie, H.-Q.: Study on in situ synthesis of konjac glucomannan/silver nanocomposites via photochemical reduction. Appl. Polym. Sci. 100, 1323–1327 (2006) Tian, D., Hu, W., Zheng, Z., Liu, H., Xie, H.-Q.: Study on in situ synthesis of konjac glucomannan/silver nanocomposites via photochemical reduction. Appl. Polym. Sci. 100, 1323–1327 (2006)
107.
Zurück zum Zitat Ye, X., Kennedy, J.F., Li, B., Xie, B.J.: Condensed state structure and biocompatibility of the konjac glucomannan/chitosan blend films. Carbohydr. Polym. 64, 532–538 (2006) Ye, X., Kennedy, J.F., Li, B., Xie, B.J.: Condensed state structure and biocompatibility of the konjac glucomannan/chitosan blend films. Carbohydr. Polym. 64, 532–538 (2006)
108.
Zurück zum Zitat Wang, B., Jia, D.-Y., Ruan, S.-Q., Qin, S.: Structure and properties of collagen-konjac glucomannan-sodium alginate blend films. Appl. Polym. Sci. 106, 327–332 (2007) Wang, B., Jia, D.-Y., Ruan, S.-Q., Qin, S.: Structure and properties of collagen-konjac glucomannan-sodium alginate blend films. Appl. Polym. Sci. 106, 327–332 (2007)
109.
Zurück zum Zitat Yu, Z., Jiang, Y., Zou, W., Duan, J., Xiong, X.: Preparation and characterization of cellulose and konjac glucomannan blend film from ionic liquid. Polym. Sci, Part B: Polym. Phys 47, 1686–1694 (2009) Yu, Z., Jiang, Y., Zou, W., Duan, J., Xiong, X.: Preparation and characterization of cellulose and konjac glucomannan blend film from ionic liquid. Polym. Sci, Part B: Polym. Phys 47, 1686–1694 (2009)
110.
Zurück zum Zitat Cheng, L.H., Karim, A.A., Seow, C.C.: Characterisation of composite films made of konjac glucomannan (KGM), carboxymethyl cellulose (CMC) and lipid. Food Chem. 107, 411–418 (2008) Cheng, L.H., Karim, A.A., Seow, C.C.: Characterisation of composite films made of konjac glucomannan (KGM), carboxymethyl cellulose (CMC) and lipid. Food Chem. 107, 411–418 (2008)
111.
Zurück zum Zitat Xiao, C., Liu, H., Gao, S., Zhang, L.: Characterization of poly(vinyl alcohol) –konjac glucomannan blend films. Macromol. Sci. Pure Appl. Chem. 37(9), 1009–1021 (2000) Xiao, C., Liu, H., Gao, S., Zhang, L.: Characterization of poly(vinyl alcohol) –konjac glucomannan blend films. Macromol. Sci. Pure Appl. Chem. 37(9), 1009–1021 (2000)
112.
Zurück zum Zitat Mikkonen, K.S., Heikkilä, M.I., Helén, H., Hyvönen, L., Tenkanen, M.: Spruce galactoglucomannan films show promising barrier properties. Carbohydr. Polym. 79(4), 1107–1112 (2010) Mikkonen, K.S., Heikkilä, M.I., Helén, H., Hyvönen, L., Tenkanen, M.: Spruce galactoglucomannan films show promising barrier properties. Carbohydr. Polym. 79(4), 1107–1112 (2010)
113.
Zurück zum Zitat Hosseinaei, Omid., Wang, Siqun., Taylor, Adam.M.: Jae-Woo Kim Effect of hemicellulose extraction on water absorption and mold susceptibility of wood–plastic composites. Int. Biodeterior. Biodegradation 71, 29–35 (2012) Hosseinaei, Omid., Wang, Siqun., Taylor, Adam.M.: Jae-Woo Kim Effect of hemicellulose extraction on water absorption and mold susceptibility of wood–plastic composites. Int. Biodeterior. Biodegradation 71, 29–35 (2012)
114.
Zurück zum Zitat Gatenholm, P., Klemm, D.: Bacterial nanocellulose as a renewable material for biomedical applications. MRS Bull. 35(3), 208–213 (2010) Gatenholm, P., Klemm, D.: Bacterial nanocellulose as a renewable material for biomedical applications. MRS Bull. 35(3), 208–213 (2010)
115.
