Skip to main content

Molecular Mechanism of d-Xylitol Production in Yeasts: Focus on Molecular Transportation, Catabolic Sensing and Stress Response

  • Chapter
  • First Online:
D-Xylitol

Abstract

Xylitol is a naturally occurring non fermentable sugar alcohol. It can be produced by the microbial fermentation of xylose extracted from hemicellulose of lignocellulosic substrates like corn fiber, corn husk, sugarcane bagasse and birch wood. In last few decades, xylitol gained significant importance due to its applications in food and pharmaceutical industries. Sustainable production of xylitol from renewable sources is possible by fermentation process using xylose assimilating microbes. As chemical production of xylitol involves high temperature, pressure and expensive purification steps, highly efficient biotechnological production of xylitol using microorganisms is gaining more interest over chemical processes. For the economic production of xylitol, microorganisms with high osmotolerance, inhibitor resistance, fast conversion rates, and stress tolerance are required in the fermentation process. As xylose uptake might be a limiting factor for xylose fermentation, the study of xylose uptake with respect to xylose transporting proteins and improvement of utilization of sugar mixtures is necessary. This review is to provide an overall view of xylitol production by yeast strains under sugar, saline and different nutritive stress conditions. In addition this review emphasizes the role of molecular changes (genes) and pathways involved in the utilization and transport of sugars for increased xylitol production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adler L, Gustafsson L (1980) Polyhydric alcohol production and intracellular amino acid pool in relation to halotolerance of the yeast Debaryomyces hansenii. Arch Microbiol 124:123–130

    Article  CAS  Google Scholar 

  • Albertyn J, Hohmann S, Thevelein JM, Prior BA (1994) GDP1, which encodes glycerol-3-phosphate dehydrogenase, is essential for growth under osmotic stress in Saccharomyces cerevisiae, and its expression is regulated by high-osmolarity glycerol response pathway. Mol Cell Biol 14:4135–4144

    PubMed  CAS  Google Scholar 

  • Ansell R, Granath K, Hohmann S, Thevelein JM, Adler L (1997) The two isoenzymes for yeast NAD+-dependent glycerol 3-phosphate dehydrogenase encoded by GPD1 and GPD2 have distinct roles in osmoadaptation and redox regulation. EMBO J 16:2179–2187

    Article  PubMed  CAS  Google Scholar 

  • Arrizon J, Mateos JC, Sandoval G, Aguilar B, Solis J, Aguilar MG (2011) Bioethanol and xylitol production from different lignocellulosic hydrolysates by sequential fermentation. J Food Process Eng. doi:10.1111/j.1745-4530.2010.00599.x

    Google Scholar 

  • Becker J, Boles E (2003) A modified Saccharomyces cerevisiae strain that consumes Larabinose and produces ethanol. Appl Environ Microbiol 69(7):4144–4150

    Article  PubMed  CAS  Google Scholar 

  • Beker ME, Rapoport AI (1987) Conservation of yeasts by dehydration. Adv Biochem Eng/Biotechnol 35:127–171

    Article  Google Scholar 

  • Belazzi T, Wagner A, Wieser R, Schanz M, Adam G, Hartig A, Ruis H (1991) Negative regulation of transcription of the Saccharomyces cerevisiae catalase T (CTT1) gene by cAMP is mediated by a positive control element. EMBO J 10:585–592

    PubMed  CAS  Google Scholar 

  • Blomberg A, Adler L (1989) Roles of glycerol and glycerol-3-phosphate dehydrogenase (NAD+) in acquired osmotolerance of Saccharomyces cerevisiae. J Bacteriol 171:1087–1092

    PubMed  CAS  Google Scholar 

  • Blomberg A, Adler L (1992) Physiology of osmotolerance in fungi. Adv Microb Physiol 33:145–212

    Article  PubMed  CAS  Google Scholar 

  • Blomberg A, Adler L (1993) Tolerance of fungi to NaC1. In: Jennings DH (ed) Stress tolerance of fungi. Marcel Dekker, New York, pp 209–232

    Google Scholar 

  • Boles E, Hollenberg CP (1997) The molecular genetics of hexose transport in yeasts. FEMS Microbiol Rev 21:85–111

    Article  PubMed  CAS  Google Scholar 

  • Boorstein WR, Craig EA (1990a) Regulation of a yeast HSP70 gene by a cAMP responsive transcriptional control element. EMBO J 9:2543–2553

