Skip to main content

Computing Directed Pathwidth in O(1.89n) Time

  • Conference paper
Parameterized and Exact Computation (IPEC 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7535))

Included in the following conference series:

Abstract

We give an algorithm for computing the directed pathwidth of a digraph with n vertices in O(1.89n) time. This is the first algorithm with running time better than the straightforward O *(2n). As a special case, it computes the pathwidth of an undirected graph in the same amount of time, improving on the algorithm due to Suchan and Villanger which runs in O(1.9657n) time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 72.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barát, J.: Directed path-width and monotonicity in digraph searching. Graphs and Combinatorics 22(2), 161–172 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bodlaender, H.L.: A Tourist Guide Through Treewidth. Acta Cybernetica 11, 1–23 (1993)

    MathSciNet  MATH  Google Scholar 

  3. Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small treewidth. SIAM Journal on Computing 25, 1305–1317 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bodlaender, H.L., Fomin, F.V., Kratsch, D., Thilikos, D.: A Note on Exact Algorithms for Vertex Ordering Problems on Graphs. Theory of Computing Systems 50(3), 420–432 (2012)

    Article  MathSciNet  Google Scholar 

  5. Bodlaender, H.L., Kloks, T., Kratsch, D.: Treewidth and Pathwidth of Permutation Graphs. In: Lingas, A., Carlsson, S., Karlsson, R. (eds.) ICALP 1993. LNCS, vol. 700, pp. 114–125. Springer, Heidelberg (1993)

    Chapter  Google Scholar 

  6. Bodlaender, H.L., Möhring, R.H.: The Pathwidth and Treewidth of Cographs. SIAM Journal on Discrete Mathematics 6(2), 181–188 (1992)

    Article  Google Scholar 

  7. Fomin, F.V., Kratsch, D.: Exact Exponential Algorithms. Springer (2010)

    Google Scholar 

  8. Gusted, J.: On the pathwidth of chordal graphs. Discrete Applied Mathematics 45(3), 233–248 (1993)

    Article  MathSciNet  Google Scholar 

  9. Habib, M., Möhring, R.H.: Treewidth of cocomparability graphs and a new order-theoretic parameter. Order 11(1), 44–60 (1994)

    Article  Google Scholar 

  10. Johnson, T., Robertson, N., Seymour, P.D., Thomas, R.: Directed tree-width. Journal of Combinatorial Theory, Series B 82(1), 138–154 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kashiwabara, T., Fujisawa, T.: NP-completeness of the problem of finding a minimum-clique-number interval graph containing a given graph as a subgraph. In: Proceedings of International Symposium on Circuits and Systems, pp. 657–660 (1979)

    Google Scholar 

  12. Kinnersley, G.N.: The vertex separation number of a graph equals its path-width. Information Processing Letters 42(6), 345–350 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kloks, T., Bodlaender, H.L., Müller, H., Kratsch, D.: Computing treewidth and minimum fill-in: All you need are the minimal separators. In: Proceedings of the 1st Annual European Symposium on Algorithms, pp. 260–271 (1993)

    Google Scholar 

  14. Monien, B., Sudborough, I.H.: Min cur is NP-complete for edge weighted trees. Theoretical Computer Science 58(1-3), 209–229 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  15. Robertson, N., Seymour, P.D.: Graph minors. I. Excluding a forest. Journal of Combinatorial Theory, Series B 35(1), 39–61 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  16. Robertson, N., Seymour, P.D.: Graph minors VIII The disjoint paths peoblem. Journal of Combinatorial Theory, Series B 63, 65–110 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  17. Suchan, K., Todinca, I.: Pathwidth of Circular-Arc Graphs. In: Brandstädt, A., Kratsch, D., Müller, H. (eds.) WG 2007. LNCS, vol. 4769, pp. 258–269. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  18. Suchan, K., Villanger, Y.: Computing Pathwidth Faster Than 2n. In: Chen, J., Fomin, F.V. (eds.) IWPEC 2009. LNCS, vol. 5917, pp. 324–335. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  19. Tamaki, H.: A Polynomial Time Algorithm for Bounded Directed Pathwidth. In: Kolman, P., Kratochvíl, J. (eds.) WG 2011. LNCS, vol. 6986, pp. 331–342. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  20. Yang, B., Cao, Y.: Digraph searching, directed vertex separation and directed pathwidth. Discrete Applied Mathematics 156(10), 1822–1837 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kitsunai, K., Kobayashi, Y., Komuro, K., Tamaki, H., Tano, T. (2012). Computing Directed Pathwidth in O(1.89n) Time. In: Thilikos, D.M., Woeginger, G.J. (eds) Parameterized and Exact Computation. IPEC 2012. Lecture Notes in Computer Science, vol 7535. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33293-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33293-7_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33292-0

  • Online ISBN: 978-3-642-33293-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics