Skip to main content

2012 | OriginalPaper | Buchkapitel

8. Antimicrobial Activity of Silver and Copper Nanoparticles: Variation in Sensitivity Across Various Strains of Bacteria and Fungi

verfasst von : Suparna Mukherji, Jayesh Ruparelia, Shekhar Agnihotri

Erschienen in: Nano-Antimicrobials

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The antimicrobial activity of silver and copper nanoparticles is widely reported and is linked with ions that leach out from these nanoparticles. The activity is further enhanced due to their small size and high surface area to volume ratio which allows them to interact closely with microbial membranes. Most studies on antibacterial effects have been limited to one or a few strains and comparison across studies becomes difficult due to differences in the size and other characteristics of the nanoparticles and due to differences in the protocols followed in the various studies. The sensitivity in response to silver nanoparticles is seen to vary widely across various strains of Escherichia coli and Staphylococcus aureus. Most strains typically show greater sensitivity to silver compared to copper nanoparticles. Antifungal activity of silver nanoparticles has been found to be comparable to commercially available antifungal agents. Nanoparticles embedded/immobilized on supports may be better utilized for applications such as water disinfection. Such systems can promote a continuous release of Ag+ and Cu2+ ions in solution and thus promote disinfection while ensuring a low enough concentration to avoid deleterious effect on humans and other organisms in the ecosystem.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abd El-Mohdy HL, Ghanem S (2009) Biodegradability, antimicrobial activity and properties of PVA/PVP hydrogels prepared by γ-irradiation. J Polym Res Taiwan 16:1–10. doi:10.1007/s10965-008-9196-0 Abd El-Mohdy HL, Ghanem S (2009) Biodegradability, antimicrobial activity and properties of PVA/PVP hydrogels prepared by γ-irradiation. J Polym Res Taiwan 16:1–10. doi:10.​1007/​s10965-008-9196-0
Zurück zum Zitat Ahamed M, Karns M, Goodson M, Rowe J, Hussain SM, Schlager JJ, Hong Y (2008) DNA damage response to different surface chemistry of silver nanoparticles in mammalian cells. Toxicol Appl Pharm 233:404–410. doi:10.1016/j.taap.2008.09.015 Ahamed M, Karns M, Goodson M, Rowe J, Hussain SM, Schlager JJ, Hong Y (2008) DNA damage response to different surface chemistry of silver nanoparticles in mammalian cells. Toxicol Appl Pharm 233:404–410. doi:10.​1016/​j.​taap.​2008.​09.​015
Zurück zum Zitat An J, Wang D, Luo Q, Yuan X (2009) Antimicrobial active silver nanoparticles and silver/polystyrene core-shell nanoparticles prepared in room-temperature ionic liquid. Mater Sci Eng C 29:1984–1989. doi:10.1016/j.msec.2009.03.015 An J, Wang D, Luo Q, Yuan X (2009) Antimicrobial active silver nanoparticles and silver/polystyrene core-shell nanoparticles prepared in room-temperature ionic liquid. Mater Sci Eng C 29:1984–1989. doi:10.​1016/​j.​msec.​2009.​03.​015
Zurück zum Zitat Asavavisithchai S, Oonpraderm A, Rungsardthong Ruktanonchai U (2010) The antimicrobial effect of open-cell silver foams. J Mater Sci: Mater Med 21:1329–1334. doi:10.1007/s10856-009-3969-9 Asavavisithchai S, Oonpraderm A, Rungsardthong Ruktanonchai U (2010) The antimicrobial effect of open-cell silver foams. J Mater Sci: Mater Med 21:1329–1334. doi:10.​1007/​s10856-009-3969-9
Zurück zum Zitat Asharani PV, Kah Mun GL, Hande MP, Valiyaveettil S (2009) Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 3:279–290. doi: 10.1021/nn800596w Asharani PV, Kah Mun GL, Hande MP, Valiyaveettil S (2009) Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 3:279–290. doi: 10.​1021/​nn800596w
Zurück zum Zitat Barbucci R, Leone G, Magnani A, Montanaro L, Arciola CR, Peluso G, Petillo O (2002) Cu2+ and Ag1+ complexes with a hyaluron-based hydrogel, J Mater Chem 12:3084–3092. doi:10.1039/b205320a Barbucci R, Leone G, Magnani A, Montanaro L, Arciola CR, Peluso G, Petillo O (2002) Cu2+ and Ag1+ complexes with a hyaluron-based hydrogel, J Mater Chem 12:3084–3092. doi:10.​1039/​b205320a
Zurück zum Zitat Beveridge TJ, Murray RG (1980) Sites of metal deposition in the cell wall of Bacillus subtilis, J Bacteriol 141:876–887. Beveridge TJ, Murray RG (1980) Sites of metal deposition in the cell wall of Bacillus subtilis, J Bacteriol 141:876–887.
Zurück zum Zitat Borkow G, Gabbay J (2009) Copper, An ancient remedy returning to fight microbial, fungal and viral infections. Curr Chem Biol 3:272–278. Borkow G, Gabbay J (2009) Copper, An ancient remedy returning to fight microbial, fungal and viral infections. Curr Chem Biol 3:272–278.
Zurück zum Zitat Bosetti M, Masse A, Tobin E, Cannas M (2002) Silver coated materials for external fixation devices: in vitro biocompatibility and genotoxicity. Biomaterials, 23:887–892. doi:10.1016/s0142-9612(01)00198-3 Bosetti M, Masse A, Tobin E, Cannas M (2002) Silver coated materials for external fixation devices: in vitro biocompatibility and genotoxicity. Biomaterials, 23:887–892. doi:10.​1016/​s0142-9612(01)00198-3
Zurück zum Zitat Brown IG (1993) Metal–ion implantation for large scale surface modification. J Vac Sci Technol A 11:1480–1485. Brown IG (1993) Metal–ion implantation for large scale surface modification. J Vac Sci Technol A 11:1480–1485.
Zurück zum Zitat Burygin GL, Khlebtsov BN, Shantrokha AN, Dykman LA, Bogatyrev VA, Khlebtsov NG (2009) On the enhanced antibacterial activity of antibiotics mixed with gold nanoparticles. Nanoscale Res Lett 4:794–801. doi:10.1007/s11671-009-9316-8 Burygin GL, Khlebtsov BN, Shantrokha AN, Dykman LA, Bogatyrev VA, Khlebtsov NG (2009) On the enhanced antibacterial activity of antibiotics mixed with gold nanoparticles. Nanoscale Res Lett 4:794–801. doi:10.​1007/​s11671-009-9316-8
Zurück zum Zitat Chou WL, Yu DG, Yang MC (2005) The preparation and characterization of silver-loading cellulose acetate hollow fiber membrane for water treatment. Polym Advan Technol 16:600–607. doi:10.1002/pat.630 Chou WL, Yu DG, Yang MC (2005) The preparation and characterization of silver-loading cellulose acetate hollow fiber membrane for water treatment. Polym Advan Technol 16:600–607. doi:10.​1002/​pat.​630
Zurück zum Zitat Chudasama B, Vala, AK, Andhariya N, Upadhyay RV, Mehta RV (2009) Enhanced antibacterial activity of bifunctional Fe3O4-Ag core-shell nanostructures. Nano Res 2: 955–965. doi:10.1007/s12274-009-9098-4 Chudasama B, Vala, AK, Andhariya N, Upadhyay RV, Mehta RV (2009) Enhanced antibacterial activity of bifunctional Fe3O4-Ag core-shell nanostructures. Nano Res 2: 955–965. doi:10.​1007/​s12274-009-9098-4
Zurück zum Zitat Chudasama B, Vala,AK, Andhariya N, Mehta RV, Upadhyay RV (2010) Highly bacterial resistant silver nanoparticles: synthesis and antibacterial activities. J Nanopart Res 12:1677–1685. doi: 10.1007/s11051-009-9845-1 Chudasama B, Vala,AK, Andhariya N, Mehta RV, Upadhyay RV (2010) Highly bacterial resistant silver nanoparticles: synthesis and antibacterial activities. J Nanopart Res 12:1677–1685. doi: 10.​1007/​s11051-009-9845-1
Zurück zum Zitat Cioffi N, Torsi L, Ditaranto N, Sabbatini L, Giorgio P (2004) Antifungal activity of polymer-based copper nanocomposite coatings. Appl Phys Lett 85:2417–2419. doi:10.1063/1.1794381 Cioffi N, Torsi L, Ditaranto N, Sabbatini L, Giorgio P (2004) Antifungal activity of polymer-based copper nanocomposite coatings. Appl Phys Lett 85:2417–2419. doi:10.​1063/​1.​1794381
Zurück zum Zitat Cioffi N, Torsi L, Ditaranto N, Tantillo G, Ghibelli L, Sabbatini L, Bleve-Zacheo T, D’Alessio M, Giorgio Zambonin P, Traversa E (2005) Copper nanoparticle/polymer composites with antifungal and bacteriostatic properties, Chem Mater 17:5255–5262. doi:10.1021/cm0505244 Cioffi N, Torsi L, Ditaranto N, Tantillo G, Ghibelli L, Sabbatini L, Bleve-Zacheo T, D’Alessio M, Giorgio Zambonin P, Traversa E (2005) Copper nanoparticle/polymer composites with antifungal and bacteriostatic properties, Chem Mater 17:5255–5262. doi:10.​1021/​cm0505244
Zurück zum Zitat Costa CS, Ronconi JVV, Daufenbach JF, Gonçalves CL, Rezin GT, Streck EL, Marques da Silva PM (2010) In vitro effects of silver nanoparticles on the mitochondrial respiratory chain. Mol Cell Biochem 342:51–56. doi: 10.1007/s11010-010-0467-9 Costa CS, Ronconi JVV, Daufenbach JF, Gonçalves CL, Rezin GT, Streck EL, Marques da Silva PM (2010) In vitro effects of silver nanoparticles on the mitochondrial respiratory chain. Mol Cell Biochem 342:51–56. doi: 10.​1007/​s11010-010-0467-9
Zurück zum Zitat Dai J, Bruening ML (2002) Catalytic nanoparticles formed by reduction of metal ions in multilayered polyelectrolyte films. Nano Lett 2:497–501. doi:10.1021/nl025547l Dai J, Bruening ML (2002) Catalytic nanoparticles formed by reduction of metal ions in multilayered polyelectrolyte films. Nano Lett 2:497–501. doi:10.​1021/​nl025547l
Zurück zum Zitat Dallas P, Tucek J, Jancik D, Kolar M, Panacek A, Zboril R (2010) Magnetically controllable silver nanocomposite with multifunctional phosphotriazine matrix and high antimicrobial activity. Adv Funct Mater 20:2347–2354. doi:10.1002/adfm.200902370 Dallas P, Tucek J, Jancik D, Kolar M, Panacek A, Zboril R (2010) Magnetically controllable silver nanocomposite with multifunctional phosphotriazine matrix and high antimicrobial activity. Adv Funct Mater 20:2347–2354. doi:10.​1002/​adfm.​200902370
Zurück zum Zitat Dorjnamjin D, Ariunaa M, Shim YK (2008) Synthesis of silver nanoparticles using hydroxyl functionalized ionic liquids and their antimicrobial activity. Int J Mol Sci 9: 807–820. doi:10.3390/ijms9050807 Dorjnamjin D, Ariunaa M, Shim YK (2008) Synthesis of silver nanoparticles using hydroxyl functionalized ionic liquids and their antimicrobial activity. Int J Mol Sci 9: 807–820. doi:10.​3390/​ijms9050807
Zurück zum Zitat Egger S, Lehmann RP, Height MJ, Loessner MJ, Schuppler M (2009) Antimicrobial properties of a novel silver-silica nanocomposite material. Appl Environ Microbiol 75:2973–2976. doi:10.1128/aem.01658-08 Egger S, Lehmann RP, Height MJ, Loessner MJ, Schuppler M (2009) Antimicrobial properties of a novel silver-silica nanocomposite material. Appl Environ Microbiol 75:2973–2976. doi:10.​1128/​aem.​01658-08
Zurück zum Zitat Esteban-Tejeda L, Malpartida F, Esteban-Cubillo A, Pecharroman C, Moya JS (2009a) The antibacterial and antifungal activity of a soda-lime glass containing silver nanoparticles. Nanotechnology 20:085103. doi:10.1088/0957-4484/20/8/085103 Esteban-Tejeda L, Malpartida F, Esteban-Cubillo A, Pecharroman C, Moya JS (2009a) The antibacterial and antifungal activity of a soda-lime glass containing silver nanoparticles. Nanotechnology 20:085103. doi:10.​1088/​0957-4484/​20/​8/​085103
Zurück zum Zitat Esteban-Tejeda L, Malpartida F, Esteban-Cubillo A, Pecharroman C, Moya JS (2009b) Antibacterial and antifungal activity of a soda-lime glass containing copper nanoparticles. Nanotechnology 20:505701. doi:10.1088/0957-4484/20/50/505701 Esteban-Tejeda L, Malpartida F, Esteban-Cubillo A, Pecharroman C, Moya JS (2009b) Antibacterial and antifungal activity of a soda-lime glass containing copper nanoparticles. Nanotechnology 20:505701. doi:10.​1088/​0957-4484/​20/​50/​505701
Zurück zum Zitat Fayaz AM, Balaji K, Girilal M, Yadav R, Kalaichelvan PT, Venketesan R (2010) Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria. Nanomedicine-NBM 6:103–109. doi:10.1016/j.nano.2009.04.006 Fayaz AM, Balaji K, Girilal M, Yadav R, Kalaichelvan PT, Venketesan R (2010) Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria. Nanomedicine-NBM 6:103–109. doi:10.​1016/​j.​nano.​2009.​04.​006
Zurück zum Zitat Falletta E, Bonini M, Fratini E, Nostro AL, Pesavento G, Becheri A, Nostro PL, Canton P, Baglioni P (2008) Clusters of poly(acrylates) and silver nanoparticles: structure an applications for antimicrobial fabrics. J Phys Chem C 112:11758–11766. doi:10.1021/jp8035814 Falletta E, Bonini M, Fratini E, Nostro AL, Pesavento G, Becheri A, Nostro PL, Canton P, Baglioni P (2008) Clusters of poly(acrylates) and silver nanoparticles: structure an applications for antimicrobial fabrics. J Phys Chem C 112:11758–11766. doi:10.​1021/​jp8035814
Zurück zum Zitat Fernandez EJ, Garcıa-Barrasa J, Laguna A, Lopez-de-Luzuriaga1 JM, Monge M, Torres C (2008) The preparation of highly active antimicrobial silver nanoparticles by an organometallic approach. Nanotechnology 19:185602. doi:10.1088/0957-4484/19/18/185602 Fernandez EJ, Garcıa-Barrasa J, Laguna A, Lopez-de-Luzuriaga1 JM, Monge M, Torres C (2008) The preparation of highly active antimicrobial silver nanoparticles by an organometallic approach. Nanotechnology 19:185602. doi:10.​1088/​0957-4484/​19/​18/​185602
