Skip to main content

Host–Parasite Interactions and Trade-offs Between Growth- and Defence-Related Metabolism Under Changing Environments

  • Chapter
  • First Online:

Part of the book series: Ecological Studies ((ECOLSTUD,volume 220))

Abstract

The allocation of resources between growth-related processes and defence-related biosynthesis of mainly secondary compounds in plants is discussed first on a descriptional level and, second, on the basis of possible mechanisms of trade-off. An overview is given on the manifold impacts of environmental conditions i.e. temperature, atmospheric CO2 and ozone, soil nitrogen, on host–parasite interactions, on secondary metabolism and on trade-offs between growth and defence. In this context, the often made simplified equation of secondary metabolism with plant defence is critically reviewed taking into account the individual host–parasite interactions as well as the structural and functional diversity of defence-related metabolites.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Agrawal AA (2000) Benefits and costs of induced plant defence for Lepidium virginicum (Brassicaceae). Ecology 81:1804–1813

    Google Scholar 

  • Baker JC, Orlandi EW (1995) Active oxygen in plant pathogenesis. Ann Rev Phytopathol 33:299–321

    CAS  Google Scholar 

  • Baldwin IT (1988a) Short-term damage-induced alkaloids protected plants. Oecologia 75:367–370

    Google Scholar 

  • Baldwin IT (1988b) The alkaloidal responses of wild tobacco to real and simulated herbivory. Oecologia 77:378–381

    Google Scholar 

  • Baldwin IT (1989) The mechanism of damage-induced of alkaloids in wild tobacco. J Chem Ecol 15:1661–1680

    PubMed  CAS  Google Scholar 

  • Baldwin IT, Cynthia L, Sims L, Kean SE (1990) The reproductive consequences associated with inducible alkaloidal responses in wild tobacco. Ecology 71:252–262

    CAS  Google Scholar 

  • Bednarek P, Osbourn A (2009) Plant-microbe interactions: chemical diversity in plant defence. Science 324:746–748

    PubMed  CAS  Google Scholar 

  • Bergelson J, Purrington CB (1996) Surveying patterns in the cost of resistance in plants. Am Nat 148:536–558

    Google Scholar 

  • Bisgrove SR, Simonich MT, Smith NM, Sattler A, Innes RW (1994) A disease resistance gene in Arabidopsis with specificity for two different pathogen avirulence genes. Plant Cell 6:927–933

    PubMed  CAS  PubMed Central  Google Scholar 

  • Boller T, Felix G (2009) A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu Rev Plant Biol 60:379–406

    PubMed  CAS  Google Scholar 

  • Brown JKM (2002) Yield penalties of disease resistance in crops. Curr Opin Plant Biol 5:1–6

    Google Scholar 

  • Burdon JJ, Müller WJ (1987) Measuring the cost of resistance to Puccinia coronata cda in Avena fatua. J Appl Ecol 24:191–202

    Google Scholar 

  • Cahill DM, McComb JA (1992) A comparison of changes in phenylalanine ammonia-lyase activity, lignin and phenolic synthesis in the roots of Eucalyptus calophylla (field resistant) and E. marginata (susceptible) when infected with Phytophthora-cinnamomi. Physiol Mol Plant Pathol 40:315–332

    CAS  Google Scholar 

  • Carter JP, Spink J, Cannon PF, Daniels MJ, Osbourn AE (1999) Isolation, characterization, and avenacin sensitivity of a diverse collection of cereal-root-colonizing fungi. Appl Environ Microbiol 65:3364–3372

    PubMed  CAS  PubMed Central  Google Scholar 

  • Chaudhry B, Müller-Uri F, Cameron-Mills V, Gough S, Simpson D, Skriver K, Mundy J (1994) The barley 60 kDa jasmonate-induced protein (JIP60) is a novel ribosome-inactivating protein. Plant J 6:815–824

    PubMed  CAS  Google Scholar 

  • Cipollini DF (2002) Does competition magnify the fitness costs of induced responses in Arabidopsis thaliana? A manipulative approach. Oecologia 13:514–520