Zurück zum Zitat Zugenmaier, P.: Conformation and packing of various crystalline cellulose fibers. Prog. Polym. Sci. 26, 1341–1417 (2001) Zugenmaier, P.: Conformation and packing of various crystalline cellulose fibers. Prog. Polym. Sci. 26, 1341–1417 (2001)
116.
Zurück zum Zitat Keshk, S.M.A.S., Sameshima, K.: Evaluation of different carbon sources for bacterial cellulose production. Afr. J. Biotechnol. 4, 478–482 (2005) Keshk, S.M.A.S., Sameshima, K.: Evaluation of different carbon sources for bacterial cellulose production. Afr. J. Biotechnol. 4, 478–482 (2005)
117.
Zurück zum Zitat Jung, J.Y., Park, J.K., Chang, H.N.: Bacterial cellulose production by Gluconoacetobacter hansenii in an agitated culture without living non-cellulose producing cells. Enzyme Microb. Technol. 37, 347–354 (2005) Jung, J.Y., Park, J.K., Chang, H.N.: Bacterial cellulose production by Gluconoacetobacter hansenii in an agitated culture without living non-cellulose producing cells. Enzyme Microb. Technol. 37, 347–354 (2005)
118.
Zurück zum Zitat Bodin, A., Concaro, S., Brittberg, M., Gatenholm, P.: Bacterial cellulose as a potential meniscus implant. Tissue Eng. Regen. Med. 1, 406–408 (2007) Bodin, A., Concaro, S., Brittberg, M., Gatenholm, P.: Bacterial cellulose as a potential meniscus implant. Tissue Eng. Regen. Med. 1, 406–408 (2007)
120.
Zurück zum Zitat Aslan, M., Simsek, G., Dayl, E.: Guided bone regeneration (GBR) on healing bone defects: a histological study in rabbits. J. Contemp. Dent. Pract. 2(5), 114–123 (2004) Aslan, M., Simsek, G., Dayl, E.: Guided bone regeneration (GBR) on healing bone defects: a histological study in rabbits. J. Contemp. Dent. Pract. 2(5), 114–123 (2004)
121.
Zurück zum Zitat Carvalho, R.S., Nelson, D., Keldernian, H., et al.: Guided bone regeneration to repair an osseous defect. Am. J. Orthod. Dentofacial Orthop. 123, 455–467 (2003) Carvalho, R.S., Nelson, D., Keldernian, H., et al.: Guided bone regeneration to repair an osseous defect. Am. J. Orthod. Dentofacial Orthop. 123, 455–467 (2003)
122.
Zurück zum Zitat Czaja, W.K., Young, D.J., Kawecki, M.: The future prospects of microbial cellulose in biomedical applications. Biomacromolecules 8, 1 (2007) Czaja, W.K., Young, D.J., Kawecki, M.: The future prospects of microbial cellulose in biomedical applications. Biomacromolecules 8, 1 (2007)
123.
Zurück zum Zitat Shoda, M., Sugano, Y.: Recent advances in bacterial cellulose production. Biotechnol. Bioprocess Eng. 10, 1–8 (2005) Shoda, M., Sugano, Y.: Recent advances in bacterial cellulose production. Biotechnol. Bioprocess Eng. 10, 1–8 (2005)
124.
Zurück zum Zitat Ummartyotin, S., Juntaro, J., Sain, M., Manuspiya, H.: Development of transparent bacterial cellulose nanocomposite film as substrate for flexible organic light emitting diode (OLED) display. Ind. Crops Prod. 35(1), 92–97 (2012) Ummartyotin, S., Juntaro, J., Sain, M., Manuspiya, H.: Development of transparent bacterial cellulose nanocomposite film as substrate for flexible organic light emitting diode (OLED) display. Ind. Crops Prod. 35(1), 92–97 (2012)
125.
Zurück zum Zitat Iamaguti, L.S., Brandão, C.V.S., Pellizzon, C.H., Ranzani, J.J.T., Minto, B.W.: Análise histológica e morfométrica do uso de membrana biossintética de celulose em trocleoplastia experimental de cães. Pesq. Vet. Bras. 28(4), 195–200 (2008) Iamaguti, L.S., Brandão, C.V.S., Pellizzon, C.H., Ranzani, J.J.T., Minto, B.W.: Análise histológica e morfométrica do uso de membrana biossintética de celulose em trocleoplastia experimental de cães. Pesq. Vet. Bras. 28(4), 195–200 (2008)
126.