Zurück zum Zitat Gajbhiye M, Kesharwani J, Ingle A, Gade A, Rai M (2009) Fungus-mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole. Nanomedicine-NBM 5:382–386. doi:10.1016/j.nano.2009.06.005 Gajbhiye M, Kesharwani J, Ingle A, Gade A, Rai M (2009) Fungus-mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole. Nanomedicine-NBM 5:382–386. doi:10.​1016/​j.​nano.​2009.​06.​005
Zurück zum Zitat Gittard SD, Hojo D, Hyde GK, Scarel G, Narayan RJ, Parsons GN (2009) Antifungal textiles formed using silver deposition in supercritical carbon dioxide. J Mater Eng Perform 19:368–373. doi:10.1007/s11665-009-9514-7 Gittard SD, Hojo D, Hyde GK, Scarel G, Narayan RJ, Parsons GN (2009) Antifungal textiles formed using silver deposition in supercritical carbon dioxide. J Mater Eng Perform 19:368–373. doi:10.​1007/​s11665-009-9514-7
Zurück zum Zitat Gogoi SK, Gopinath P, Paul A, Ramesh A, Ghosh SS., Chattopadhyay A (2006) Green fluorescent protein-expressing Escherichia coli as a model system for investigating the antimicrobial activities of silver nanoparticles. Langmuir 22:9322–9328. doi: 10.1021/la060661v Gogoi SK, Gopinath P, Paul A, Ramesh A, Ghosh SS., Chattopadhyay A (2006) Green fluorescent protein-expressing Escherichia coli as a model system for investigating the antimicrobial activities of silver nanoparticles. Langmuir 22:9322–9328. doi: 10.​1021/​la060661v
Zurück zum Zitat Grunlan JC, Choi JK, Lin A (2005) Antimicrobial behavior of polyelectrolyte multilayer films containing cetrimide and silver. Biomacromolecules 6:1149–1153. Doi: 10.1021/bm049528c Grunlan JC, Choi JK, Lin A (2005) Antimicrobial behavior of polyelectrolyte multilayer films containing cetrimide and silver. Biomacromolecules 6:1149–1153. Doi: 10.​1021/​bm049528c
Zurück zum Zitat Gutierrez FM, Olive PL, Banuelos A, Orrantia E, Nino N, Sanchez EM, Ruiz F, Bach H, Av-Gay Y (2010) Synthesis, characterization, and evaluation of antimicrobial and cytotoxic effect of silver and titanium nanoparticles. Nanomedicine-NBM 6:681–688. doi:10.1016/j.nano.2010.02.001 Gutierrez FM, Olive PL, Banuelos A, Orrantia E, Nino N, Sanchez EM, Ruiz F, Bach H, Av-Gay Y (2010) Synthesis, characterization, and evaluation of antimicrobial and cytotoxic effect of silver and titanium nanoparticles. Nanomedicine-NBM 6:681–688. doi:10.​1016/​j.​nano.​2010.​02.​001
Zurück zum Zitat Hardes J, Ahrens H, Gebert C, Streitbuerger A, Buerger H, Erren M, Gunsel A, Wedemeyer C, Saxler G, Winkelmann W, Gosheger G (2007) Lack of toxicological side-effects in silver-coated megaprostheses in humans. Biomaterials 28:2869–2875. doi:10.1016/j.biomaterials.2007.02.033 Hardes J, Ahrens H, Gebert C, Streitbuerger A, Buerger H, Erren M, Gunsel A, Wedemeyer C, Saxler G, Winkelmann W, Gosheger G (2007) Lack of toxicological side-effects in silver-coated megaprostheses in humans. Biomaterials 28:2869–2875. doi:10.​1016/​j.​biomaterials.​2007.​02.​033
Zurück zum Zitat Hernández-Sierra JF, Ruiz F, Pena DCC, Martínez-Gutiérrez F, Martínez AE, Guillén AJP, Tapia-Pérez H, Martínez Castañón G (2008) The antimicrobial sensitivity of Streptococcus mutans to nanoparticles of silver, zinc oxide, and gold. Nanomedicine-NBM 4:237–240. doi:10.1016/j.nano.2008.04.005 Hernández-Sierra JF, Ruiz F, Pena DCC, Martínez-Gutiérrez F, Martínez AE, Guillén AJP, Tapia-Pérez H, Martínez Castañón G (2008) The antimicrobial sensitivity of Streptococcus mutans to nanoparticles of silver, zinc oxide, and gold. Nanomedicine-NBM 4:237–240. doi:10.​1016/​j.​nano.​2008.​04.​005
Zurück zum Zitat Holtz RD, Filho AGS, Brocchi M, Martins D, Duran, N, Alves OL (2010) Development of nanostructured silver vanadates decorated with silver nanoparticles as a novel antibacterial agent. Nanotechnology 21:185102. doi: 10.1088/0957-4484/21/18/185102 Holtz RD, Filho AGS, Brocchi M, Martins D, Duran, N, Alves OL (2010) Development of nanostructured silver vanadates decorated with silver nanoparticles as a novel antibacterial agent. Nanotechnology 21:185102. doi: 10.​1088/​0957-4484/​21/​18/​185102
