Skip to main content

Technical and Biomedical Uses of Nature’s Strongest Fiber: Spider Silk

  • Chapter
  • First Online:
Spider Ecophysiology

Abstract

Spider silk is a biopolymer with a huge number of possible textile, technical, and biomedical applications. For several inventions prototype status could be achieved, while most ideas are still of speculative nature. This is especially true for applications which afford quantities of silk which are unrealistic to gain by traditional reeling methods but need industrial large-scale production. This could be realized by production of artificial silk fibers based on recombinant proteins. Recombinant silk production has also the advantage that genetic modifications allow for tailored proteins adapted to specific requirements. These approaches, however, are still thwarted by immense technical challenges due to the size and repetitive nature of silk proteins. Available data so far supports the notion that spider silk is highly cytocompatible and not immunogenic which renders it interesting for biomedical applications. Increasing knowledge about the molecular nature of the fibers and their particular characteristics inspires nanotechnology, e.g., microelectromechanical systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agapov II, Pustovalova OL, Moisenovich MM, Bogush VG, Sokolova OS, Sevastyanov VI, Debabov VG, Kirpichnikov MP (2009) Three-dimensional scaffold made from recombinant spider silk protein for tissue engineering. Dokl Biochem Biophys 426:127–130

    Article  PubMed  CAS  Google Scholar 

  • Agnarsson I, Dhinojwala A, Sahni V, Blackledge TA (2009) Spider silk as a novel high performance biomimetic muscle driven by humidity. J Exp Biol 212:1990–1994

    Article  PubMed  Google Scholar 

  • Allmeling C, Jokuszies A, Reimers K, Kall S, Choi CY, Brandes G, Kasper C, Scheper T, Guggenheim M, Vogt PM (2008) Spider silk fibres in artificial nerve constructs promote peripheral nerve regeneration. Cell Prolif 41:408–420

    Article  PubMed  CAS  Google Scholar 

  • Allmeling C, Jokuszies A, Reimers K, Kall S, Vogt PM (2006) Use of spider silk fibres as an innovative material in a biocompatible artificial nerve conduit. J Cell Mol Med 10:770–777

    Article  PubMed  Google Scholar 

  • Bai J, Ma T, Chu W, Wang R, Silva L, Michal C, Chiao JC, Chiao M (2006) Regenerated spider silk as a new biomaterial for MEMS. Biomed Microdevices 8:317–323

    Article  PubMed  CAS  Google Scholar 

  • Baoyong L, Jian Z, Denglong C, Min L (2010) Evaluation of a new type of wound dressing made from recombinant spider silk protein using rat models. Burns 36:891–896

    Article  PubMed  Google Scholar 

  • Bini E, Foo CW, Huang J, Karageorgiou V, Kitchel B, Kaplan DL (2006) RGD-functionalized bioengineered spider dragline silk biomaterial. Biomacromolecules 7:3139–3145

    Article  PubMed  CAS  Google Scholar 

  • Blackledge TA (2013) Spider silk: molecular structure and function in webs. In: Nentwig W (ed) Spider ecophysiology. Springer, Heidelberg (this volume)

    Google Scholar 

  • Chinali A, Vater W, Rudakoff B, Sponner A, Unger E, Grosse F, Guehrs KH, Weisshart K (2010) Containment of extended length polymorphisms in silk proteins. J Mol Evol 70:325–338

    Article  PubMed  CAS  Google Scholar 

  • Emile O, Le Floch A, Vollrath F (2006) Biopolymers: shape memory in spider draglines. Nature 440:621

    Article  PubMed  CAS  Google Scholar 

  • Gatesy J, Hayashi C, Motriuk D, Woods J, Lewis R (2001) Extreme diversity, conservation, and convergence of spider silk fibroin sequences. Science 291:2603–2605

    Article  PubMed  CAS  Google Scholar 

  • Gellynck K, Verdonk PC, Van Nimmen E, Almqvist KF, Gheysens T, Schoukens G, Van Langenhove L, Kiekens P, Mertens J, Verbruggen G (2008) Silkworm and spider silk scaffolds for chondrocyte support. J Mater Sci Mater Med 19:3399–3409