Zurück zum Zitat Helenius, G., Bäckdahl, H., Bodin, A., Nannmark, U., Gatenholm, P., Risberg, B.: In vivo biocompatibility of bacterial cellulose. Biomed. Mater. Res. Part A 76, 431–438 (2006) Helenius, G., Bäckdahl, H., Bodin, A., Nannmark, U., Gatenholm, P., Risberg, B.: In vivo biocompatibility of bacterial cellulose. Biomed. Mater. Res. Part A 76, 431–438 (2006)
127.
Zurück zum Zitat Salata, L.A., Hatton, P.V., Devlin, A.J.: In vitro and in vivo evaluation of e-PTFE and alkali-cellulose membranes for guided bone regeneration. Clin. Oral Implants Res. 12(1), 62–68 (2001) Salata, L.A., Hatton, P.V., Devlin, A.J.: In vitro and in vivo evaluation of e-PTFE and alkali-cellulose membranes for guided bone regeneration. Clin. Oral Implants Res. 12(1), 62–68 (2001)
128.
Zurück zum Zitat Cockbill, S.M.E.: Evaluation in vivo and in vitro of the performance of interactive dressings in the management of animal soft tissue injuries. In: Veterinary Dermatology, 9(2), 87–98. ISSN 0959-4493 (1998) Cockbill, S.M.E.: Evaluation in vivo and in vitro of the performance of interactive dressings in the management of animal soft tissue injuries. In: Veterinary Dermatology, 9(2), 87–98. ISSN 0959-4493 (1998)
129.
Zurück zum Zitat Macedo, N.L., Matuda, F.S., Macedo, L.G.S., Monteiro, A.S.F., Valera, M.C., Carvalho, Y.R.: Evaluation of two membranes in guided bone tissue regeneration: histological study in rabbits. Braz. J. Oral Sci. 3, 395 (2004) Macedo, N.L., Matuda, F.S., Macedo, L.G.S., Monteiro, A.S.F., Valera, M.C., Carvalho, Y.R.: Evaluation of two membranes in guided bone tissue regeneration: histological study in rabbits. Braz. J. Oral Sci. 3, 395 (2004)
130.
Zurück zum Zitat Södergård, A., Mikael, S.: Properties of lactic acid based polymers and their correlation with composition. Prog. Polym. Sci. 27(6), 1123–1163 (2002) Södergård, A., Mikael, S.: Properties of lactic acid based polymers and their correlation with composition. Prog. Polym. Sci. 27(6), 1123–1163 (2002)
131.
Zurück zum Zitat Middelton, J.C., Tipton, A.J.: Synthetic biodegradable polymers as orthopedic devices. Biomaterial 21(23), 2335–2346 (2000) Middelton, J.C., Tipton, A.J.: Synthetic biodegradable polymers as orthopedic devices. Biomaterial 21(23), 2335–2346 (2000)
132.
Zurück zum Zitat Niţă, T.: Concepts in biological analysis of resorbable materials in oro-maxillofacial surgery. Revista de Chirurgie Oro-Maxilo-Facială şi Implantologie, 2(1), 33–38 (2011) Niţă, T.: Concepts in biological analysis of resorbable materials in oro-maxillofacial surgery. Revista de Chirurgie Oro-Maxilo-Facială şi Implantologie, 2(1), 33–38 (2011)
133.
Zurück zum Zitat Royte, E.: Corn Plastic to the Rescue. Smithsonian Magazine. (2006) Royte, E.: Corn Plastic to the Rescue. Smithsonian Magazine. (2006)
134.
Zurück zum Zitat Najafi, N., Heuzey, M.C., Carreau, P.J.: Polylactide (PLA)-clay nanocomposites prepared by melt compounding in the presence of a chain extender. Compos. Sci. Technol 72(5), 608–615 (2012) Najafi, N., Heuzey, M.C., Carreau, P.J.: Polylactide (PLA)-clay nanocomposites prepared by melt compounding in the presence of a chain extender. Compos. Sci. Technol 72(5), 608–615 (2012)
135.