Zurück zum Zitat Ilic V, Saponjic Z, Vodnik V, Molina R, Dimitrijevic S, Jovancic P, Nedeljkovic J, Radetic M (2009) Antifungal efficiency of corona pretreated polyester and polyamide fabrics loaded with Ag nanoparticles. J Mater Sci 44:3983–3990. doi:10.1007/s10853-009-3547-z Ilic V, Saponjic Z, Vodnik V, Molina R, Dimitrijevic S, Jovancic P, Nedeljkovic J, Radetic M (2009) Antifungal efficiency of corona pretreated polyester and polyamide fabrics loaded with Ag nanoparticles. J Mater Sci 44:3983–3990. doi:10.​1007/​s10853-009-3547-z
Zurück zum Zitat Jain J, Arora S, Rajwade JM, Omray P, Khandelwal S, Paknikar KM (2009) Silver nanoparticles in therapeutics: Development of an antimicrobial gel formulation for topical use. Mol Pharmaceutics 6:1388–1401. doi:10.1021/mp900056g Jain J, Arora S, Rajwade JM, Omray P, Khandelwal S, Paknikar KM (2009) Silver nanoparticles in therapeutics: Development of an antimicrobial gel formulation for topical use. Mol Pharmaceutics 6:1388–1401. doi:10.​1021/​mp900056g
Zurück zum Zitat Jin WJ, Lee HK, Jeong EH, Park WH, Youk JH (2005) Preparation of polymer nanofibers containing silver nanoparticles by using poly(N-vinylpyrrolidone). Macromol Rapid Commun 26:1903–1907. doi:10.1002/marc.200500569 Jin WJ, Lee HK, Jeong EH, Park WH, Youk JH (2005) Preparation of polymer nanofibers containing silver nanoparticles by using poly(N-vinylpyrrolidone). Macromol Rapid Commun 26:1903–1907. doi:10.​1002/​marc.​200500569
Zurück zum Zitat Jin T, Sun D, Su JY, Zhang H, Sue HJ (2009) Antimicrobial efficacy of zinc oxide quantum dots against Listeria monocytogenes, Salmonella enteritidis, and Escherichia coli O157:H7. J Food Sci 74:M46-M52. doi:10.1111/j.1750-3841.2008.01013.x Jin T, Sun D, Su JY, Zhang H, Sue HJ (2009) Antimicrobial efficacy of zinc oxide quantum dots against Listeria monocytogenes, Salmonella enteritidis, and Escherichia coli O157:H7. J Food Sci 74:M46-M52. doi:10.​1111/​j.​1750-3841.​2008.​01013.​x
Zurück zum Zitat Kim JH, Cho H, Ryu SE, Choi MU (2000) Effects of metal ions on the activity of protein tyrosine phosphatase VHR: Highly potent and reversible oxidative inactivation by Cu2+ ion. Arch Biochem Biophys 382:72–80. doi:10.1006/abbi.2000.1996 Kim JH, Cho H, Ryu SE, Choi MU (2000) Effects of metal ions on the activity of protein tyrosine phosphatase VHR: Highly potent and reversible oxidative inactivation by Cu2+ ion. Arch Biochem Biophys 382:72–80. doi:10.​1006/​abbi.​2000.​1996
Zurück zum Zitat Kim JS, Kuk E, Yu KN, Kim J, Park SJ, Lee HJ, Kim SH, Park YK, Park YH, Hwang C, Kim Y, Lee Y, Jeong DH, Cho M (2007) Antimicrobial effects of silver nanoparticles. Nanomedicine: NBM 3:95–101. doi:10.1016/j.nano.2006.12.001 Kim JS, Kuk E, Yu KN, Kim J, Park SJ, Lee HJ, Kim SH, Park YK, Park YH, Hwang C, Kim Y, Lee Y, Jeong DH, Cho M (2007) Antimicrobial effects of silver nanoparticles. Nanomedicine: NBM 3:95–101. doi:10.​1016/​j.​nano.​2006.​12.​001
Zurück zum Zitat Kim KJ, Sung WS, Moon SK, Choi JS, Kim JG, Lee DG (2008) Antifungal effect of silver nanoparticles on dermatophytes. J Microbiol Biotechn 18:1482–1484. Kim KJ, Sung WS, Moon SK, Choi JS, Kim JG, Lee DG (2008) Antifungal effect of silver nanoparticles on dermatophytes. J Microbiol Biotechn 18:1482–1484.
Zurück zum Zitat Kim KJ, Sung WS, Suh BK, Moon SK, Choi JS, Kim JG, Lee DG (2009a) Antifungal activity and mode of action of silver nano-particles on Candida albicans. Biometals 22: 235–242. doi: 10.1007/s10534-008-9159-2 Kim KJ, Sung WS, Suh BK, Moon SK, Choi JS, Kim JG, Lee DG (2009a) Antifungal activity and mode of action of silver nano-particles on Candida albicans. Biometals 22: 235–242. doi: 10.​1007/​s10534-008-9159-2
Zurück zum Zitat Kim SW, Kim KS, Lamsal K, Kim YJ, Kim SB, Jung M, Sim SJ, Kim HS, Chang SJ, Kim JK, Lee YS (2009b) An in vitro study of the antifungal effect of silver nanoparticles on oak wilt pathogen Raffaelea sp. J Microbiol Biotechn 19:760–764. Kim SW, Kim KS, Lamsal K, Kim YJ, Kim SB, Jung M, Sim SJ, Kim HS, Chang SJ, Kim JK, Lee YS (2009b) An in vitro study of the antifungal effect of silver nanoparticles on oak wilt pathogen Raffaelea sp. J Microbiol Biotechn 19:760–764.
