Skip to main content

Phenolic Compounds: Introduction

  • Reference work entry
  • First Online:

Abstract

“Plant phenolics” and “polyphenols” are secondary natural metabolites arising biogenetically from either the shikimate/phenylpropanoid pathway, which directly provides phenylpropanoids, or the “polyketide” acetate/malonate pathway, which can produce simple phenols, or both, thus producing monomeric and polymeric phenols and polyphenols, which fulfill a very broad range of physiological roles in plants. Higher plants synthesize several thousand known different phenolic compounds. The ability to synthesize phenolic compounds has been selected throughout the course of evolution in different plant lineages, thus permitting plants to cope with the constantly changing environmental challenges over evolutionary time.

Plant phenolics are considered to have a key role as defense compounds when environmental stresses, such as high light, low temperatures, pathogen infection, herbivores, and nutrient deficiency, can lead to an increased production of free radicals and other oxidative species in plants. Both biotic and abiotic stresses stimulate carbon fluxes from the primary to the secondary metabolic pathways, thus inducing a shift of the available resources in favor of the synthesis of secondary products. An interesting link between primary and secondary metabolism couples the accumulation of the stress metabolite proline with the energy transfer toward phenylpropanoid biosynthesis via the oxidative pentose phosphate pathway. The alternating oxidation of NADPH by proline synthesis and reduction of NADP+ by the two oxidative steps of the oxidative pentose phosphate pathway lead to the simultaneous accumulation of phenolic compounds.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   2,999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Fiehn O (2002) Metabolomics – the link between genotypes and phenotypes. Plant Mol Biol 48:155–171

    Article  CAS  Google Scholar 

  2. Wu S, Chappell J (2008) Metabolic engineering of natural products in plants; tools of the trade and challenges for the future. Curr Opin Biotechnol 19:145–152

    Article  CAS  Google Scholar 

  3. Ornston LN, Yeh WK (1979) Origins of metabolic diversity: evolutionary divergence by sequence repetition. Proc Natl Acad Sci USA 76:3996–4000

    Article  CAS  Google Scholar 

  4. Wink M (1999) Biochemistry of plant secondary metabolism. Sheffield Academic Press/UK/CRC Press, Sheffield/Boca Raton

    Google Scholar 

  5. Lehfeldt C, Shirley AM, Meyer K, Ruegger MO, Cusumano JC, Viitanen PV, Strack D, Chapple C (2000) Cloning of the SNG1 gene of Arabidopsis reveals a role for a serine carboxypeptidase-like protein as an acyltransferase in secondary metabolism. Plant Cell 12:1295–1306

    CAS  Google Scholar 

  6. Tauber E, Last KS, Olive PJ, Kyriacou CP (2004) Clock gene evolution and functional divergence. J Biol Rhythms 19:445–458

    Article  CAS  Google Scholar 

  7. Broun P (2005) Transcriptional control of flavonoid biosynthesis: a complex network of conserved regulators involved in multiple aspects of differentiation in Arabidopsis. Curr Opin Plant Biol 8:272–279

    Article  CAS  Google Scholar 

  8. do Nascimento NC, Fett-Neto AG (2010) Plant secondary metabolism and challenges in modifying its operation: an overview. In: Fett-Neto AG (ed) Plant secondary metabolism engineering – methods and application, methods in molecular biology, vol 643. Humana Press, New York, pp 1–13

    Chapter  Google Scholar 

  9. Stafford HA (1991) Flavonoid evolution: an enzymic approach. Plant Physiol 96:680–685

    Article  CAS  Google Scholar 

  10. Hättenschwiler S, Vitousek PM (2000) The role of polyphenols in terrestrial ecosystem nutrient cycling. Trends Ecol Evol 15:238–243

    Article  Google Scholar 

  11. Kutchan TM (2001) Ecological arsenal and developmental dispatcher. The paradigm of secondary metabolism. Plant Physiol 125:58–60

    Article  CAS  Google Scholar 

  12. Wink M (2003) Evolution of secondary metabolites from an ecological and molecular phylogenetic perspective. Phytochemistry 64:3–19

    Article  CAS  Google Scholar 

  13. Kutchan T, Dixon RA (2005) Secondary metabolism: nature’s chemical reservoir under deconvolution. Curr Opin Plant Biol 8:227–229