    PubMed  CAS  Google Scholar 

  • Boorstein WR, Craig EA (1990b) Transcriptional regulation of SSA3, an HSP70 gene from Saccharomyces cerevisiae. Mol Cell Biol 10:3262–3267

    PubMed  CAS  Google Scholar 

  • Brewster JL, de Valoir T, Dwyer ND, Winter E, Gustin MC (1993) An osmosensing signal transduction pathway in yeast. Sci 259:1760–1763

    Article  CAS  Google Scholar 

  • Bruinenberg PM, de Bot PHM, van Dijken JP, Scheffers WA (1984) NADH-linked aldose reductase: the key to anaerobic alcoholic fermentation of xylose by yeasts. Appl Microbial Biotechnol 19:256–260

    Article  CAS  Google Scholar 

  • Capaldi AP, Kaplan T, Liu Y, Habib N, Regev A, Friedman N, O’Shea EK (2008) Structure and function of a transcriptional network activated by the MAPK Hog1. Nat Genetics 40:1300–1306

    Article  CAS  Google Scholar 

  • Carlson M, Osmond BC, Botstein D (1981) Mutants of yeast defective in sucrose utilization. Genetics 98:25–40

    PubMed  CAS  Google Scholar 

  • Chandel AK, Singh OV, Rao LV (2010) Biotechnological applications of hemicellulosic derived sugars: state-of-the-art. In: Singh OV, Harvey SP (eds) Sustainable biotechnology: renewable resources and new perspectives. Springer, Dordrecht, pp 63–81

    Google Scholar 

  • Chandel AK, Chandrasekhar G, Radhika K, Ravinder R, Ravindra P (2011) Bioconversion of pentose sugars into ethanol: a review and future directions. Biotechnol Mol Biol Rev 6:008–020

    CAS  Google Scholar 

  • Chen X, Jiang ZH, Chen S, Qin W (2010) Microbial and bioconversion production of d-xylitol and its detection and application. Int J Biol Sci 6:834–844

    Article  PubMed  CAS  Google Scholar 

  • Cheng KK, Ling HZ, Zhang JA, Ping WX, Huang W, Ge JP, Xu JM (2010) Strain isolation and study on process parameters for xylose-to-xylitol bioconversion. Biotechnol Biotechnol Equip 24:1606–1611

    Article  CAS  Google Scholar 

  • Crowe JH, Hoekstra FA, Crowe LM (1989) Membrane phase transitions are responsible for imbibitional damage in dry pollen. Proc Natl Acad Sci U S A 86:520–523

    Article  PubMed  CAS  Google Scholar 

  • Dihazi H, Kessler R, Eschrich K (2004) High osmolarity glycerol (hog) pathway-induced phosphorylation and activation of 6-phosphofructo-2-kinase are essential for glycerol accumulation and yeast cell proliferation under hyperosmotic stress. J Biol Chem 279:23961–23968

    Article  PubMed  CAS  Google Scholar 

  • Erasmus DJ, van der Merwe GK, van Vuuren HJJ (2003) Genome-wide analyses, metabolic adaptation of Saccharomyces cerevisiae to high sugar stress. FEMS Yeast Res 3:375–399

    Article  PubMed  CAS  Google Scholar 

  • Ferrigno P, Posas F, Koepp D, Saito H, Silver PA (1998) Regulated nucleo/cytoplasmic exchange of HOG1 MAPK requires the importin beta homologs NMD5 and XPO1. EMBO J 17:5606–5614

    Article  PubMed  CAS  Google Scholar 

  • Gancedo JM (2008) The early steps of glucose signalling in yeast. FEMS Microbiol Rev 32:673–704

    Article  PubMed  CAS  Google Scholar 

  • Gancedo C, Serrano R (1989) Energy-yielding metabolism. In: Rose AH, Harrison JS (eds) The yeasts, vol 3, 2nd edn. Academic Press, New York, pp 205–259

    Google Scholar 

  • Gardonyi M, Osterberg M, Rodrigues C, Spencer-Martins I, Hahn- Hägerdal B (2003) High capacity xylose transport in Candida intermedia PYCC 4715. FEMS Yeast Res 3:45–52

    Article  PubMed  CAS  Google Scholar 

  • Ghindea R, Csutak O, Stoica I, Tanase I, Tassu V (2010) Production of xylitol by yeasts. Romanian Biotechnol Lett 15(3):5217–5222

    CAS  Google Scholar 

  • Gonzalez-Hernandez JC, Cardenas-Monroy CA, Peo A (2004) Sodium and potassium transport in the halophilic yeast Debaryomyces hansenii. Yeast 21:403–412

    Article  PubMed  CAS  Google Scholar 

  • Gounalaki N, Thireos G (1994) Yap1, a yeast transcriptional activator that mediates multidrug resistance, regulates the metabolic stress response. EMBO J 13:4036–4041

    PubMed  CAS  Google Scholar 

  • Granström TB, Izumori K, Leisola M (2007a) A rare sugar xylitol. Part I: the biochemistry and biosynthesis of xylitol. Appl Microbiol Biotechnol 74:277–281

    Article  PubMed  CAS  Google Scholar 

  • Granström TB, Izumori K, Leisola M (2007b) A rare sugar xylitol. Part II: biotechnological production and future applications of xylitol. Appl Microbiol Biotechnol 74:273–276

    Article  PubMed  CAS  Google Scholar 

  • Guidi F, Magherini M, Gamberi T, Borro M, Simmaco M, Modesti A (2010) Effect of different glucose concentrations on proteome of Saccharomyces cerevisiae. Biochim Biophys Acta 1804:1516–1525

    Article  PubMed  CAS  Google Scholar 

  • Guo C, Zhao C, He P, Lu D, Shen A, Jiang N (2006) Screening and characterization of yeasts for xylitol production. J Appl Microbiol 101:1096–1104

    Article  PubMed  CAS  Google Scholar 

  • Hamacher T, Becker J, Gardonyi M, Hahn-Hägerdal B, Boles E (2002) Characterization of the xylose-transporting properties of yeast hexose transporters and their influence on xylose utilization. Microbiol 148:2783–2788

    CAS  Google Scholar 

  • Hector RE, Qureshi N, Hughes SR, Cotta MA (2008) Expression of a heterologous xylose transporter in a Saccharomyces cerevisiae strain engineered to utilize xylose improves aerobic xylose consumption. Appl Microbiol Biotechnol 80(4):675–684

    Article  PubMed  CAS  Google Scholar 

  • Hirayama T, Maeda T, Saito H, Shinozaki K (1995) Cloning and characterization of seven cDNAs for hyperosmolarity-responsive (HOR) genes of Saccharomyces cerevisiae. Mol Gen Genetics 249:127–138

    Article  CAS  Google Scholar 

  • Hoekstra FA, Crowe JH, Crowe LM (1992) Germination and ion leakage are linked with phase transitions of membrane lipids during imbibition of Typha latifolia pollen. Physiol Plant 84:29–34

    Article  CAS  Google Scholar 

  • Hofer M, Misra PC (1978) Evidence for a proton/sugar symport in the yeast Rhodotorula gracilis (glutinis). Biochem J 172:15–22

    PubMed  CAS  Google Scholar 

  • Hohmann S (2002) Osmotic stress signaling and osmoadaptation in yeasts. Microbiol Mol Biol Rev 66:300–372

    Article  PubMed  CAS  Google Scholar 

  • Hohmann S, Mager WH (2003) In: Mager WH (ed) Introduction in yeast stress responses. Springer, Berlin, pp 1–9

    Chapter  Google Scholar 

  • Hohmann S, Nielsen S, Agre P (2001) Aquaporins. Academic Press, San Diego

    Google Scholar 

  • Holst B, Lunde C, Lages F, Oliveira R, Lucas C, Kielland-Brandt MC (2000) GUP1 and its close homologue GUP2, encoding multimembrane-spanning proteins involved in active glycerol uptake in Saccharomyces cerevisiae. Mol Microbiol 37:108–124

    Article  PubMed  CAS  Google Scholar 

  • Hounsa CG, Brandt EV, Thevelein J, Hohmann S, Prior BA (1998) Role of trehalose in survival of Saccharomyces cerevisiae under osmotic stress. Microbiol 144:671–680

    Article  CAS  Google Scholar 

  • Jeffries TW (1983) Utilization of xylose by bacteria, yeasts and fungi. Adv Biochem Eng Biotechnol 27:l–32

    Google Scholar 

  • Jeffries TW (2006) Engineering yeasts for xylose metabolism. Curr Opin Biotechnol 17:320–326

    Article  PubMed  CAS  Google Scholar 

  • Jeffries TW, Jin YS (2004) Metabolic engineering for improved fermentation of pentoses by yeasts. Appl Microbiol Biotechnol 63:495–509

    Article  PubMed  CAS  Google Scholar 

  • Jeon YJ, Shin HS, Rogers PL (2011) Xylitol production from a mutant strain of Candida tropicalis. Lett Appl Microbiol 53(1):106–113

    Article  PubMed  CAS  Google Scholar 

  • Jiménez-Martí E, Zuzuarregui A, Gomar-Alba M, Gutiérrez D, Gil C, del Olmo M (2011) Molecular response of Saccharomyces cerevisiae wine and laboratory strains to high sugar stress conditions. Int J Food Microbiol 145(1):211–220

    Article  PubMed  CAS  Google Scholar 

  • Jones RP, Gadd GM (1990) Ionic nutrition of yeast physiological mechanisms involved and implications for biotechnology. Enz Microb Technol 12:402–418

    Article  CAS  Google Scholar 

  • Kadam KL, Chin CY, Brown LW (2008) Flexible biorefinery for producing fermentation sugars, lignin and pulp from corn stover. Ind J Microbiol Biotechnol 35:331–341

    Article  CAS  Google Scholar 

  • Kaeberlein M, Andalis AA, Fink GR, Guarente L (2002) High osmolarity extends life span in Saccharomyces cerevisiae by a mechanism related to calorie restriction. Mol Cellular Biol 22:8056–8066

    Article  CAS  Google Scholar 

  • Kaniak A, Xue Z, Macool D, Kim JH, Johnston M (2004) Regulatory network connecting two glucose signal transduction pathways in Saccharomyces cerevisiae. Eukaryot Cell 3:221–231

    Article  PubMed  CAS  Google Scholar 

  • Kayingo G, Kilian SG, Prior BA (2001) Conservation and release of osmolytes by yeasts during hypo-osmotic stress. Arch Microbiol 177:29–35

    Article  PubMed  CAS  Google Scholar 

  • Khroustalyova G, Adler L, Rapoport A (2001) Exponential growth phase cells of the osmotolerant yeast Debaryomyces hansenii are extremely resistant to dehydration stress. Process Biochem 36:1163–1166

    Article  CAS  Google Scholar 

  • Kilian SG, van Uden N (1988) Transport of xylose and glucose in the xylose fermenting yeast Pichia stipitis. Appl Microbial Biotechnol 27:545–548

    CAS  Google Scholar 

  • Kinterinwa AO, Khankal R, Cirino PC (2008) Metabolic engineering for bioproduction of sugar alcohols. Curr Opin Biotechnol 19:461–467

    Article  CAS  Google Scholar 

  • Ko CH, Chiang PN, Chiu PC, Liu CC, Yang CL, Shiau IL (2008) Integrated xylitol production by fermentation of hardwood wastes. J Chemical Technol Biotechnol 83:534–540

    Article  CAS  Google Scholar 

  • Kotter P, Ciriacy M (1993) Xylose fermentation by Saccharomyces cerevisiae. Appl Microbiol Biotechnol 38:776–783

    Article  Google Scholar 

  • Krallish I, Jeppsson H, Rapoport A, Hanh-Hagerdal B (1997) Effect of xylitol and trehalose on dry resistance of yeasts. Appl Microbiol Biotechnol 47:447–451

    Article  PubMed  CAS  Google Scholar 

  • Kuyper M, Toirkens MJ, Diderich JA, Winkler AA, van Dijken JP, Pronk JT (2005) Evolutionary engineering of mixed-sugar utilization by a xylose-fermenting Saccharomyces cerevisiae strain. FEMS Yeast Res 5:925–934

    Article  PubMed  CAS  Google Scholar 

  • Lachke AH, Jeffries TW (1986) Levels of the enzymes of the pentose phosphate pathway in Pachysolen tannophilus Y-2460 and selected mutants. Enz Microbial Technol 8:353–359

    Article  CAS  Google Scholar 

  • Lages F, Silva-Graca M, Lucas C (1999) Active glycerol uptake is a mechanism underlying halotolerance in yeasts: a study of 42 species. Microbiology 145:2577–2585

    PubMed  CAS  Google Scholar 

  • Larsson C, Morales C, Gustafsson L, Adler L (1990) Osmoregulation of the salt-tolerant yeast Debaryomyces hansenii grown in a chemostat at different salinities. J Bacteriol 172:1769–1774

    PubMed  CAS  Google Scholar 

  • Leandro MJ, Gonçalves P, Spencer-Martins I (2006) Two glucose/xylose transporter genes from the yeast Candida intermedia: first molecular characterization of a yeast xylose-H+ symporter. Biochem J 395:543–549

    Article  PubMed  CAS  Google Scholar 

  • Leandro MJ, Spencer-Martins I, Gonçalves P (2008) The expression in Saccharomyces cerevisiae of a glucose/xylose symporter from Candida intermedia is affected by the presence of a glucose/xylose facilitator. Microbiology 154:1646–1655

    Article  PubMed  CAS  Google Scholar 

  • Leandro MJ, Fonseca C, Goncalves P (2009) Hexose and pentose transport in ascomycetous yeasts: an overview. FEMS Yeast Res 9:511–525

    Article  PubMed  CAS  Google Scholar 

  • Lee WJ, Kim MD, Ryu YW, Bisson LF, Seo JH (2002) Kinetic studies on glucose and xylose transport in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 60:186–191

    Article  PubMed  CAS  Google Scholar 

  • Leslie SB, Teter SA, Crowe LM, Crowe JH (1994) Trehalose lowers membrane phase transition in dry yeast cells. Biochem Biophys Acta 1192:7–13

    Article  PubMed  CAS  Google Scholar 

  • Lin SL, Miller JD, Ying SY (2010) Intronic microRNA (miRNA). J Biomed Biotechnol 4:26818

    Google Scholar 

  • Luyten K, Albertyn J, Skibbe WF, Prior BA, Ramos J, Thevelein JM, Hohmann S (1995) Fps1, a yeast member of the MIP family of channel proteins, is a facilitator for glycerol uptake and efflux and is inactive under osmotic stress. EMBO J 14:1360–1371

    PubMed  CAS  Google Scholar 

  • Maeda T, Wurgler-Murphy SM, Saito H (1994) A two-component system that regulates an osmosensing MAP kinase cascade in yeast. Nature 369:242–245

    Article  PubMed  CAS  Google Scholar 

  • Maeda T, Takekawa M, Saito H (1995) Activation of yeast PBS2 MAPKK by APKKKs or by binding of an SH3-containing osmosensor. Science 269:554–558

    Article  PubMed  CAS  Google Scholar 

  • Mager WH, Ferreira M (1993) Stress response of yeast. Biochem J 290:1–13

    PubMed  CAS  Google Scholar 

  • Marchler G, Schuller C, Adam G, Ruis H (1993) A Saccharomyces cerevisiae UAS element controlled by protein kinase A activates transcription in response to a variety of stress conditions. EMBO J 12:1997–2003

    PubMed  CAS  Google Scholar 

  • Martınez-Pastor MT, Marchler G, Schuller C, Marchler-Bauer A, Ruis H, Estruch F (1996) The Saccharomyces cerevisiae zinc finger proteins Msn2p and Msn4p are required for transcriptional induction through the stress-response element (STRE). EMBO J 15:227–2235

    Google Scholar 

  • McCartney RR, Schmidt MC (2001) Regulation of Snf1 kinase. Activation requires phosphorylation of threonine 210 by an upstream kinase as well as a distinct step mediated by the Snf4 subunit. J Biological Chem 276:36460–36466

    Article  CAS  Google Scholar 

  • Milessi TSD, Chandel AK, Branco RF, Sílva SS (2011) Effect of dissolved oxygen and inoculum concentration on xylose reductase production from Candida guilliermondii using sugarcane bagasse hemicellulosic hydrolysate. Food Nutr Sci 2:235–240

    Article  CAS  Google Scholar 

  • Norbeck J, Pahlman AK, Akhtar N, Blomberg A, Adler L (1996) Purification and characterization of two isoenzymes of DL-Glycerol-3-phosphatase from Saccharomyces cerevisiae. J Biol Chem 271:13875–13881

    Article  PubMed  CAS  Google Scholar 

  • Oliveir R, Lages F, Silva-Graca M, Lucas C (2003) Fps1p channel is the mediator of the major part of glycerol passive diffusion in Saccharomyces cerevisiae: artefacts and re-definitions. Biochem Biophys Acta 1613:57–71

    Article  CAS  Google Scholar 

  • Panek AD (1995) Trehalose metabolism—new horizons in technological applications. Brasil J Med Biological Res 28:169–181

    CAS  Google Scholar 

  • Pao SS, Paulsen IT, Saier MH (1998) Major facilitator super family. Microbiol Molecular Biol Rev 62(1):1–34

    CAS  Google Scholar 

  • Papamichos-Chronakis M, Gligoris T, Tzamarias D (2004) The Snf1 kinase controls glucose repression in yeast by modulating interactions between the Mig1 repressor and the Cyc8-Tup1 co-repressor. EMBO Rep 5:368–372

