Skip to main content

Density Functional Theory of Bose–Einstein Condensation: Road to Chemical Bonding Quantum Condensate

  • Chapter
  • First Online:
Applications of Density Functional Theory to Chemical Reactivity

Part of the book series: Structure and Bonding ((STRUCTURE,volume 149))

Abstract

The marriage of the celebrated fermionic and bosonic theories of matter that are Density Functional Theory and Bose–Einstein Condensation, respectively, is presented at the conceptual level of the Hohenberg–Kohn–Sham equations and energy functionals. Particular attention is given to the general formulation of the exchange-correlation within the context of perturbation theory at finite temperature, then specialized to the analytical exchange functional in terms of ordering parameter dependency by employing the Bogoliubov transformation (or the first-order main-field expansion); this further provides the appropriate framework within which the celebrated Gross–Pitaevsky BEC equation is recovered. This nonlinear generalization of the Schrödinger equation was then employed in first providing the DFT–BEC connection at the level of the Thomas–Fermi approximation; such connections were further used in generalizing the classical Heitler–London formalism and bonding–antibonding equations of homopolar chemical bonding with the aid of the mass quantification of the quantum particle of the chemical bonding field—the bondons. Actually, two branches of bosonic–bondonic condensate were identified as physical and chemical bonding BEC, both with bonding and antibonding features. The paradigmatic DFT–BEC application to the bonding interaction in hydrogen and helium molecular systems confirms both the physical and chemical forbidden bindings in He–He interactions, while allowing only the chemical interaction in the H–H system, though with bonding and antibonding quantum condensates below the “normal” ground-state potential of H2. Further exciting perspectives at both physical and chemical levels, for conceptual and practical realizations of DFT–BEC systems, are in this review opened toward searching for unified fermionic–bosonic manifestations in nature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bose SN (1924) Z Phys 26:178

    Article  CAS  Google Scholar 

  2. Einstein A (1925) Sitzungsber K Preuss Akad Wiss 1:3

    Google Scholar 

  3. London F (1938) Phys Rev 54:947

    Article  CAS  Google Scholar 

  4. Landau LD (1941) J Phys USSR 5:71

    CAS  Google Scholar 

  5. Bogoliubov N (1947) J Phys USSR 11:23

    Google Scholar 

  6. Feynman RP (1953) Phys Rev 91:1291

    Article  CAS  Google Scholar 

  7. Penrose O, Onsager L (1956) Phys Rev 104:576

    Article  CAS  Google Scholar 

  8. Lee TD, Huang K, Yang CN (1957) Phys Rev 106:1135

    Article  CAS  Google Scholar 

  9. Pitaevsky LP (1961) Sov Phys JETP 13:451

    Google Scholar 

  10. Gross EP (1961) Nuovo Cimento 20:454

    Article  Google Scholar 

  11. Kamerlingh-Onnes H (1911) Proc K Ned Akad Wet 13:1274

    Google Scholar 

  12. Kapitza P (1938) Nature (London) 141:74

    Article  CAS  Google Scholar 

  13. Osheroff DD, Richardson RC, Lee DM (1972) Phys Rev Lett 28:885

    Article  CAS  Google Scholar 

  14. Leggett AJ (1972) Phys Rev Lett 29:1227

    Article  CAS  Google Scholar 

  15. Cohen-Tannoudji CN (1998) Rev Mod Phys 70:707

    Article  CAS  Google Scholar 

  16. Anderson MH, Ensher JR, Matthews MR, Wieman CE, Cornell EA (1995) Science 269:198

    Article  CAS  Google Scholar 

  17. Davis KB, Mewes M-O, Andrews MR, van Druten NJ, Durfee DS, Kurn DM, Ketterle W (1995) Phys Rev Lett 75:3969

    Article  CAS  Google Scholar 

  18. Greiner M, Mandel O, Esslinger T, Hänsch TW, Bloch I (2002) Nature (London) 415:39

    Article  CAS  Google Scholar 

  19. Pethick CJ, Smith H (2004) Bose-Einstein condensation in dilute gases. Cambridge University Press, Cambridge

    Google Scholar 

  20. Hohenberg P, Kohn W (1964) Phys Rev 136:B864

    Article  Google Scholar 

  21. Kohn W, Sham LJ (1965) Phys Rev 140:A1133

    Article  Google Scholar 

  22. Parr RG, Yang W (1989) Density-functional theory of atoms and molecules. Oxford University Press, New York

    Google Scholar 

  23. March NH (1992) Electron density theory of atoms and molecules. Academic, New York

    Google Scholar 

  24. Dreizler RM, Gross EKU (1990) Density functional theory. An approach to the quantum many-body problem. Springer, Heidelberg