Zurück zum Zitat Klaine SJ, Alvarez PJJ, Batley GE, Fernandes TF, Handy RD, Lyon DY, Mahendra S, Mclaughlin MJ, Lead JR (2008) Nanoparticles in the environment: behaviour, fate, bioavailability and effects. Environ Toxicol Chem 27:1825–1851. doi:10.1897/08-090.1 Klaine SJ, Alvarez PJJ, Batley GE, Fernandes TF, Handy RD, Lyon DY, Mahendra S, Mclaughlin MJ, Lead JR (2008) Nanoparticles in the environment: behaviour, fate, bioavailability and effects. Environ Toxicol Chem 27:1825–1851. doi:10.​1897/​08-090.​1
Zurück zum Zitat Kong H, Jang J (2008) Synthesis and antimicrobial properties of novel silver/polyrhodanine nanofibers. Biomacromolecules 9:2677–2681. doi: 10.1021/bm800574x Kong H, Jang J (2008) Synthesis and antimicrobial properties of novel silver/polyrhodanine nanofibers. Biomacromolecules 9:2677–2681. doi: 10.​1021/​bm800574x
Zurück zum Zitat Lee S, Lee J, Kim K, Sim SJ, Gu MB, Yi J, Lee J (2009) Eco-toxicity of commercial silver nanopowders to bacterial and yeast strains. Biotechnol Bioproc Eng 4:490–495. doi: 10.1007/s12257-008-0254-6 Lee S, Lee J, Kim K, Sim SJ, Gu MB, Yi J, Lee J (2009) Eco-toxicity of commercial silver nanopowders to bacterial and yeast strains. Biotechnol Bioproc Eng 4:490–495. doi: 10.​1007/​s12257-008-0254-6
Zurück zum Zitat Li Q, Mahendra S, Lyon DY, Brunet L, Liga MV, Li D, Alvarez PJ (2008) Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications. Water Res 42:4591–4602. doi:10.1016/j.watres.2008.08.015 Li Q, Mahendra S, Lyon DY, Brunet L, Liga MV, Li D, Alvarez PJ (2008) Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications. Water Res 42:4591–4602. doi:10.​1016/​j.​watres.​2008.​08.​015
Zurück zum Zitat Li WR, Xie XB, Shi QS, Zeng HY, Ou-Yang YS, Chen YB (2010) Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli. Appl Microbiol Biotechnol 85:1115–1122. doi: 10.1007/s00253-009-2159-5 Li WR, Xie XB, Shi QS, Zeng HY, Ou-Yang YS, Chen YB (2010) Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli. Appl Microbiol Biotechnol 85:1115–1122. doi: 10.​1007/​s00253-009-2159-5
Zurück zum Zitat Li WR, Xie XB, Shi QS, Duan SS, Ouyang YS, Chen YB (2011) Antibacterial effect of silver nanoparticles on Staphylococcus aureus. Biometals 24:135–141. doi: 10.1007/s10534-010-9381-6 Li WR, Xie XB, Shi QS, Duan SS, Ouyang YS, Chen YB (2011) Antibacterial effect of silver nanoparticles on Staphylococcus aureus. Biometals 24:135–141. doi: 10.​1007/​s10534-010-9381-6
Zurück zum Zitat Lok C, Ho C, Chen R, He Q, Yu W, Sun H, Tam PK, Chiu J, Che C (2006) Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J Proteome Res 5:916–924. doi: 10.1021/pr0504079 Lok C, Ho C, Chen R, He Q, Yu W, Sun H, Tam PK, Chiu J, Che C (2006) Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J Proteome Res 5:916–924. doi: 10.​1021/​pr0504079
Zurück zum Zitat Lukhele LP, Mamba BB, Momba MNB, Krause RWM (2010) Water disinfection using novel cyclodextrin polyurethane containing silver nanoparticles supported on carbon nanotubes. J Appl Polym Sci 10:65–70. doi:10.3923/jas.2010.65.70 Lukhele LP, Mamba BB, Momba MNB, Krause RWM (2010) Water disinfection using novel cyclodextrin polyurethane containing silver nanoparticles supported on carbon nanotubes. J Appl Polym Sci 10:65–70. doi:10.​3923/​jas.​2010.​65.​70
Zurück zum Zitat Mahltig B, Gutmann E, Reibold M, Meyer DC, Böttcher H (2009) Synthesis of Ag and Ag/SiO2 sols by solvothermal method and their bactericidal activity. J Sol-Gel Sci Technol 51:204–214. Mahltig B, Gutmann E, Reibold M, Meyer DC, Böttcher H (2009) Synthesis of Ag and Ag/SiO2 sols by solvothermal method and their bactericidal activity. J Sol-Gel Sci Technol 51:204–214.
Zurück zum Zitat Makhluf S, Dror R, Nitzan Y, Abramovich Y, Jelinek R, Gedanken A (2005) Microwave assisted synthesis of nanocrystalline MgO and its use as a bacteriocide. Adv Funct Mater 15:1708–1715. doi:10.1002/adfm.200500029 Makhluf S, Dror R, Nitzan Y, Abramovich Y, Jelinek R, Gedanken A (2005) Microwave assisted synthesis of nanocrystalline MgO and its use as a bacteriocide. Adv Funct Mater 15:1708–1715. doi:10.​1002/​adfm.​200500029
Zurück zum Zitat Marambio-Jones C, Hoek EMV (2010) A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J Nanopart Res 12:1531–1551. doi:10.1007/s11051-010-9900-y Marambio-Jones C, Hoek EMV (2010) A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J Nanopart Res 12:1531–1551. doi:10.​1007/​s11051-010-9900-y
Zurück zum Zitat Mary G, Bajpai SK, Chand N (2009) Copper (II) ions and copper nanoparticles-loaded chemically modified cotton cellulose fibers with fair antibacterial properties. J Appl Poly Sci 113:757–766. doi:10.1002/app.29890 Mary G, Bajpai SK, Chand N (2009) Copper (II) ions and copper nanoparticles-loaded chemically modified cotton cellulose fibers with fair antibacterial properties. J Appl Poly Sci 113:757–766. doi:10.​1002/​app.​29890
Zurück zum Zitat Min JS, Kim KS, Kim SW, Jung JH, Lamsal K, Kim SB, Jung M, Lee YS (2009) Effects of colloidal silver nanoparticles on sclerotium forming phytopathogenic fungi. Plant Pathol J 25:376–380. Min JS, Kim KS, Kim SW, Jung JH, Lamsal K, Kim SB, Jung M, Lee YS (2009) Effects of colloidal silver nanoparticles on sclerotium forming phytopathogenic fungi. Plant Pathol J 25:376–380.