    Article  Google Scholar 

  14. Lattanzio V, Kroon PA, Quideau S, Treutter D (2008) Plant phenolics – secondary metabolites with diverse functions. In: Daayf F, Lattanzio V (eds) Recent advances in polyphenol research, vol 1. Wiley-Blackwell, Oxford, pp 1–35

    Chapter  Google Scholar 

  15. Swain T (1975) Evolution of flavonoid compounds. In: Harborne JB, Mabry TJ, Mabry H (eds) The flavonoids. Chapman & Hall, London, pp 1096–1138

    Google Scholar 

  16. Harborne JB (1980) Plant phenolics. In: Bell EA, Charlwood BV (eds) Encyclopedia of plant physiology, vol 8, Secondary plant products. Springer, Berlin, pp 329–402

    Google Scholar 

  17. Robards R, Antolovich M (1997) Analytical chemistry of fruit bioflavonoids. A review. Analyst 122:11R–34R

    Article  CAS  Google Scholar 

  18. Herms DA, Mattson WJ (1992) The dilemma of plants: to grow or defend. Q Rev Biol 67:283–335

    Article  Google Scholar 

  19. Dixon RA, Paiva NL (1995) Stress-induced phenylpropanoid metabolism. Plant Cell 7:1085–1097

    CAS  Google Scholar 

  20. Noel JP, Austin MB, Bomati EK (2005) Structure–function relationships in plant phenylpropanoid biosynthesis. Curr Opin Plant Biol 8:249–253

    Article  CAS  Google Scholar 

  21. Boudet AM (2007) Evolution and current status of research in phenolic compounds. Phytochemistry 68:2722–2735

    Article  CAS  Google Scholar 

  22. Lowry B, Lee D, Hébant C (1980) The origin of land plants: a new look at an old problem. Taxon 29:183–197

    Article  Google Scholar 

  23. Graham LE, Cook ME, Busse JS (2000) The origin of plants: body plan changes contributing to a major evolutionary radiation. Proc Natl Acad Sci USA 97:4535–4540

    Article  CAS  Google Scholar 

  24. Chapman DJ, Regan MA (1980) Evolution of a biochemical pathway: evidence from comparative biochemistry. Annu Rev Plant Physiol 31:639–645

    Article  CAS  Google Scholar 

  25. Croteau R, Kutchan TM, Lewis NG (2000) Natural products (secondary metabolites). In: Buchanan B, Gruissem W, Jones R (eds) Biochemistry and molecular biology of plants. American Society of Plant Physiologist, Rockville, pp 1250–1318

    Google Scholar 

  26. Willstätter R, Everest AE (1913) Untersuchungen uber die anthocyane; I. uber den farbstoff der kornblume. Justus Liebig’s Ann Chem 401:189–232

    Article  Google Scholar 

  27. Robinson GM, Robinson R (1931) CLXXXII. A survey of anthocyanins I. Biochem J 25:1687–1705

    CAS  Google Scholar 

  28. Synge RL (1975) Interactions of polyphenols with proteins in plants and plant products. Qual Plant-Plant Foods Hum Nutr 24:337–342

    Article  CAS  Google Scholar 

  29. Yoshida K, Mori M, Kondo T (2009) Blue flower color development by anthocyanins: from chemical structure to cell physiology. Nat Prod Rep 26:884–915

    Article  CAS  Google Scholar 

  30. Harborne JB (1989) General procedures and measurement of total phenolics. In: Harborne JB (ed) Methods in plant biochemistry, vol 1, Plant phenolics. Academic, London, pp 1–28

    Google Scholar 

  31. Quideau S, Deffieux D, Douat-Casassus C, Pouységu L (2011) Plant polyphenols: chemical properties, biological activities, and synthesis. Angew Chem Int Ed 50:586–621

    Article  CAS  Google Scholar 

  32. Haslam E (1989) Plant polyphenols: vegetable tannins revisited. Cambridge University Press, Cambridge

    Google Scholar 

  33. Strack D (1997) Phenolic metabolism. In: Dey PM, Harborne JB (eds) Plant biochemistry. Academic, London, pp 387–416

    Chapter  Google Scholar 

  34. Whiting DA (2001) Natural phenolic compounds 1900–2000: a bird’s eye view of a century’s chemistry. Nat Prod Rep 18:583–606