    Google Scholar 

  25. Jones RO, Gunnarson O (1989) Rev Mod Phys 61:689

    Article  CAS  Google Scholar 

  26. Hohenberg PC, Martin PC (1965) Ann Phys (New York) 34:291

    Article  CAS  Google Scholar 

  27. Oliveira LN, Gross EKU, Kohn W (1988) Phys Rev Lett 60:2430

    Article  Google Scholar 

  28. Jochim S, Bartenstein M, Altmeyer A, Hendl G, Riedl S, Chin C, Denschlag JH, Grimm R (2003) Science 302:2101

    Article  CAS  Google Scholar 

  29. Greiner M, Regal CA, Jin DS (2003) Nature (London) 426:537

    Article  CAS  Google Scholar 

  30. Regal CA, Greiner M, Jin DS (2004) Phys Rev Lett 92:040403

    Article  CAS  Google Scholar 

  31. Bardeen J, Cooper LN, Schrieffer JR (1957) Phys Rev 106:162

    Article  CAS  Google Scholar 

  32. Feshbach H (1964) Rev Mod Phys 36:1076

    Article  CAS  Google Scholar 

  33. Grimme S (2004) J Comput Chem 25:1463

    Article  CAS  Google Scholar 

  34. Putz MV (2008) Int J Mol Sci 9:1050

    Article  CAS  Google Scholar 

  35. Vetter A (1997) Density Functional Theory for BEC (in German). Diploma Thesis, Institute of Theoretical Physics, Bayerische Julius-Maximilians University, Würzburg

    Google Scholar 

  36. Nunes GS (1999) J Phys B: At Mol Opt Phys 32:4293

    Article  CAS  Google Scholar 

  37. Albus AP, Illuminati F, Wilkens M (2003) Phys Rev A 67:063606

    Article  CAS  Google Scholar 

  38. Kim YE, Zubarev AL (2003) Phys Rev A 67:015602

    Article  CAS  Google Scholar 

  39. Brand J (2004) J Phys B: At Mol Opt Phys 37:S287

    Article  CAS  Google Scholar 

  40. Argaman N, Band YB (2011) Phys Rev A 83:023612

    Article  CAS  Google Scholar 

  41. Putz MV (2012) In: Chemical Information and Computational Challenges. Putz MV (Ed), NOVA Science, New York

    Google Scholar 

  42. Putz M.V. (2011) In: Advances in chemistry research. Vol. 10. Taylor JC (Ed), NOVA Science, New York

    Google Scholar 

  43. Putz MV (2012) Int J Chem Model 4(1):000–000

    Google Scholar 

  44. Putz MV (2012) Quantum theory: density, condensation, and bonding. Apple Academics & CRC Press—Taylor & Francis Group, Toronto & New Jersey

    Google Scholar 

  45. Huang K (2001) Introduction to statistical physics. Taylor and Francis, London

    Google Scholar 

  46. Thomas LH (1927) Proc Cambridge Phil Soc 23:542

    Article  CAS  Google Scholar 

  47. Fermi E (1927) Rend Accad Naz Lincei 6:602

    CAS  Google Scholar 

  48. Anderson P (1972) Sci New Ser 177:393

    CAS  Google Scholar 

  49. Kadanoff LP (2009) J Stat Phys 137:777

    Article  CAS  Google Scholar 

  50. Park JH, Kim SW (2010) Phys Rev A 81:063636

    Article  CAS  Google Scholar 

  51. Chermette H (1999) J Comput Chem 20:129

    Article  CAS  Google Scholar 

  52. Geerlings P, De Proft F, Langenaeker W (2003) Chem Rev 103:1793

    Article  CAS  Google Scholar 

  53. Putz MV (2011) MATCH Commun Math Comput Chem 66:35

    CAS  Google Scholar 

  54. Parr RG, Pearson RG (1983) J Am Chem Soc 105:7512

    Article  CAS  Google Scholar 

  55. Berkowitz M, Ghosh SK, Parr RG (1985) J Am Chem Soc 107:6811

    Article  CAS  Google Scholar 

  56. Baekelandt BG, Cedillo A, Parr RG (1995) J Chem Phys 103:8548

    Article  CAS  Google Scholar 

  57. Pauling L (1931) J Am Chem Soc 53:3225

    Article  CAS  Google Scholar 

  58. Gillespie RJ (1970) J Chem Educ 47:18

    Article  CAS  Google Scholar 

  59. Berlin T (1951) J Chem Phys 19:208

    Article  CAS  Google Scholar 

  60. Daudel R (1980) In: Electron and magnetization densities in molecules and crystals. Becker P (Ed) NATO ASI, Series B-Physics, Volume 40, Plenum Press, New York