Zurück zum Zitat Mohan YM, Premkumar T, Lee K, Geckeler KE (2006) Fabrication of silver nanoparticles in hydrogel networks. Macromol Rapid Commun 27:1346–1354. doi:10.1002/marc.200600297 Mohan YM, Premkumar T, Lee K, Geckeler KE (2006) Fabrication of silver nanoparticles in hydrogel networks. Macromol Rapid Commun 27:1346–1354. doi:10.​1002/​marc.​200600297
Zurück zum Zitat Mohan R, Shanmugharaj AM, Hun RS (2011) An efficient growth of silver and copper nanoparticles on multiwalled carbon nanotube with enhanced antimicrobial activity. J Biomed Mater Res B 96:119–126. doi:10.1002/jbm.b.31747 Mohan R, Shanmugharaj AM, Hun RS (2011) An efficient growth of silver and copper nanoparticles on multiwalled carbon nanotube with enhanced antimicrobial activity. J Biomed Mater Res B 96:119–126. doi:10.​1002/​jbm.​b.​31747
Zurück zum Zitat Musarrat J, Dwivedi S, Singh BR, Al-Khedhairy AA, Azam A, Naqvi A (2010) Production of antimicrobial silver nanoparticles in water extracts of the fungus Amylomyces rouxii strain KSU-09. Bioresource Technol 101:8772–8776. doi:10.1016/j.biortech.2010.06.065 Musarrat J, Dwivedi S, Singh BR, Al-Khedhairy AA, Azam A, Naqvi A (2010) Production of antimicrobial silver nanoparticles in water extracts of the fungus Amylomyces rouxii strain KSU-09. Bioresource Technol 101:8772–8776. doi:10.​1016/​j.​biortech.​2010.​06.​065
Zurück zum Zitat Nasrollahi A, Pourshamsian K, Mansourkiaee P (2011) Antifungal activity of silver nanoparticles on some of fungi. Int J Nano Dimens 1:233–239. Nasrollahi A, Pourshamsian K, Mansourkiaee P (2011) Antifungal activity of silver nanoparticles on some of fungi. Int J Nano Dimens 1:233–239.
Zurück zum Zitat Oya A, Yoishida S, Abe Y, Iizuka T, Makiyama N (1993) Antibacterial activated carbon fiber derived from phenolic resin containing silver nitrate. Carbon 31:71–73. doi:10.1016/0008-6223(93)90157-6 Oya A, Yoishida S, Abe Y, Iizuka T, Makiyama N (1993) Antibacterial activated carbon fiber derived from phenolic resin containing silver nitrate. Carbon 31:71–73. doi:10.​1016/​0008-6223(93)90157-6
Zurück zum Zitat Pal S, Tak YK, Song JM (2007) Does the antimicrobial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol 73:172–1720. doi:10.1128/aem.02218-06 Pal S, Tak YK, Song JM (2007) Does the antimicrobial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol 73:172–1720. doi:10.​1128/​aem.​02218-06
Zurück zum Zitat Panacek A, Kvitek L, Prucek R, Kolar M, Vecerova R, Pizurova N, Shrma VK, Nevecna T, Zboril R (2006) Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. J Phys Chem B 110:16248–16253. doi:10.1021/jp063826h Panacek A, Kvitek L, Prucek R, Kolar M, Vecerova R, Pizurova N, Shrma VK, Nevecna T, Zboril R (2006) Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. J Phys Chem B 110:16248–16253. doi:10.​1021/​jp063826h
Zurück zum Zitat Pape HL, Sarena SF, Contini P, Devillers C, Maftah A, Laprat P (2002) Evaluation of the antimicrobial properties of an activated carbon fibre supporting silver using a dynamic method. Carbon 40:2947–2954. doi:10.1016/S0008-6223(02)00246-4 Pape HL, Sarena SF, Contini P, Devillers C, Maftah A, Laprat P (2002) Evaluation of the antimicrobial properties of an activated carbon fibre supporting silver using a dynamic method. Carbon 40:2947–2954. doi:10.​1016/​S0008-6223(02)00246-4
Zurück zum Zitat Pich A, Karak,A, Lu Y, Ghosh AK, Adler H (2006) Preparation of hybrid microgels functionalized by silver nanoparticles. Macromol Rapid Commun 27:344–350. doi: 10.1002/marc.200500761 Pich A, Karak,A, Lu Y, Ghosh AK, Adler H (2006) Preparation of hybrid microgels functionalized by silver nanoparticles. Macromol Rapid Commun 27:344–350. doi: 10.​1002/​marc.​200500761
Zurück zum Zitat Raffi M, Mehrwan S, Bhatti TM, Akhter JI, Hameed A, Yawar W, Hasan MM (2010) Investigations into the antibacterial behavior of copper nanoparticles against Escherichia coli. Annal Microbiol 60:75–80. doi:10.1007/s13213-010-0015-6 Raffi M, Mehrwan S, Bhatti TM, Akhter JI, Hameed A, Yawar W, Hasan MM (2010) Investigations into the antibacterial behavior of copper nanoparticles against Escherichia coli. Annal Microbiol 60:75–80. doi:10.​1007/​s13213-010-0015-6
Zurück zum Zitat Sharma VK, Yngard RA, Lin Y (2009) Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Colloid Interface Sci 145:83–96. Sharma VK, Yngard RA, Lin Y (2009) Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Colloid Interface Sci 145:83–96.
Zurück zum Zitat Sharma V (2010) Bactericidal action of chemically treated silver surfaces for water disinfection. M Tech. Thesis, IIT Bombay, Mumbai, India. Sharma V (2010) Bactericidal action of chemically treated silver surfaces for water disinfection. M Tech. Thesis, IIT Bombay, Mumbai, India.