    Article  CAS  Google Scholar 

  35. Andersen OM, Markham KR (2006) Flavonoids – chemistry, biochemistry and applications. CRC Taylor & Francis, Boca Raton

    Google Scholar 

  36. Vermerris W, Nicholson R (2006) Phenolic compound biochemistry. Springer, Dordrecht

    Google Scholar 

  37. Quideau S (2009) Chemistry and biology of ellagitannins, an underestimated class of bioactive plant polyphenols. World Scientific, London

    Book  Google Scholar 

  38. Jaganath IB, Crozier A (2010) Dietary flavonoids and phenolic compounds. In: Cesar Fraga G (ed) Plant phenolics and human health: biochemistry, nutrition, and pharmacology. Wiley, Hoboken, pp 1–49

    Google Scholar 

  39. Veitch NC (2010) Flavonoid chemistry of the Leguminosae. In: Santos-Buelga C, Escribano-Bailon MT, Lattanzio V (eds) Recent advances in polyphenol research, vol II. Wiley-Blackwell, Oxford, UK, pp 23–58

    Google Scholar 

  40. Veitch NC, Grayer RJ (2011) Flavonoids and their glycosides, including anthocyanins. Nat Prod Rep 28:1626–1695

    Article  CAS  Google Scholar 

  41. Towers GHN, Tse A, Maas WSG (1966) Phenolic acids and phenolic glycosides of Gaultheria species. Phytochemistry 5:677–681

    Article  CAS  Google Scholar 

  42. Van Sumere CF (1989) Phenols and phenolic acids. In: Harborne JB (ed) Methods in plant biochemistry, vol 1, Plant phenolics. Academic, London, pp 29–73

    Google Scholar 

  43. Zhu W, Gao J (2008) The use of botanical extracts as topical skin-lightening agents for the improvement of skin pigmentation disorders. J Invest Derm Symp P 13:20–24

    Article  CAS  Google Scholar 

  44. Tomás-Barberán FA, Clifford MN (2000) Dietary hydroxybenzoic acid derivatives - nature, occurrence and dietary burden. J Sci Food Agric 80:1024–1032

    Article  Google Scholar 

  45. Amakura Y, Okada M, Tsuji S, Tonogai Y (2000) High performance liquid chromatographic determination with photodiode array detection of ellagic acid in fresh and processed fruits. J Chromatogr A 896:87–93

    Article  CAS  Google Scholar 

  46. Münzenberger B, Kottke I, Oberwinkler F (1995) Reduction of phenolics in mycorrhizas of Larix decidua Mill. Tree Physiol 15:191–196

    Article  Google Scholar 

  47. Weiss M, Mikolajewski S, Peipp H, Schmitt U, Schmidt J, Wray V, Strack D (1997) Tissue-specific and development-dependent accumulation of phenylpropanoids in larch mycorrhizas. Plant Physiol 114:15–27

    CAS  Google Scholar 

  48. Nyman T, Julkunen-Tiitto R (2000) Manipulation of the phenolic chemistry of willows by gall-inducing sawflies. Proc Natl Acad Sci USA 97:13184–13187

    Article  CAS  Google Scholar 

  49. Ibrahim R, Barron D (1989) Phenylpropanoids. In: Harborne JB (ed) Methods in plant biochemistry, vol 1, Plant phenolics. Academic, London, pp 75–111

    Google Scholar 

  50. Clifford MN (2000) Chlorogenic acids and other cinnamates – nature, occurrence, and dietary burden. J Sci Food Agric 80:1033–1043

    Article  CAS  Google Scholar 

  51. Spino C, Dodier M, Sotheeswaran S (1998) Anti-HIV coumarins from Calophyllum seed oil. Bioorg Med Chem Lett 8:3475–3478

    Article  CAS  Google Scholar 

  52. Petersen M, Strack D, Matern U (1999) Biosynthesis of phenylpropanoids and related compounds. In: Wink M (ed) Biochemistry of plant secondary metabolism, vol 2. Sheffield Academic Press/CRC Press, Sheffield/Boca Raton, pp 151–222