    Google Scholar 

  61. Bader RFW (1990) Atoms in molecules: a quantum theory, vol 22, 1st edn. The international series of monographs on chemistry, Clarendon, Oxford

    Google Scholar 

  62. Putz MV (2008) Symmetry: Cult Sci 19:249

    Google Scholar 

  63. Putz MV (2010) Int J Mol Sci 11:4227

    Article  CAS  Google Scholar 

  64. Putz MV (2012) In: Nanoscience and advancing computational methods in chemistry. Castro EA, Haghi AK (Eds), IGI Global, Pasadena

    Google Scholar 

  65. de Broglie L (1923) Compt Rend Acad Sci (Paris) 177:507

    Google Scholar 

  66. de Broglie L (1925) Compt Rend Acad Sci (Paris) 180:498

    Google Scholar 

  67. de Broglie L, Vigier MJP (1953) La Physique Quantique Restera-t-elle Indéterministe? Gauthier-Villars, Paris

    Google Scholar 

  68. Bohm D, Vigier JP (1954) Phys Rev 96:208

    Article  Google Scholar 

  69. Putz MV (2011) In: Quantum frontiers of atoms and molecules. Putz MV (Ed), NOVA Science, New York, pp. 1–20

    Google Scholar 

  70. Oelke WC (1969) Laboratory physical chemistry. Van Nostrand Reinhold Company, New York

    Google Scholar 

  71. Findlay A (1955) Practical physical chemistry. Longmans, London

    Google Scholar 

  72. Putz MV (2010) Int J Mol Sci 11:4124

    Article  CAS  Google Scholar 

  73. Whitney CK (2007) Found Phys 37:788

    Article  Google Scholar 

  74. Lennard-Jones JE (1929) Trans Faraday Soc 25:668

    Article  CAS  Google Scholar 

  75. Hartree DR (1957) The calculation of atomic structures. Wiley, New York

    Google Scholar 

  76. Slater JC (1963) Theory of molecules and solids. Electronic structure of molecules, vol 1. McGraw-Hill, New York

    Google Scholar 

  77. Roothaan CCJ (1960) Rev Mod Phys 32:179

    Article  Google Scholar 

  78. Pople JA, Nesbet RK (1954) J Chem Phys 22:571

    Article  CAS  Google Scholar 

  79. Corongiu G (2007) J Phys Chem A 111:5333

    Article  CAS  Google Scholar 

  80. Glaesemann KR, Schmidt MW (2010) J Phys Chem A 114:8772

    Article  CAS  Google Scholar 

  81. Slater JC, Kirkwood JG (1931) Phys Rev 37:682

    Article  CAS  Google Scholar 

  82. Modugno G, Ferrari G, Roati G, Brecha RJ, Simoni A, Inguscio M (2001) Science 294:1320

    Article  CAS  Google Scholar 

  83. Heitler W, London F (1927) Z Phys 44:455

    Article  CAS  Google Scholar 

  84. Ruedenberg K (1962) Rev Mod Phys 34:326

    Article  CAS  Google Scholar 

  85. Hugenholtz NM, Pines D (1959) Phys Rev 116:489

    Article  Google Scholar 

  86. Leggett AJ (2001) Rev Mod Phys 73:307

    Article  CAS  Google Scholar 

  87. Chattaraj PK, Lee H, Parr RG (1991) J Am Chem Soc 113:1854

    Article  Google Scholar 

  88. Mulliken RS, Riecke CA, Orloff D, Orloff H (1949) J Chem Phys 17:1248

    Article  CAS  Google Scholar 

  89. Roberts JL, Jaffe H (1957) J Chem Phys 27:883

    Article  CAS  Google Scholar 

  90. Parr RG (1972) The quantum theory of molecular electronic structure. WA Benjamin, Reading, MA

    Google Scholar 

  91. Putz MV (2003) Contributions within density functional theory with applications to chemical reactivity theory and electronegativity. Dissertation, Parkland

    Google Scholar 

  92. Borg RJ, Diens GJ (1992) The physical chemistry of solids. Academic, Boston

    Google Scholar 

  93. Lennard-Jones JE (1924) Proc R Soc Lond A 106(738):463

    Article  Google Scholar 

  94. Lennard-Jones JE (1931) Proc Phys Soc 43(5):461

    Article  CAS  Google Scholar 

  95. Barron THK, Domb C (1955) Proc R Soc Lond A Math Phys Sci 227(1171):447

    Article  CAS  Google Scholar 

  96. Smit B (1992) J Chem Phys 96:8639

    Article  CAS  Google Scholar 

  97. Atkins P, de Paula J (2006) Atkins’ physical chemistry, 8th edn. Oxford University Press, Oxford

    Google Scholar 

  98. Frenkel D, Smit B (2002) Understanding molecular simulation, 2nd edn. Academic, San Diego

    Google Scholar 

  99. Zhen S, Davies GJ (1983) Phys Status Solidi A 78:595

    Article  CAS  Google Scholar 

  100. Tisza L (1938) Nature (London) 141:913

    Article  CAS  Google Scholar 

  101. Putz MV (2011) Curr Phys Chem 1:111

    Article  CAS  Google Scholar 

  102. Bratsch SG (1985) J Chem Educ 62:101

    Article  CAS  Google Scholar 

  103. Bransden BH, Joachain CJ (2003) Physics of atoms and molecules, 2nd edn. Pearson Education, Essex

    Google Scholar 

  104. Drake GWF, Van Z-C (1994) Chem Phys Lett 229:486

    Article  CAS  Google Scholar 

  105. Yan Z-C, Drake GWF (1995) Phys Rev Lett 74:4791

    Article  CAS  Google Scholar 

  106. Drake GWF (1999) Phys Scr T83:83

    Article  CAS  Google Scholar 

  107. Baker JD, Freund DE, Hill RN, Morgan JD III (1990) Phys Rev A 41:1247

    Article  CAS  Google Scholar 

  108. Scott TC, Lüchow A, Bressanini D, Morgan JD III (2007) Phys Rev A 75:060101

    Article  CAS  Google Scholar 

  109. Drake GWF (2006) Springer handbook of atomic, molecular, and optical physics. Drake GWF (Ed). Springer, New York

    Google Scholar 

  110. Condon EU (1927) Proc Natl Acad Sci 13:466

    Article  CAS  Google Scholar 

  111. Stevenson PM (1981) Phys Rev D 23:2916

    Article  CAS  Google Scholar 

  112. Feynman RP, Kleinert H (1986) Phys Rev A 34:5080

    Article  Google Scholar 

  113. Kleinert H, Pelster A, Putz MV (2002) Phys Rev E 65:066128

    Article  CAS  Google Scholar 

  114. Kleinert H (2008) Path integrals in quantum mechanics, statistics, polymer physics, and financial markets, 5th edn. World Scientific, Singapore, Chapter 5

    Google Scholar 

  115. Kleinert H, Schulte-Frohlinde V (2001) Critical properties of ϕ4-theories. World Scientific, Singapore

    Book  Google Scholar 

  116. Hamprecht B, Pelster A (2001) In: Fluctuating Paths and Fields. Janke W, Pelster, A, Schmidt H-J, Bachmann M (Eds), World Scientific, Singapore, p. 347

    Google Scholar 

  117. Kleinert H (2003) Mod Phys Lett B 17:1011

    Article  CAS  Google Scholar 

  118. Putz MV (2009) Int J Mol Sci 10:4816

    Article  CAS  Google Scholar 

  119. Bagnato V, Pritchard DE, Kleppner D (1987) Phys Rev A 35:4354

    Article  CAS  Google Scholar 

  120. Stringari S (1996) Phys Rev Lett 77:2360

    Article  CAS  Google Scholar 

  121. Yi S, You L (2001) Phys Rev A 63:053607

    Article  CAS  Google Scholar 

  122. Andersen JO (2004) Rev Mod Phys 76:599

    Article  CAS  Google Scholar 

  123. Lima ARP, Pelster A (2011) Phys Rev A 84:041604(R)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author is grateful to Dr. Axel Pelster and Prof. Hagen Kleinert from the Free University of Berlin for stimulating discussions during the years 2010 and 2011 to clarify the role of DFT in BEC; equally, the German Service for Academic Exchanges (DAAD) and Romanian National Council for Scientific Research (CNCS-UEFISCDI) are kindly thanked for awarding the grants 322 A/05356/2011 and TE16/2010-2013 that supported the research for the present study at the Free University of Berlin and West University of Timisoara, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mihai V. Putz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Putz, M.V. (2012). Density Functional Theory of Bose–Einstein Condensation: Road to Chemical Bonding Quantum Condensate. In: Putz, M., Mingos, D. (eds) Applications of Density Functional Theory to Chemical Reactivity. Structure and Bonding, vol 149. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32753-7_1

Download citation

Publish with us

Policies and ethics