Zurück zum Zitat Siva Kumar V, Nagaraja BM, Shashikala V, Padmasri AH, Madhavendra SS, Raju BD, Rama Rao KS (2004) Highly efficient Ag/C catalyst prepared by electro-chemical deposition method in controlling microorganisms in water. J Mol Cat-A Chem 223:313–319. doi:10.1016/j.molcata.2003.09.047 Siva Kumar V, Nagaraja BM, Shashikala V, Padmasri AH, Madhavendra SS, Raju BD, Rama Rao KS (2004) Highly efficient Ag/C catalyst prepared by electro-chemical deposition method in controlling microorganisms in water. J Mol Cat-A Chem 223:313–319. doi:10.​1016/​j.​molcata.​2003.​09.​047
Zurück zum Zitat Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for gram-negative bacteria. J colloid Interf Sci 275:177–182. doi:10.1016/j.jcis.2004.02.012 Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for gram-negative bacteria. J colloid Interf Sci 275:177–182. doi:10.​1016/​j.​jcis.​2004.​02.​012
Zurück zum Zitat Su W, Wei SS, Hu SQ, Tang JX (2011) Antimicrobial finishing of cotton textile with nanosized silver colloids synthesized using polyethylene glycol. J Text Inst 102:150–156. doi:0.1080/00405001003603098 Su W, Wei SS, Hu SQ, Tang JX (2011) Antimicrobial finishing of cotton textile with nanosized silver colloids synthesized using polyethylene glycol. J Text Inst 102:150–156. doi:0.1080/00405001003603098
Zurück zum Zitat Wang C, Flynn NT, Langer R (2004) Controlled structure and properties of thermo responsive nanoparticle-hydrogel composites. Adv Mater 16:1074–1079. doi: 10.1002/adma.200306516 Wang C, Flynn NT, Langer R (2004) Controlled structure and properties of thermo responsive nanoparticle-hydrogel composites. Adv Mater 16:1074–1079. doi: 10.​1002/​adma.​200306516
Zurück zum Zitat Williams DN, Ehrman SH, Holoman TRP (2006) Evaluation of the microbial growth response to inorganic nanoparticles. J Nanobiotechnol 4:3. doi:10.1186/1477-3155-4-3 Williams DN, Ehrman SH, Holoman TRP (2006) Evaluation of the microbial growth response to inorganic nanoparticles. J Nanobiotechnol 4:3. doi:10.​1186/​1477-3155-4-3
Zurück zum Zitat WHO (2006) Guidelines for drinking water quality, 3rd edn. World Health Organization, Geneva. WHO (2006) Guidelines for drinking water quality, 3rd edn. World Health Organization, Geneva.
Zurück zum Zitat Wu Y, Jia W, An Q, Liu Y, Chen J, Li G (2009) Multiaction antibacterial nanofibrous membranes fabricated by electrospinning: an excellent system for antibacterial applications. Nanotechnology 20:245101. doi:10.1088/0957-4484/20/24/245101 Wu Y, Jia W, An Q, Liu Y, Chen J, Li G (2009) Multiaction antibacterial nanofibrous membranes fabricated by electrospinning: an excellent system for antibacterial applications. Nanotechnology 20:245101. doi:10.​1088/​0957-4484/​20/​24/​245101
Zurück zum Zitat Yoon KY, Byeon JH, Park CW, Hwang J (2007) Antimicrobial effect of silver particles on bacterial contamination of activated carbon fibers, Environ Sci Technol 42: 1251–1255. doi:10.1021/es0720199 Yoon KY, Byeon JH, Park CW, Hwang J (2007) Antimicrobial effect of silver particles on bacterial contamination of activated carbon fibers, Environ Sci Technol 42: 1251–1255. doi:10.​1021/​es0720199
Zurück zum Zitat Yu DG, Lin WC, Yang MC (2007) Surface modification of poly(L-lactic acid) membrane via layer-by-layer assembly of silver nanoparticle-embedded polyelectrolyte multilayers. Bioconjugate Chem 18:1521–1529. doi:10.1021/bc060098s Yu DG, Lin WC, Yang MC (2007) Surface modification of poly(L-lactic acid) membrane via layer-by-layer assembly of silver nanoparticle-embedded polyelectrolyte multilayers. Bioconjugate Chem 18:1521–1529. doi:10.​1021/​bc060098s
Zurück zum Zitat Yuan W, Ji J, Fu J, Shen J (2007) A facile method to construct hybrid multilayered films as a strong and multifunctional antibacterial coating. J Biomed Mater Res B: Appl Biomater 16:556–563. doi:10.1002/jbm.b.30979 Yuan W, Ji J, Fu J, Shen J (2007) A facile method to construct hybrid multilayered films as a strong and multifunctional antibacterial coating. J Biomed Mater Res B: Appl Biomater 16:556–563. doi:10.​1002/​jbm.​b.​30979
Zurück zum Zitat Zhao L, Mitomo H, Zhai M, Yoshii F, Nagasawa N, Kume T (2003) Synthesis of antibacterial PVA/CM-chitosan blend hydrogels with electron beam irradiation. Carbohyd Polym 53:439–446. doi:10.1016/S0144-8617(03)00103-6 Zhao L, Mitomo H, Zhai M, Yoshii F, Nagasawa N, Kume T (2003) Synthesis of antibacterial PVA/CM-chitosan blend hydrogels with electron beam irradiation. Carbohyd Polym 53:439–446. doi:10.​1016/​S0144-8617(03)00103-6
Metadaten
Titel
Antimicrobial Activity of Silver and Copper Nanoparticles: Variation in Sensitivity Across Various Strains of Bacteria and Fungi
verfasst von
Suparna Mukherji
Jayesh Ruparelia
Shekhar Agnihotri
Copyright-Jahr
2012
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-642-24428-5_8

Neuer Inhalt