    Google Scholar 

  53. Papageorgiou VP, Assimopoulou AN, Couladouros EA, Hepworth D, Nicolaou KC (1999) The chemistry and biology of alkannin, shikonin, and related naphthazarin natural products. Angew Chem Int Ed 38:270–300

    Article  Google Scholar 

  54. Lattanzio V, Lattanzio VMT, Cardinali A (2006) Role of phenolics in the resistance mechanisms of plants against fungal pathogens and insects. In: Imperato F (ed) Phytochemistry: advances in research. Research Signpost, Trivandrum, pp 23–67

    Google Scholar 

  55. Babula P, Adam V, Havel L, Kizek R (2009) Noteworthy secondary metabolites naphthoquinones – their occurrence, pharmacological properties and analysis. Curr Pharm Anal 5:47–68

    Article  CAS  Google Scholar 

  56. Sultanbawa MUS (1980) Xanthonoids of tropical plants. Tetrahedron 36:1465–1506

    Article  CAS  Google Scholar 

  57. Bennett GJ, Lee HH (1988) Xanthones from Guttiferae. Phytochemistry 28:967–998

    Article  Google Scholar 

  58. Peres V, Nagem TJ (1997) Tryoxigenated naturally occurring xanthones. Phytochemistry 44:191–214

    Article  CAS  Google Scholar 

  59. Peres V, Nagem TJ, de Oliveira FF (2000) Tetraoxygenated naturally occurring xanthones. Phytochemistry 55:683–710

    Article  CAS  Google Scholar 

  60. Gorham J (1989) Stilbenes and phenanthrenes. In: Harborne JB (ed) Methods in plant biochemistry, vol 1, Plant phenolics. Academic, London, pp 159–196

    Google Scholar 

  61. Gorham J (1995) The biochemistry of stilbenoids (with contributions by Tori M, Asakawa Y). Chapman and Hall, London

    Google Scholar 

  62. Leistner E (1981) Biosynthesis of plant quinones. In: Stumpf PK, Conn EE (eds) The biochemistry of plants: a comprehensive treatise, vol Secondary plant products, 7. Academic, New York, pp 403–423

    Google Scholar 

  63. Izhaki I (2002) Emodin-a secondary metabolite with multiple ecological functions in higher plants. New Phytol 155:205–217

    Article  CAS  Google Scholar 

  64. Harborne JB, Mabry TJ, Mabry H (1975) The flavonoids. Chapman and Hall, London

    Google Scholar 

  65. Hahlbrock K (1981) Flavonoids. In: Stumpf PK, Conn EE (eds) The biochemistry of plants: a comprehensive treatise, vol 7, Secondary plant products. Academic, New York, pp 425–456

    Google Scholar 

  66. Harborne JB (1994) The flavonoids: advances in research since 1986. Chapman & Hall, London

    Google Scholar 

  67. Harborne JB, Williams CA (2000) Advances in flavonoids research since 1992. Phytochemistry 55:481–504

    Article  CAS  Google Scholar 

  68. Grotewold E (2006) The science of flavonoids. Springer Science + Business Media, New York

    Book  Google Scholar 

  69. Veitch NC (2007) Isoflavonoids of the leguminosae. Nat Prod Rep 24:417–464

    Article  CAS  Google Scholar 

  70. Ferreira D, Slade D, Marais JPJ (2006) Bi-, tri-, tetra-, penta-, and hexaflavonoids. In: Andersen ØM, Markham KR (eds) Flavonoids – chemistry, biochemistry and applications. CRC Taylor & Francis, Boca Raton, pp 1101–1128

    Google Scholar 

  71. Moss GP (2000) Nomenclature of lignans and neolignans (IUPAC recommendations 2000). Pure Appl Chem 72:1493–1523

    Article  CAS  Google Scholar 

  72. Ward RS (1999) Lignans, neolignans and related compounds. Nat Prod Rep 16:75–96

    Article  CAS  Google Scholar 

  73. Saleem M, Kim HJ, Ali MS, Lee YS (2005) An update on bioactive plant lignans. Nat Prod Rep 22:696–716

    Article  CAS  Google Scholar 

  74. White T (1957) Tannins – their occurrence and significance. J Sci Food Agric 8:377–385

    Article  CAS  Google Scholar 

  75. Bate-Smith EC, Swain T (1962) Flavonoid compounds. In: Mason HS, Florkin AM (eds) Comparative biochemistry, vol 3. Academic, New York, pp 705–809