    Google Scholar 

  • Coley PD (1986) Costs and benefits of defense by tannins in a neotropical tree. Oecologia 70:238–241

    Google Scholar 

  • Coley PD, Bryant JP, Chapin FS (1985) Resource availability and plant antiherbivore defense. Science 230:895–899

    PubMed  CAS  Google Scholar 

  • Creelman RA, Mullet JE (1997) Biosynthesis and action of jasmonates in plants. Annu Rev Plant Physiol Plant Mol Biol 48:355–381

    PubMed  CAS  Google Scholar 

  • Dixon RA, Paiva NL (1995) Stress-induced phenylpropanoid metabolism. Plant Cell 7:1085–1097

    PubMed  CAS  PubMed Central  Google Scholar 

  • Dodds PN, Rathjen JP (2010) Plant immunity: towards an integrated view of plant-pathogen interactions. Nat Rev Biol 11:539–548

    CAS  Google Scholar 

  • Donaldson JR, Kruger EL, Lindroth RL (2006) Competition- and resource-mediated tradeoffs between growth and defensive chemistry in trembling aspen (Populus tremuloides). New Phytol 169:561–570

    PubMed  CAS  Google Scholar 

  • Ellis C, Turner JG (2001) The Arabidopsis mutant cev1 has constitutively active jasmonate and ethylene signalling pathways and enhanced resistance to pathogens. Plant Cell 13:1025–1033

    PubMed  CAS  PubMed Central  Google Scholar 

  • Fischer DG, Hart SC, Rehill BJ, Lindroth RL, Keim P, Whitham TG (2006) Do high-tannin leaves require more roots? Oecologia 149:668–675

    PubMed  CAS  Google Scholar 

  • Fleischmann F, Raidl S, Oßwald W (2010) Changes in susceptibility of beech (Fagus sylvatica) seedlings towards Phytophthora citricola under the influence of elevated atmospheric CO2 and nitrogen fertilization. Environ Pollut (Special Issue) 158:1051–1060

    CAS  Google Scholar 

  • Flor HH (1971) Current status of the gene-for-gene concept. Annu Rev Phytopathol 9:275–296

    Google Scholar 

  • Fritz C, Palacios-Rojas N, Feil R, Stitt M (2006) Regulation of secondary metabolism by the carbon–nitrogen status in tobacco: nitrate inhibits large sectors of phenylpropanoid metabolism. Plant J 46:533–548

    PubMed  CAS  Google Scholar 

  • Fry WE (2007) The canon of potato science: 10. Late blight and early blight. Potato Res 50:243–245

    Google Scholar 

  • Gayler S, Leser C, Priesack E, Treutter D (2004) Modelling the effect of environmental factors on the “trade-off” between growth and defensive compounds in young apple trees. Trees 18:363–371

    Google Scholar 

  • Gessler C, Patocchi A, Sansavini S, Tartarini S, Gianfranceschi L (2006) Venturia inaequalis resistance in apple. Crit Rev Plant Sci 25:473–503

    CAS  Google Scholar 

  • Glynn C, Herms DA, Egawa M, Hansen R, Mattson WJ (2003) Effects of nutrient availability on biomass allocation as well as constitutive and rapid induced herbivore resistance in poplar. Oikos 101:385–397

    CAS  Google Scholar 

  • Glynn C, Herms DA, Orians CM, Hansen RC, Larsson S (2007) Testing the growth-differentiation balance hypothesis: dynamic responses of willows to nutrient availability. New Phytol 176:623–634

    PubMed  CAS  Google Scholar 

  • Golba B, Treutter D, Kollar A (2012) Effects of apple (Malus x domestica Borkh.) phenolic compounds on proteins and cell wall-degrading enzymes of Venturia inaequalis. Trees 26:131–139

    CAS  Google Scholar 

  • Gould N, Reglinski T, Spiers M, Taylor T (2008) Physiological trade-offs associated with methyl jasmonate – induced resistance in Pinus radiate. Can J For Res 38:677–684