    Article  PubMed  CAS  Google Scholar 

  • Parsell DA, Lindquist S (1994) Heat shock proteins and stress tolerance. In: Morimoto RI, Tissieres A, Georgopoulos C (eds) The biology of heat shock proteins and molecular chaperones. Cold Spring Harbor Laboratory Press, New York, pp 457–494

    Google Scholar 

  • Pham TK, Wright PC (2008) The proteomic response of Saccharomyces cerevisiae in very high glucose conditions with amino acid supplementation. J Proteome Res. 7(11):4766–4774

    Google Scholar 

  • Posas F, Saito H (1997) Osmotic activation of the HOG MAPK pathway via Ste11p MAPKKK: scaffold role of Pbs2 MAPKK. Sci 276:1702–1705

    Article  CAS  Google Scholar 

  • Posas F, Wurgler-Murphy SM, Maeda T, Witten EA, Cam Thai T, Saito H (1996) Yeast HOG1 MAP kinase cascade is regulated by a multistep phosphorelay mechanism in the SLN1–YPD1–SSK1 ‘two component’ osmosensor. Cell 86:865–875

    Article  PubMed  CAS  Google Scholar 

  • Posas F, Chambers JR, Heyman JA, Hoeffler JP, de Nadal E, Ariño J (2000) The transcriptional response of yeast to saline stress. J Biological Chem 275:17249–17255

    Article  CAS  Google Scholar 

  • Prakash G, Varma AJ, Prabhune A, Shouche Y, Rao M (2011) Microbial production of xylitol from d-xylose and sugarcane bagasse hemicellulose using newly isolated thermotolerant yeast Debaryomyces hansenii. Biores Technol 102(3):3304–3308

    Article  CAS  Google Scholar 

  • Prakasham RS, Rao RS, Hobbs PJ (2009) Current trends in biotechnological production of xylitol. Curr Trends Biotechnol Pharm Futur Prospect 3(1):8–36

    CAS  Google Scholar 

  • Prior BA, Killian SG, du Preez JC (1989) Fermentation of d-xylose by the yeasts Candida shehatae and Pichia stipitis. Proc Biochem 24:21–32

    CAS  Google Scholar 

  • Prista C, Almagro A, Loureiro-Dias MC, Ramos J (1997) Physiological basis for the high salt tolerance of Debaryomyces hansenii. Appl Environ Microb 63:4005–4009

    CAS  Google Scholar 

  • Ramos J (1999) Contrasting salt tolerance mechanisms in Saccharomyces cerevisiae and Debaryomyces hansenii. Recent Res Dev Microbiol 3:377–390

    CAS  Google Scholar 

  • Reiser V, Ruis H, Ammerer G (1999) Kinase activity-dependent nuclear export opposes stress-induced nuclear accumulation and retention of Hog1 mitogen activated protein kinase in the budding yeast Saccharomyces cerevisiae. Mol Biol Cell 10:1147–1161

    PubMed  CAS  Google Scholar 

  • Renko M, Valkonen P, Tapiainen T, Kontiokari T, Mattila P, Knuuttila M, Svanberg M, Leinonen M, Karttunen R, Uhari M (2008) Xylitol-supplemented nutrition enhances bacterial killing and prolongs survival of rats in experimental pneumococcal sepsis. BMC Microbiol 8:45

    Article  PubMed  CAS  Google Scholar 

  • Rep M, Albertyn J, Thevelein J, Prior BA, Hohmann S (1999a) Different signaling pathways contribute to the control of GPD1 gene expression by osmotic stress in Saccharomyces cerevisiae. Microbiology 145:715–727

    Article  PubMed  CAS  Google Scholar 

  • Rep M, Reiser V, Gartner U, Thevelein JM, Hohmann S, Ammerer G, Ruis H (1999b) Osmotic stress-induced gene expression in Saccharomyces cerevisiae requires Msn1p and the novel nuclear factor Hot1p. Mol Cell Biol 19:5474–5485

    PubMed  CAS  Google Scholar 

  • Rep M, Krantz M, Thevelein J, Hohmann S (2000) The transcriptional response of Saccharomyces cerevisiae to osmotic shock. Hot1p and Msn2p/Msn4p are required for the induction of subsets of high osmolarity glycerol pathway-dependent genes. J Biological Chem 275:8290–8300

    Article  CAS  Google Scholar 

  • Rodrigues RCLB, William RK, Thomas WJ (2011) Xylitol production from DEO hydrolysate of corn stover by Pichia stipitis YS-30. Ind J Microbiol Biotechnol. doi:10.1007/s10295-011-0953-4

    Google Scholar 

  • Ruis H, Schuller C (1995) Stress signaling in yeast. BioEssays 17:959–965

    Article  PubMed  CAS  Google Scholar 

  • Runquist D, Fonseca C, Radstrom P, Spencer-Martins I, Hahn-Hägerdal B (2009) Expression of the Gxf1 transporter from Candida intermedia improves fermentation performance in recombinant xylose-utilizing Saccharomyces cerevisiae. Appl Microbiol Biotechnol 82:123–130

    Google Scholar 

  • Saha BC (2003) Hemicellulose bioconversion. J Ind Microbiol Biotechnol 30:279–291

    Article  PubMed  CAS  Google Scholar 

  • Saloheimo A, Rauta J, Stasyk OV, Sibirny AA, Penttila M, Ruohonen L (2007) Xylose transport studieswith xylose-utilizing Saccharomyces cerevisiae strains expressing heterologous and homologous permeases. Appl Microbiol Biotechnol 74:1041–1052

    Article  PubMed  CAS  Google Scholar 

  • Sampaio FC, da Silveira WB, Chaves-Alves VM, Passos FML, Coelho JLC (2003) Screening of filamentous fungi for production of xylitol from D-xylose. Brazl J Microbiol 34:325–328.

    Google Scholar 

  • Santangelo GM (2006) Glucose signaling in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 70:253–282

    Article  PubMed  CAS  Google Scholar 

  • Schmitt AP, McEntee K (1996) Msn2, a zinc finger DNA-binding protein, is the transcriptional activator of the multi stress response in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 93:5777–5782

    Article  PubMed  CAS  Google Scholar 

  • Schuffller C, Brewster JL, Alexander MR, Gustin MC, Ruis H (1994) The HOG pathway controls osmotic regulation of transcription via the stress response element (STRE) of the Saccharomyces cerevisiae CTT1 gene. EMBO J 13:4382–4389

    Google Scholar 

  • Serrano R (1996) Salt tolerance in plants and microorganisms: toxicity targets and defense responses. Int Rev Cytol 165:1–52

    Article  PubMed  CAS  Google Scholar 

  • Singh A, Mishra P (1995) Extraction of pentosans from lignocellulosic materials. In: Singh A, Mishra P (eds) Microbial pentose utilization: current applications in biotechnology. Elsevier, Amsterdam, pp 71–98

    Google Scholar 

  • Sirisansaneeyakul S, Staniszewski M, Rizzi M (1995) Screening of yeasts for production of xylitol from d-xylose. J Ferment Bioeng 6:564–570

    Google Scholar 

  • Skoog K, and Hahn-Hagerdal B (1990) Effect of oxygenation on xylose fermentation by Pichia stipitis. Appl Environ Microbiol 56:3389–3394.

    Google Scholar 

  • Spencer JFT, Spencer DM (1978) Production of polyhydroxy alcohols by osmotolerant yeasts. In: Rose H (eds) Economic microbiology. Primary products of metabolism. Academic Press, London 2:393-425

    Google Scholar 

  • Tamas MJ, Hohmann S (2003) The osmotic stress response of Saccharomyces cerevisiae. In: Hohmann S, Mager WH (eds) Yeast stress responses. Springer, Berlin

    Google Scholar 

  • Tamas MJ, Luyten K, Sutherland FCW, Hernandez A, Albertyn J, Valadi H, Li H, Prior BA, Kilian SG, Ramos J, Gustafsson L, Thevelein JM, Hohmann S (1999) Fps1p controls the accumulation and release of the compatible solute glycerol in yeast osmoregulation. Mol Microbiol 31:1087–1104

    Article  PubMed  CAS  Google Scholar 

  • Tamas MJ, Karlgren S, Bill RM, Hedfalk K, Allegri L, Ferreira M, Thevelein JM, Rydstrom J, Mullins JG, Hohmann S (2003) A short regulatory domain restricts glycerol transport through yeast Fps1p. J Biological Chem 278:6337–6345

    Article  CAS  Google Scholar 

  • Tavares JM, Duarte LC, Amaral-Collaco MT, G|èrio FM (1999) Phosphate limitation stress induces xylitol overproduction by Debaryomyces hansenii. FEMS Microbiol Lett 171:115–120

    Article  CAS  Google Scholar 

  • Teixeira de Mattos MJ, Neijssel OM (1997) Bioenergetic consequences of microbial adaptation to low-nutrient environments. J Biotechnol 59:117–126

    Article  PubMed  CAS  Google Scholar 

  • Tekolo OM, Mckenzie J, Botha A, Prior BA (2010) The osmotic stress tolerance of basidiomycetous yeasts. FEMS Yeast Res 10(4):482–491

    Article  PubMed  CAS  Google Scholar 

  • Tokuoka K (1993) Sugar and salt-tolerant yeasts. J Appl Bacteriol 74:101–110

    Article  Google Scholar 

  • Tomás-Cobos L, Casadomés L, Mas G, Sanz P, Posas F (2004) Expression of the HXT1 transcriptional response of yeast to saline stress. J Biological Chem 275:17249–17255

    Google Scholar 

  • van Dijken JP, Scheffers WA (1986) Redox balances in the metabolism of sugars by yeasts. FEMS Microbiol Rev 32:199–224

    Google Scholar 

  • Van Eck JH, Prior BA, Brandt EV (1993) The water relations of growth and polyhydroxy alcohol production by ascomycetous yeasts. J Gen Microbiol 139:1047–1054

    Article  Google Scholar 

  • Verdiyn C, Frank J, van Dijken JP, Scheffeis WA (1985) Multiple forms of xylose reductase in Pachysolen tannophilus CBS 4044. FEMS Microbial Lett 30:313–317

    Article  Google Scholar 

  • Vongsuvanlert V, Tani Y (1988) Purification and characterization of xylose isomerase of a methanol yeast, Candida boidinii, which is involved in sorbitol production from glucose. Agric Biol Chem 52:1817–1824

    Article  CAS  Google Scholar 

  • Wahlbom CF, Cordero ORR, van Zyl WH, Hahn-Hägerdal B, Jönsson LJ (2003) Molecular analysis of a Saccharomyces cerevisiae mutant with improved ability to utilize xylose shows enhanced expression of proteins involved in transport, initial xylose metabolism, and the pentose phosphate pathway. Appl Environ Microbiol 69:740–746

    Article  PubMed  CAS  Google Scholar 

  • Weber C, Farwick A, Benisch F, Brat D, Dietz H, Subtil T, Boles E (2010) Trends and challenges in the microbial production of lignocellulosic bioalcohol fuels. Appl Microbiol Biotechnol 87:1303–1315

    Article  PubMed  CAS  Google Scholar 

  • Weierstall T, Hollenberg CP, Boles E (1999) Cloning and characterization of three genes (SUT1–3) encoding glucose transporters of the yeast Pichia stipitis. Mol Microbiol 31:871–883

    Article  PubMed  CAS  Google Scholar 

  • Werner-Washburne M, Braun E, Johnston GC, Singer RA (1993) Stationary phase in the yeast Saccharomyces cerevisiae. Microbiol Rev 57:383–401

    PubMed  CAS  Google Scholar 

  • Werpy T, Peterson G, Aden A, Bozell L, Holladay J, White J, Manheim A (2004) Top value added chemicals from biomass, vol I: results of screening for potential candidates from sugars and synthesis gas. US Department of Energy

    Google Scholar 

  • Winkelhausen E, Kuzmanova S (1998) Microbial conversion of d-xylose to xylitol. J Ferm Bioeng 86:1–14

    Article  CAS  Google Scholar 

  • Xu P, Bura R, Sharon LD (2011) Genetic analysis of d-xylose metabolism by endophytic yeast strains of Rhodotorula graminis and Rhodotorula mucilaginosa. Genetics Mol Biol 34(3):471–478

    CAS  Google Scholar 

  • Yancey PH, Clark ME, Hand SC, Bowlus RD, Somero GN (1982) Living with water stress: evolution of osmolyte systems. Science 217:1214–1222

    Article  PubMed  CAS  Google Scholar 

  • Yoshikawa S, Mitsui N, Chikara K-I, Hashimoto H, Shimosaka HM, Okazaki M (1995) Effect of salt stress on plasma membrane permeability and lipid saturation in salt-tolerant yeast Zygosaccharomyces rouxii. J Ferment Bioeng 80:133–135

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Venkateswar Rao Linga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Goli, J.K., Panda, S.H., Linga, V.R. (2012). Molecular Mechanism of d-Xylitol Production in Yeasts: Focus on Molecular Transportation, Catabolic Sensing and Stress Response. In: da Silva, S., Chandel, A. (eds) D-Xylitol. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31887-0_4

Download citation

Publish with us

Policies and ethics