Zurück zum Zitat Keshavarz, T., Roy, I.: Polyhydroxyalkanoates: bioplastics with a green agenda. Curr. Opin. Microbiol. 13, 321–326 (2010) Keshavarz, T., Roy, I.: Polyhydroxyalkanoates: bioplastics with a green agenda. Curr. Opin. Microbiol. 13, 321–326 (2010)
136.
Zurück zum Zitat Philip, S., Keshavarz, T., Roy, I.: Polyhydroxyalkanoates: biodegradable polymers with a range of applications. J. Chem. Technol. Biotechnol. 82, 233–247 (2007) Philip, S., Keshavarz, T., Roy, I.: Polyhydroxyalkanoates: biodegradable polymers with a range of applications. J. Chem. Technol. Biotechnol. 82, 233–247 (2007)
137.
Zurück zum Zitat Du, G., Si, Y., Yu, J.: Inhibitory effects of medium-chain-length fatty acid on synthesis of Polyhydroxyalkanoates from volatile fatty acid by Ralstonia eutrophus. Biotechnol. Lett. 23, 1617–1623 (2001) Du, G., Si, Y., Yu, J.: Inhibitory effects of medium-chain-length fatty acid on synthesis of Polyhydroxyalkanoates from volatile fatty acid by Ralstonia eutrophus. Biotechnol. Lett. 23, 1617–1623 (2001)
138.
Zurück zum Zitat Salehizadeh, H., Van Loosdrecht, M.: Production of polyhydroxyalkanoates by mixed culture: recent trends and biotechnological importance. Biotechnol. Adv. 22, 261–279 (2004) Salehizadeh, H., Van Loosdrecht, M.: Production of polyhydroxyalkanoates by mixed culture: recent trends and biotechnological importance. Biotechnol. Adv. 22, 261–279 (2004)
139.
Zurück zum Zitat Stock, U., Sakamoto, T., Hastuoka, S., Martin, D., Nagashima, M., Moran, A., Moses, M., Khalil, P., Schoen, F., Vacanti, J., Mayer, J.: Patch augmentation of the pulmonary artery with bioabsorbable polymers and autologous cell seeding. J. Thorac. Cardiovasc. Surg. 120, 1158–1168 (2000) Stock, U., Sakamoto, T., Hastuoka, S., Martin, D., Nagashima, M., Moran, A., Moses, M., Khalil, P., Schoen, F., Vacanti, J., Mayer, J.: Patch augmentation of the pulmonary artery with bioabsorbable polymers and autologous cell seeding. J. Thorac. Cardiovasc. Surg. 120, 1158–1168 (2000)
140.
Zurück zum Zitat Valappil, S., Misra, S., Boccaccini, A., Roy, I.: Biomedical applications of polyhydroxyalkanoates, an overview of animal testing and in vivo responses. Expert Rev. Med. Devices 3(6), 853–868 (2006) Valappil, S., Misra, S., Boccaccini, A., Roy, I.: Biomedical applications of polyhydroxyalkanoates, an overview of animal testing and in vivo responses. Expert Rev. Med. Devices 3(6), 853–868 (2006)
141.
Zurück zum Zitat Thibaut, G., Tatiana, B.: Morphology and molten-state rheology of polylactide and polyhydroxyalkanoate blends. Eur. Polym. J. 48(6), 1110–1117 (2012) Thibaut, G., Tatiana, B.: Morphology and molten-state rheology of polylactide and polyhydroxyalkanoate blends. Eur. Polym. J. 48(6), 1110–1117 (2012)
142.
Zurück zum Zitat Bing, M., Jingjing, D., Qing, L., Zhihua, W., Wei, Y.: Transparent and ductile poly(lactic acid)/poly(butyl acrylate) (PBA) blends: structure and properties. Eur. Polym. J. 48(1), 127–135 (2012) Bing, M., Jingjing, D., Qing, L., Zhihua, W., Wei, Y.: Transparent and ductile poly(lactic acid)/poly(butyl acrylate) (PBA) blends: structure and properties. Eur. Polym. J. 48(1), 127–135 (2012)
Metadaten
Titel
Natural Polymers: Their Blends, Composites and Nanocomposites: State of Art, New Challenges and Opportunities
verfasst von
P. M Visakh
Aji P. Mathew
Sabu Thomas
Copyright-Jahr
2013
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-642-20940-6_1

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.