    Google Scholar 

  • Graham TL, Graham MY, Subramanian S, Yu O (2007) RNAi silencing of genes for elicitation or biosynthesis of 5-deoxyisoflavonoids suppresses race-specific resistance and hypersensitive cell death in Phytophthora sojae infected tissues. Plant Physiol 144:728–740

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hain R, Reif H-J, Krause E, Langebartels R, Kindl H, Vornam B, Wiese W, Schmelzer E, Schreier PH, Stöcker RH, Stenzel K (1993) Disease resistance results from foreign phytoalexin expression in a novel plant. Nature 361:153–156

    PubMed  CAS  Google Scholar 

  • Hammerschmidt R (1999) Phytoalexins: what have we learned after 60 years? Annu Rev Phytopathol 37:285–306

    PubMed  CAS  Google Scholar 

  • Han K, Lincoln DE (1994) The evolution of carbon allocation to plant secondary metabolites: a genetic analysis of cost in Diplacus aurantiacus. Evolution 48:1550–1563

    Google Scholar 

  • Häring DA, Huber MJ, Suter D, Edwards PJ, Lüscher A (2008) Plant enemy-derived elicitors increase the foliar tannin concentration of Onobrychis viciifolia without a trade-off to growth. Ann Bot 102:979–987

    PubMed  PubMed Central  Google Scholar 

  • Harris DC (1991) The phytophthora diseases of apple. J Hortic Sci 66:513–544

    Google Scholar 

  • Hartmann T (2007) From waste products to ecochemicals: fifty years research of plant secondary metabolism. Phytochemistry 68:2831–2846

    PubMed  CAS  Google Scholar 

  • Heil M, Baldwin IT (2002) Fitness costs of induced resistance: emerging experimental support for a slippery concept. Trends Plant Sci 7:61–67

    PubMed  CAS  Google Scholar 

  • Heil M, Hilpert A, Kaiser W, Linsenmair KE (2000) Reduced growth and seed set following chemical induction of pathogen defence: does systemic acquired resistance (SAR) incur allocation costs? J Ecol 88:645–654

    CAS  Google Scholar 

  • Herms DA, Mattson WJ (1992) The dilemma of plants: to grow or defend. Q Rev Biol 67:283–335

    Google Scholar 

  • Holzapfel C, Meisel B, Thümmler F, Leser C, Treutter D (2012) Differential gene expression in leaves of a scab susceptible and a resistant apple cultivar upon Venturia inaequalis inoculation. Trees 26:121–129

    Google Scholar 

  • Hückelhoven R (2007) Cell wall-associated mechanisms of disease resistance and susceptibility. Annu Rev Phytopathol 45:101–127

    PubMed  Google Scholar 

  • Hückelhoven R, Kogel K-H (2003) Reactive oxygen intermediates in plant-microbe interactions: who is who in powdery mildew resistance? Planta 216:891–902

    PubMed  Google Scholar 

  • Ingle RA, Carstens M, Denby KJ (2006) PAMP recognition and the plant-pathogen arms race. Bioessays 28:880–889

    PubMed  CAS  Google Scholar 

  • Jung T (2009) Beech decline in Central Europe driven by the interaction between Phytophthora infections and climatic extremes. Forest Pathol 39:73–94

    Google Scholar 

  • Jung T, Burgess TI (2009) Re-evaluation of Phytophthora citricola isolates from multiple woody hosts in Europe and North America reveals a new species, Phytophthora plurivora sp nov. Persoonia 22:95–110

    PubMed  CAS  PubMed Central  Google Scholar 

  • Jung T, Hudler G, Jensen-Tracy S, Griffiths H, Fleischmann F, Oßwald W (2005) Involvement of Phytophthora species in the decline of European beech in Europe and the USA. Mycologist 19:159–166

    Google Scholar 

  • Kováčik J, Klejdus B, Bačkor M (2009) Nitric oxide signals ROS scavenger-mediated enhancement of PAL activity in nitrogen-deficient Matricaria chamomilla roots: side effects of scavengers. Free Radic Biol Med 46:1686–1693