    Google Scholar 

  76. Haslam E (1981) Vegetable tannins. In: Stumpf PK, Conn EE (eds) The biochemistry of plants: a comprehensive treatise, vol 7, Secondary plant products. Academic, New York, pp 527–556

    Google Scholar 

  77. Haslam E (1996) Natural polyphenols and vegetable tannins as drugs: possible modes of action. J Nat Prod 59:205–215

    Article  CAS  Google Scholar 

  78. Haslam E (1998) Practical polyphenolics: from structure to molecular recognition and physiological function. Cambridge University Press, Cambridge, UK

    Google Scholar 

  79. Khanbabaee K, Van Ree T (2001) Tannins: classification and definition. Nat Prod Rep 18:641–649

    Article  CAS  Google Scholar 

  80. Ferreira D, Slade D (2002) Oligomeric proanthocyanidins: naturally occurring O-heterocycles. Nat Prod Rep 19:517–541

    Article  CAS  Google Scholar 

  81. Singh IP, Sidana J, Bharate SB, Foley WJ (2010) Phloroglucinol compounds of natural origin: synthetic aspects. Nat Prod Rep 27:393–416

    Article  CAS  Google Scholar 

  82. Freudenberg K (1959) Biosynthesis and constitution of lignin. Nature 183:1152–1155

    Article  CAS  Google Scholar 

  83. Hatfield R, Vermerris W (2001) Lignin formation in plants. The dilemma of linkage specificity. Plant Physiol 126:1351–1357

    Article  CAS  Google Scholar 

  84. Önnerud H, Zhang L, Gellerstedt G, Henriksson G (2002) Polymerization of monolignols by redox shuttle-mediated enzymatic oxidation: a new model in lignin biosynthesis. Plant Cell 14:1953–1962

    Article  CAS  Google Scholar 

  85. Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Biol 54:519–549

    Article  CAS  Google Scholar 

  86. Ralph J, Lundquist K, Brunow G, Lu F, Kim H, Schatz PF, Marita JM, Hatfield RD, Ralph SA, Christensen JH, Boerjan W (2004) Lignins: natural polymers from oxidative coupling of 4-hydroxyphenylpropanoids. Phytochem Rev 3:29–60

    Article  CAS  Google Scholar 

  87. Ralph J, Brunow G, Harris PJ, Dixon RA, Schatz PF, Boerjan W (2008) Lignification: are lignins biosynthesized via simple combinatorial chemistry or via proteinaceous control and template replication? In: Daayf F, Lattanzio V (eds) Recent advances in polyphenol research, vol 1. Wiley-Blackwell, Oxford, UK, pp 36–66

    Chapter  Google Scholar 

  88. Davin LB, Lewis NG (2000) Dirigent proteins and dirigent sites explain the mystery of specificity of radical precursor coupling in lignan and lignin biosynthesis. Plant Physiol 123:453–461

    Article  CAS  Google Scholar 

  89. Davin LB, Jourdes M, Patten AM, Kim KW, Vassao DG, Lewis NG (2008) Dissection of lignin macromolecular configuration and assembly: comparison to related biochemical processes in allyl/propenyl phenol and lignan biosynthesis. Nat Prod Rep 25:1015–1090

    Article  CAS  Google Scholar 

  90. Kolattukudy PE (1980) Biopolyester membranes of plants: cutin and suberin. Science 208:990–1000

    Article  CAS  Google Scholar 

  91. Bernards MA, Lopez ML, Zajicek J, Lewis NG (1995) Hydroxycinnamic acid-derived polymers constitute the polyaromatic domain of suberin. J Biol Chem 270:7382–7386

    Article  CAS  Google Scholar 

  92. Moire L, Schmutz A, Buchala A, Yan B, Stark RE, Ryser U (1999) Glycerol is a suberin monomer. New experimental evidence for an old hypothesis. Plant Physiol 119:1137–1146

    Article  CAS  Google Scholar 

  93. Serra O, Figueras M, Franke R, Prat S, Molinas M (2010) Unraveling ferulate role in suberin and periderm biology by reverse genetics. Plant Signal Behav 5:953–958