    Article  PubMed  CAS  Google Scholar 

  • Gosselin FP, Therriault D, Levesque M (2012) Microfabrication of a spider-silk analogue through the liquid rope coiling instability. Bull Am Physic Soc (APS March Meeting) 57(1):H52

    Google Scholar 

  • Heim M, Keerl D, Scheibel T (2009) Spider silk: from soluble protein to extraordinary fiber. Angew Chem Int Ed Engl 48:3584–3596

    Article  PubMed  CAS  Google Scholar 

  • Hsia Y, Gnesa E, Jeffery F, Tang S, Vierra C (2011) Spider silk composites and applications. In: Cuppoletti J (ed) Metal, ceramic and polymeric composites for various uses. InTech, Rijeka

    Google Scholar 

  • Huang J, Wong C, George A, Kaplan DL (2007) The effect of genetically engineered spider silk-dentin matrix protein 1 chimeric protein on hydroxyapatite nucleation. Biomaterials 28: 2358–2367

    Article  PubMed  CAS  Google Scholar 

  • Kuhbier JW, Allmeling C, Reimers K, Hillmer A, Kasper C, Menger B, Brandes G, Guggenheim M, Vogt PM (2010) Interactions between spider silk and cells—NIH/3T3 fibroblasts seeded on miniature weaving frames. PLoS One 5:e12032

    Article  PubMed  Google Scholar 

  • Kuhbier JW, Reimers K, Kasper C, Allmeling C, Hillmer A, Menger B, Vogt PM, Radtke C (2011) First investigation of spider silk as a braided microsurgical suture. J Biomed Mater Res B Appl Biomater 97:381–387

    PubMed  Google Scholar 

  • Lammel A, Schwab M, Hofer M, Winter G, Scheibel T (2011) Recombinant spider silk particles as drug delivery vehicles. Biomaterials 32:2233–2240

    Article  PubMed  CAS  Google Scholar 

  • Lazaris A, Arcidiacono S, Huang Y, Zhou JF, Duguay F, Chretien N, Welsh EA, Soares JW, Karatzas CN (2002) Spider silk fibers spun from soluble recombinant silk produced in mammalian cells. Science 295:472–476

    Article  PubMed  CAS  Google Scholar 

  • Lefevre T, Boudreault S, Cloutier C, Pezolet M (2011) Diversity of molecular transformations involved in the formation of spider silks. J Mol Biol 405:238–253

    Article  PubMed  CAS  Google Scholar 

  • Lewis RV (1996) Unraveling the weave of spider silk. Bioscience 46:636

    Article  Google Scholar 

  • Liu Y, Shao Z, Vollrath F (2005) Relationships between supercontraction and mechanical properties of spider silk. Nat Mater 4:901–905

    Article  PubMed  CAS  Google Scholar 

  • Newman J, Newman C (1995) Oh what a tangled web: the medicinal uses of spider silk. Int J Dermatol 34:290–292

    Article  PubMed  CAS  Google Scholar 

  • Numata K, Reagan MR, Goldstein RH, Rosenblatt M, Kaplan DL (2011) Spider silk-based gene carriers for tumor cell-specific delivery. Bioconjug Chem 22:1605–1610

    Article  PubMed  CAS  Google Scholar 

  • Osaki S (2012) Spider silk violin strings with a unique packing structure generate a soft and profound timbre. Phys Rev Lett 108:154301

    Article  PubMed  Google Scholar 

  • Peers S (2012) Golden spider silk. V&A Publishing, London

    Google Scholar 

  • Perez-Rigueiro J, Elices M, Plaza G, Real JI, Guinea GV (2005) The effect of spinning forces on spider silk properties. J Exp Biol 208:2633–2639

    Article  PubMed  CAS  Google Scholar 

  • Radtke C, Allmeling C, Waldmann KH, Reimers K, Thies K, Schenk HC, Hillmer A, Guggenheim M, Brandes G, Vogt PM (2011) Spider silk constructs enhance axonal regeneration and remyelination in long nerve defects in sheep. PLoS One 6:e16990