    PubMed  Google Scholar 

  • Kretzschmar FDS, Aidara MPM, Salgado I, Braga MR (2009) Elevated CO2 atmosphere enhances production of defence-related flavonoids in soybean elicited by NO and a fungal elicitor. Environ Expl Bot 65:319–329

    CAS  Google Scholar 

  • Kuc J (1995) Phytoalexins, stress metabolism, and disease resistance in plants. Annu Rev Phytopathol 33:275–297

    PubMed  CAS  Google Scholar 

  • Lattanzio V, Kroon PA, Quideau S, Treutter D (2008) Introduction: plant phenolics – secondary metabolites with diverse functions. In: Daayf F, Lattanzio V (eds) Recent advances in polyphenol research, vol 1. Wiley-Blackwell, Chichester, pp 1–35

    Google Scholar 

  • Le Bot J, Bénard C, Robin C, Bourgaud F, Adamowicz S (2009) The ‘trade-off’ between synthesis of primary and secondary compounds in young tomato leaves is altered by nitrate nutrition: experimental evidence and model consistency. J Exp Bot 60:4301–4314

    PubMed  Google Scholar 

  • Lea US, Slimestad R, Smedvig P, Lillo C (2007) Nitrogen deficiency enhances expression of specifc MYB and bHLH transcription factors and accumulation of end products in the flavonoid pathway. Planta 225:1245–1253

    PubMed  CAS  Google Scholar 

  • Leser C, Treutter D (2005) Effects of nitrogen supply on growth, contents of phenolic compounds and pathogen (scab) resistance of apple trees. Physiol Plant 123:49–56

    CAS  Google Scholar 

  • Lewis NG, Yamamoto E (1989) Tannins – their place in plant metabolism. In: Hemingway RW, Karchesy JJ (eds) Chemistry and significance of condensed tannins. Plenum, New York, pp 23–43

    Google Scholar 

  • Magg T, Melchinger AE, Klein D, Bohn M (2001) Comparison of Bt maize hybrids with their non-transgenic counterparts and commercial varieties for resistance to European corn borer and for agronomic traits. Plant Breed 120:397–403

    Google Scholar 

  • Martin GB, Bogdanove AJ, Sessa G (2003) Understanding the functions of plant disease resistance proteins. Annu Rev Plant Biol 54:23–61

    PubMed  CAS  Google Scholar 

  • Matyssek R, Agerer R, Ernst D, Munch JC, Oßwald W, Pretzsch H, Priesack E, Schnyder H, Treutter D (2005) The plant’s capacity in regulating resource demand. Plant Biol 7:560–580

    PubMed  CAS  Google Scholar 

  • Matyssek R, Sandermann H (2003) Impact of ozone on trees: an ecophysiological perspective, Bot, vol 64, Progress in botany. Springer verlag, Heidelberg, pp 349–404

    Google Scholar 

  • Mayr U, Treutter D (1998) Flavanols as defence barriers in apple leaves against the apple scab fungus (Venturia inaequalis). Acta Hortic 456:79–82

    Google Scholar 

  • Mayr U, Michalek S, Treutter D, Feucht W (1997) Phenolic compounds of apple and their relationship to scab resistance. J Phytopathol 145:69–75

    CAS  Google Scholar 

  • McLean MS, Howlett BJ, Hollaway GJ (2009) Epidemiology and control of spot form of net blotch (Pyrenophora teres f. maculata) of barley: a review. Crop Pasture Sci 60:303–315

    CAS  Google Scholar 

  • Mert-Türk F (2002) Phytoalexins: defence or just a response to stress? J Cell Mol Biol 1:1–6

    Google Scholar 

  • Nürnberger T, Lipka V (2005) Non-host resistance in plants: new insights into an old phenomenon. Mol Plant Pathol 6:335–345

    PubMed  Google Scholar 

  • Olsen KM, Slimestad R, Lea US, Brede C, Løvdal T, Ruoff P, Verheul M, Lillo C (2009) Temperature and nitrogen effects on regulators and products of the flavonoid pathway: experimental and kinetic model studies. Plant Cell Environ 32:286–299