    Article  Google Scholar 

  94. Nicolaus RA, Piattelli M, Fattorusso E (1964) The structure of melanins and melanogenesis-IV: on some natural melanins. Tetrahedron 20:163–172

    Article  Google Scholar 

  95. Piattelli M, Fattorusso E, Nicolaus RA, Magno S (1965) The structure of melanins and melanogenesis-V. Ustilago melanin. Tetrahedron 21:3229–3236

    Article  CAS  Google Scholar 

  96. Britton G (1983) The biochemistry of natural pigments. Cambridge University Press, Cambridge, UK

    Google Scholar 

  97. Bell AA, Wheeller MH (1986) Biosynthesis and functions of fungal melanins. Annu Rev Phytopathol 24:521–582

    Article  Google Scholar 

  98. Langfelder K, Streibel M, Jahn B, Haase G, Brakhage AA (2003) Biosynthesis of fungal melanins and their importance for human pathogenic fungi. Fungal Genet Biol 38:143–158

    Article  CAS  Google Scholar 

  99. Engh I, Nowrousian M, Kück U (2007) Regulation of melanin biosynthesis via the dihydroxynaphthalene pathway is dependent on sexual development in the ascomycete Sordaria macrospora. FEMS Microbiol Lett 275:62–70

    Article  CAS  Google Scholar 

  100. Harborne JB (1958) Spectral methods of characterizing anthocyanins. Biochem J 70:22–28

    CAS  Google Scholar 

  101. Mabry TJ, Markham KR, Thomas MB (1970) The systematic identification of flavonoids. Springer, New York

    Book  Google Scholar 

  102. Campos M, Markham KR (2007) Structure information from HPLC and on-line measured absorption spectra: flavones, flavonoids and phenolic acid. Coimbra University Press, Coimbra

    Google Scholar 

  103. Winkel-Shirley B (2002) Biosynthesis of flavonoids and effects of stress. Curr Opin Plant Biol 5:218–223

    Article  CAS  Google Scholar 

  104. Gould KS, Lister C (2006) Flavonoid functions in plants. In: Andersen ØM, Markham KR (eds) Flavonoids – chemistry, biochemistry and applications. CRC Taylor & Francis, Boca Raton, pp 397–411

    Google Scholar 

  105. Lattanzio V, Linsalata V, Palmieri S, Van Sumere CF (1989) The beneficial effect of citric and ascorbic acid on the phenolic browning reaction in stored artichoke (Cynara scolymus L.) heads. Food Chem 33:93–106

    Article  CAS  Google Scholar 

  106. Lattanzio V, Cardinali A, Di Venere D, Linsalata V, Palmieri S (1994) Browning phenomena in stored artichoke (Cynara scolymus L.) heads: enzymic or chemical reactions? Food Chem 50:1–7

    Article  CAS  Google Scholar 

  107. Lattanzio V, Di Venere D, Linsalata V, Bertolini P, Ippolito A, Salerno M (2001) Low temperature metabolism of apple phenolics and quiescence of Phlyctaena vagabonda. J Agric Food Chem 49:5817–5821

    Article  CAS  Google Scholar 

  108. Bais HP, Park S-W, Weir TL, Callaway RM, Vivanco JM (2004) How plants communicate using the underground information superhighway. Trends Plant Sci 9:26–32

    Article  CAS  Google Scholar 

  109. Peer WA, Murphy AS (2006) Flavonoids as signal molecules: targets of flavonoid action. In: Grotewold E (ed) The science of flavonoids. Springer Science + Business Media, New York, pp 239–268

    Chapter  Google Scholar 

  110. Mathesius U (2008) Auxin: at the root of nodule development? Funct Plant Biol 35:651–668

    Article  CAS  Google Scholar 

  111. Ferguson BJ, Indrasumunar A, Hayashi S, Lin MH, Lin YH, Reid DE, Gresshoff PM (2010) Molecular analysis of legume nodule development and autoregulation. J Integr Plant Biol 52:61–76

    Article  CAS  Google Scholar 

  112. Ueda M, Yamamura S (2000) Chemistry and biology of plant leaf movements. Angew Chem Int Ed 39:1400–1414

    Article  CAS  Google Scholar 

  113. Ueda M, Nakamura Y (2006) Metabolites involved in plant movement and ‘memory’: nyctinasty of legumes and trap movement in the Venus flytrap. Nat Prod Rep 23:548–557