    Article  PubMed  CAS  Google Scholar 

  • Sahni V, Labhasetwar DV, Dhinojwala A (2012) Spider silk inspired functional microthreads. Langmuir 28:2206–2210

    Article  PubMed  CAS  Google Scholar 

  • Scheller J, Guhrs KH, Grosse F, Conrad U (2001) Production of spider silk proteins in tobacco and potato. Nat Biotechnol 19:573–577

    Article  PubMed  CAS  Google Scholar 

  • Scheller J, Henggeler D, Viviani A, Conrad U (2004) Purification of spider silk-elastin from transgenic plants and application for human chondrocyte proliferation. Transgenic Res 13: 51–57

    Article  PubMed  CAS  Google Scholar 

  • Singh A, Hede S, Sastry M (2007) Spider silk as an active scaffold in the assembly of gold nanoparticles and application of the gold-silk bioconjugate in vapor sensing. Small 3:466–473

    Article  PubMed  CAS  Google Scholar 

  • Spiess K, Lammel A, Scheibel T (2010) Recombinant spider silk proteins for applications in biomaterials. Macromol Biosci 10:998–1007

    Article  PubMed  CAS  Google Scholar 

  • Sponner A, Unger E, Grosse F, Weisshart K (2005) Differential polymerization of the two main protein components of dragline silk during fibre spinning. Nat Mater 4:772–775

    Article  PubMed  CAS  Google Scholar 

  • Swanson BO, Anderson SP, Digiovine C, Ross RN, Dorsey JP (2009) The evolution of complex biomaterial performance: the case of spider silk. Integr Comp Biol 49:21–31

    Article  PubMed  CAS  Google Scholar 

  • US Congress (1993) Biopolymers: making materials nature’s way. Background paper, Office of Technology Assessment, OTA-BP-E-102. US Government Printing Office, Washington DC

    Google Scholar 

  • Vollrath F, Barth P, Basedow A, Engstrom W, List H (2002) Local tolerance to spider silks and protein polymers in vivo. In Vivo 16:229–234

    PubMed  CAS  Google Scholar 

  • Wendt H, Hillmer A, Reimers K, Kuhbier JW, Schafer-Nolte F, Allmeling C, Kasper C, Vogt PM (2011) Artificial skin—culturing of different skin cell lines for generating an artificial skin substitute on cross-weaved spider silk fibres. PLoS One 6:e21833

    Article  PubMed  CAS  Google Scholar 

  • Widhe M, Bysell H, Nystedt S, Schenning I, Malmsten M, Johansson J, Rising A, Hedhammar M (2010) Recombinant spider silk as matrices for cell culture. Biomaterials 31:9575–9585

    Article  PubMed  CAS  Google Scholar 

  • Xia XX, Qian ZG, Ki CS, Park YH, Kaplan DL, Lee SY (2010) Native-sized recombinant spider silk protein produced in metabolically engineered Escherichia coli results in a strong fiber. Proc Natl Acad Sci USA 107:14059–14063

    Article  PubMed  CAS  Google Scholar 

  • Zhou S, Peng H, Yu X, Zheng X, Cui W, Zhang Z, Li X, Wang J, Weng J, Jia W, Li F (2008) Preparation and characterization of a novel electrospun spider silk fibroin/poly(d,l-lactide) composite fiber. J Phys Chem B 112:11209–11216

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors want to thank Kerstin Reimers and Jörn W. Kuhbier for the help with the manuscript and the images. We also thank Stefanie Michael for the beautiful image of a Nephila spider. We are also grateful to Cornelia Kasper and Nicholas Godley for fruitful collaboration and remarkable discussions. We apologize to all authors whose contributions to spider silk research could not be presented due to space limitations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christina Allmeling .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Allmeling, C., Radtke, C., Vogt, P.M. (2013). Technical and Biomedical Uses of Nature’s Strongest Fiber: Spider Silk. In: Nentwig, W. (eds) Spider Ecophysiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33989-9_36

Download citation

Publish with us

Policies and ethics