    PubMed  CAS  Google Scholar 

  • Palumbo MJ, Putz FE, Talcott ST (2007) Nitrogen fertilizer and gender effects on the secondary metabolism of yaupon, a caffeine-containing North American holly. Oecologia 151:1–9

    PubMed  Google Scholar 

  • Papadopoulou K, Melton RE, Leggett M, Daniels MJ, Osbourn AE (1999) Compromised disease resistance in saponin-deficient plants. Proc Natl Acad Sci USA 96:12923–12928

    PubMed  CAS  PubMed Central  Google Scholar 

  • Perner H, Rohn S, Driemel G, Batt N, Schwarz D, Kroh LW, George E (2008) Effect of nitrogen species supply and mycorrhizal colonization on organosulfur and phenolic compounds in onions. J Agric Food Chem 56:3538–3545

    PubMed  CAS  Google Scholar 

  • Pieterse MJ, Leon-Reyes A, Van der Ent S, Van Wees SCM (2009) Networking by small-molecular hormones in plant immunity. Nat Chem Biol 5:308–316

    PubMed  CAS  Google Scholar 

  • Reinbothe S, Reinbothe C, Heintzen C, Seidenbecher C, Parthier B (1993) A methyljasmonate-induced shift in the length of the 5′ untranslated region impairs translation of the plastid rbcL transcript in barley. EMBO J 12:1505–1512

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ros B, Thümmler F, Wenzel G (2005) Comparative analysis of Phytophthora infestans induced gene expression in potato cultivars with different levels of resistance. Plant Biol 7:686–693

    PubMed  CAS  Google Scholar 

  • Ros B, Mohler V, Wenzel G, Thümmler F (2008) Phytophthora infestans-triggered response of growth- and defense-related genes in potato cultivars with different levels of resistance under the influence of nitrogen availability. Physiol Plant 133:386–396

    PubMed  CAS  Google Scholar 

  • Royo RJ, Leon J, Vancanneyt G, Albar JP, Rosahl S, Ortego F, Castanera P, Sanchez-Serrano JJ (1999) Antisense-mediated depletion of a potato lipoxygenase reduces wound induction of proteinase inhibitors and increases weight gain of insect pests. Proc Natl Acad Sci USA 96:1146–1151

    PubMed  CAS  PubMed Central  Google Scholar 

  • Rühmann S, Leser C, Bannert M, Treutter D (2002) Relationship between growth, secondary metabolism, and resistance of apple. Plant Biol 4:137–143

    Google Scholar 

  • Schlink K (2010) Down-regulation of defence genes and resource allocation into infected roots as factors for compatibility between Fagus sylvatica and Phytophthora citricola. Funct Integr Genomics 10:253–264

    PubMed  CAS  Google Scholar 

  • Schornack S, Huitema E, Cano LM, Bozkurt TO, Oliva R, Van Damme M, Schwizer S, Raffaele S, Chaparro-Garcia A, Farrer R, Segretin ME, Bos J, Haas BJ, Zody MC, Nusbaum C, Win J, Thines M, Kamoun S (2009) Ten things to know about oomycete effectors. Mol Plant Pathol 10:795–803

    PubMed  CAS  Google Scholar 

  • Shetty K (2004) Role of proline-linked pentose phosphate pathway in biosynthesis of plant phenolics for functional food and environmental applications: a review. Process Biochem 9:789–803

    Google Scholar 

  • Snyder BA, Nicholson RL (1990) Synthesis of phytoalexins in sorghum as a site specific response to fungal ingress. Science 248:1637–1639

    PubMed  CAS  Google Scholar 

  • Stamp N (2003) Out of the quagmire of plant defense hypotheses. Q Rev Biol 78:23–55

    PubMed  Google Scholar 

  • Stamp N (2004) Can the growth-differentiation balance hypothesis be tested rigorously? Oikos 107:439–448

    Google Scholar 

  • Strissel T, Halbwirth H, Hoyer U, Zistler C, Stich K, Treutter D (2005) Growth promoting nitrogen nutrition affects flavonoid biosynthesis in young apple (Malus domestica Borkh.) leaves. Plant Biol 7:677–685