    Article  CAS  Google Scholar 

  114. Ueda M, Nakamura Y (2010) Plant phenolic compounds controlling leaf-movement. In: Santos-Buelga C, Escribano-Bailon MT, Lattanzio V (eds) Recent advances in polyphenol research, vol II. Wiley-Blackwell, Oxford, UK, pp 226–237

    Google Scholar 

  115. Lee DW, Gould KS (2002) Why leaves turn red. Am Sci 90:524–531

    Google Scholar 

  116. Gould KS (2004) Nature’s Swiss army knife: the diverse protective roles of anthocyanins in leaves. J Biomed Biotech 5:314–320

    Article  Google Scholar 

  117. Archetti M (2009) Decoupling vigour and quality in the autumn colours game: weak individuals can signal, cheating can pay. J Theor Biol 256:479–484

    Article  Google Scholar 

  118. Archetti M, Döring TF, Hagen SB, Hughes NM, Leather SR, Lee DW, Lev-Yadun S, Manetas Y, Ougham H, Schaberg P, Thomas H (2009) Unravelling the evolution of autumn colours: an interdisciplinary approach. Trends Ecol Evol 24:166–173

    Article  Google Scholar 

  119. Nikiforou C, Manetas Y (2010) Strength of winter leaf redness as an indicator of stress vulnerable individuals in Pistacia lentiscus. Flora 205:424–427

    Article  Google Scholar 

  120. Hughes NM (2011) Winter leaf reddening in “evergreen” species. New Phytol 190:573–581

    Article  Google Scholar 

  121. Fraenkel G (1959) The raison d'être of secondary plant substances. Science 129:1466–1470

    Article  CAS  Google Scholar 

  122. Cornell HV, Hawkins BA (2003) Herbivore responses to plant secondary compounds: a test of phytochemical coevolution theory. Am Nat 161:507–522

    Article  Google Scholar 

  123. Bhattacharya A, Sood P, Citovsky V (2010) The roles of plant phenolics in defence and communication during Agrobacterium and Rhizobium infection. Mol Plant Pathol 11:705–719

    CAS  Google Scholar 

  124. Smith JL, De Moraes CM, Mescher MC (2009) Jasmonate and salicylate-mediated plant defense responses to insect herbivores, pathogens, and parasitic plants. Pest Manag Sci 65:497–503

    Article  CAS  Google Scholar 

  125. Runyon JB, Mescher MC, Felton GW, De Moraes CM (2010) Parasitism by Cuscuta pentagona sequentially induces JA and SA defence pathways in tomato. Plant Cell Environ 33:290–303

    Article  CAS  Google Scholar 

  126. Bittel P, Robatzek S (2007) Microbe-associated molecular patterns (MAMPs) probe plant immunity. Curr Opin Plant Biol 10:335–341

    Article  CAS  Google Scholar 

  127. Hammerschmidt R, Hollosy SI (2008) Phenols and the onset and expression of plant disease resistance. In: Daayf F, Lattanzio V (eds) Recent advances in polyphenol research, vol 1. Wiley-Blackwell, Oxford, UK, pp 211–227

    Chapter  Google Scholar 

  128. Heil M (2008) Indirect defence via tritrophic interactions. New Phytol 178:41–61

    Article  CAS  Google Scholar 

  129. Métraux J-P, Lamodière E, Catinot J, Lamotte O, Garcion C (2008) Salicylic acid and induced plant defenses. In: Daayf F, Lattanzio V (eds) Recent advances in polyphenol research, vol 1. Wiley-Blackwell, Oxford, UK, pp 202–210

    Chapter  Google Scholar 

  130. Zipfel C (2008) Pattern-recognition receptors in plant innate immunity. Curr Opin Immunol 20:10–16

    Article  CAS  Google Scholar 

  131. Nicaise V, Roux M, Zipfel C (2009) Recent advances in PAMP-triggered immunity against bacteria: pattern recognition receptors watch over and raise the alarm. Plant Physiol 150:1638–1647

    Article  CAS  Google Scholar 

  132. Wu J, Baldwin IT (2009) Herbivory-induced signalling in plants: perception and action. Plant Cell Environ 32:1161–1174

    Article  CAS  Google Scholar 

  133. Hedin PA, Jenkins JN, Thompson AC, McCarty JC, Smith DH, Parrott WL, Shepherd RL (1988) Effect of bioregulators on flavonoids, insect resistance and yield of seed cotton. J Agric Food Chem 36:1055–1061

    Article  CAS  Google Scholar 

  134. Nishida R, Ohsugi T, Kokubo S, Fukami H (1987) Oviposition stimulants of a citrus-feeding swallowtail butterfly, Papilio xuthus L. Experientia 43:342–344

    Article  CAS  Google Scholar 

  135. Harborne JB (2001) Twenty-five years of chemical ecology. Nat Prod Rep 18:361–379

    Article  CAS  Google Scholar 

  136. Constabel CP, Barbehenn R (2008) Defensive roles of polyphenol oxidase in plants. In: Schaller A (ed) Induced plant resistance to herbivory. Springer Science + Business Media, Netherlands, pp 253–269

    Chapter  Google Scholar 

  137. Barbehenn RV, Jaros A, Lee G, Mozola C, Weir Q, Salminen J-P (2009) Hydrolyzable tannins as “quantitative defenses”: limited impact against Lymantria dispar caterpillars on hybrid poplar. J Insect Physiol 55:297–304

    Article  CAS  Google Scholar 

  138. Barbehenn RV, Dukatz C, Holt C, Reese A, Martiskainen O, Salminen J-P, Yip L, Tran L, Constabel CP (2010) Feeding on poplar leaves by caterpillars potentiates foliar peroxidase action in their guts and increases plant resistance. Oecologia 164:993–1004

    Article  Google Scholar 

  139. Purrington CB (2000) Cost of resistance. Curr Opin Plant Biol 3:305–308

    Article  CAS  Google Scholar 

  140. Brown JKM (2002) Yield penalties of disease resistance in crops. Curr Opin Plant Biol 5:339–344

    Article  CAS  Google Scholar 

  141. Brown JKM (2003) A cost of disease resistance: paradigm or peculiarity? Trends Genet 19:667–671

    Article  CAS  Google Scholar 

  142. Cipollini D, Purrington CB, Bergelson J (2003) Costs of induced responses in plants. Basic Appl Ecol 4:79–85

    Article  Google Scholar 

  143. Lattanzio V, Cardinali A, Ruta C, Fortunato IM, Lattanzio VMT, Linsalata V, Cicco N (2009) Relationship of secondary metabolism to growth in oregano (Origanum vulgare L.) shoot cultures under nutritional stress. Environ Exp Bot 65:54–62

    Article  CAS  Google Scholar 

  144. Shetty K (2004) Role of proline-linked pentose phosphate pathway in biosynthesis of plant phenolics for functional food and environmental applications: a review. Proc Biochem 9:789–803

    Article  CAS  Google Scholar 

  145. Kushad MM, Yelenosky G (1987) Evaluation of polyamine and proline levels during low temperature acclimation of citrus. Plant Physiol 84:692–695

    Article  CAS  Google Scholar 

  146. Hare PD, Cress WA (1997) Metabolic implications of stress-induced proline accumulation in plants. Plant Growth Regul 21:79–102

    Article  CAS  Google Scholar 

  147. Mehta SK, Gaur JP (1999) Heavy-metal–induced proline accumulation and its role in ameliorating metal toxicity in Chlorella vulgaris. New Phytol 143:253–259

    Article  CAS  Google Scholar 

  148. Fedina IS, Grigorova ID, Georgieva KM (2003) Response of barley seedlings to UV-B radiation as affected by NaCl. J Plant Physiol 160:205–208

    Article  CAS  Google Scholar 

  149. IUPAC Commission on the Nomenclature of Organic Chemistry (CNOC), IUPAC-IUB Commission on Biochemical Nomenclature (CBN) (1976) Nomenclature of cyclitols. Biochem J 153:23–31

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincenzo Lattanzio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Lattanzio, V. (2013). Phenolic Compounds: Introduction. In: Ramawat, K., Mérillon, JM. (eds) Natural Products. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22144-6_57

Download citation

Publish with us

Policies and ethics