    PubMed  CAS  Google Scholar 

  • Taylor LP, Grotewold E (2005) Flavonoids as developmental regulators. Curr Opin Plant Biol 8:317–323

    PubMed  CAS  Google Scholar 

  • Thaler J (1999) Induced resistance in agricultural crops: effects of jasmonic acid on herbivory and yield in tomato plants. Popul Ecol 28:30–37

    CAS  Google Scholar 

  • Thomma BPHJ, Nelissen I, Eggemont K, Broekaert WF (1999) Deficiency in phytoalexin production causes enhanced susceptibility of Arabidopsis thaliana to the fungus Alternaria brassicicola. Plant J 19:163–171

    PubMed  CAS  Google Scholar 

  • Thordal-Christensen H, Zhang Z, Wie Y, Collinge DB (1997) Subcellular localization of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive response during the barley-powdery mildew interaction. Plant J 11:1187–1194

    CAS  Google Scholar 

  • Tian D, Traw MB, Chen JQ, Kreitman M, Bergelson J (2003) Fitness costs of R-gene-mediated resistance in Arabidopsis thaliana. Nature 423:74–77

    PubMed  CAS  Google Scholar 

  • Treutter D (2005) Significance of flavonoids in plant resistance and enhancement of their biosynthesis. Plant Biol 7:581–591

    PubMed  CAS  Google Scholar 

  • Treutter D (2010) Managing phenol contents in crop plants by phytochemical farming and breeding – visions and constraints. Int J Mol Sci 10:1–x. doi:10.3390/ijms100x000x

    Google Scholar 

  • Valcu CM, Junqueira M, Shevchenko A, Schlink K (2009) Comparative proteomic analysis of responses to pathogen infection and wounding in Fagus sylvatica. J Proteome Res 8:4077–4091

    PubMed  CAS  Google Scholar 

  • Van Dam NM, Baldwin IT (2001) Competition mediates costs of jasmonate-induced defences, nitrogen acquisition and transgenerational plasticity in Nicotiana attenuate. Funct Ecol 15:406–415

    Google Scholar 

  • Van Etten HD, Mansfield JW, Bailey JA, Farmer EE (1994) Two classes of plant antibiotics: phytoalexins versus “phytoanticipins”. Plant Cell 6:1191–1192

    Google Scholar 

  • Van Loon LC, Rep M, Pieterse CMJ (2006) Significance of inducible defense-related proteins in infected plants. Annu Rev Phytopathol 44:135–162

    PubMed  Google Scholar 

  • Walters D, Walsh D, Newton A, Lyon G (2005) Induced resistance for plant disease control: maximizing the efficacy of resistance elicitors. Phytopathology 95:1368–1373

    PubMed  CAS  Google Scholar 

  • Wilkens RT (1997) Limitations of evaluating the growth-differentiation balance hypothesis with only two levels of light and water. Ecoscience 4:319–326

    Google Scholar 

  • Wink M (1988) Plant breeding: importance of plant secondary metabolites for protection against pathogens and herbivores. Theor Appl Genet 75:225–233

    CAS  Google Scholar 

  • Yahiaoui N, Srichumpa P, Dudler R, Keller B (2004) Genome analysis at different ploidy levels allows cloning of the powdery mildew resistance gene Pm3b from hexaploid wheat. Plant J 37:528–538

    PubMed  CAS  Google Scholar 

  • Zeller SL, Kalinina O, Brunner S, Keller B, Schmid B (2010) Transgene × environment interactions in genetically modified wheat. PLoS One 5:e11405

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Oßwald .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Oßwald, W., Fleischmann, F., Treutter, D. (2012). Host–Parasite Interactions and Trade-offs Between Growth- and Defence-Related Metabolism Under Changing Environments. In: Matyssek, R., Schnyder, H., Oßwald, W., Ernst, D., Munch, J., Pretzsch, H. (eds) Growth and Defence in Plants. Ecological Studies, vol 220. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30645-7_3

Download citation

Publish with us

Policies and ethics