Skip to main content

Towards Improving the Accuracy of Sensorless Freehand 3D Ultrasound by Learning

  • Conference paper
Machine Learning in Medical Imaging (MLMI 2012)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7588))

Included in the following conference series:

Abstract

Sensorless freehand 3D ultrasound (US) exploits the correlation between pairs of images in order to track the rigid motion of the US probe without an external position sensor. Conventionally, in-plane motion is compensated by maximizing image correlation. Out-of-plane motion is then estimated using a calibrated model of elevational speckle decorrelation. This approach is prone to systematic error due to interactions between the effects of in-plane and out-of-plane motion components on speckle decorrelation. This paper proposes to establish an error correction model using relevance vector regression and a database of image pairs with known probe motion. Preliminary results on synthetic US image pairs show a statistically significant reduction in mean target registration error, illustrating the promise of the new approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bohs, L.N., Trahey, G.E.: A novel method for angle independent ultrasonic imaging of blood flow and tissue motion. IEEE T. Biomed. Eng. 38(3), 280–286 (1991)

    Article  Google Scholar 

  2. Chen, J.-F., et al.: Determination of scan-plane motion using speckle decorrelation: theoretical considerations and initial test. Int. J. Imaging Syst. Technol. 8(1), 38–44 (1997)

    Article  Google Scholar 

  3. Gee, A.H., et al.: Sensorless freehand 3D ultrasound in real tissue: speckle decorrelation without fully developped speckle. Med. Image Anal. 10(2), 137–149 (2006)

    Article  Google Scholar 

  4. Guizar-Sicairos, M., et al.: Efficient subpixel image registration algorithms. Opt. Lett. 33(2), 156–158 (2008)

    Article  Google Scholar 

  5. Housden, R.J., et al.: Sub-sample interpolation strategies for sensorless freehand 3D ultrasound. Ultrasound Med. Biol. 32(12), 1897–1904 (2006)

    Article  Google Scholar 

  6. Housden, R.J., et al.: Sensorless reconstruction of unconstrained freehand 3D ultrasound data. Ultrasound Med. Biol. 33(3), 408–419 (2007)

    Article  Google Scholar 

  7. Housden, R.J., et al.: Rotational motion in sensorless freehand three-dimensional ultrasound. Ultrasonics 48(5), 412–422 (2008)

    Article  Google Scholar 

  8. Jensen, J.A.: Field: a program for simulating ultrasound systems. In: Proc. Nordic-Baltic Conf. Biomedical Imaging, vol. 4, pp. 351–353 (1996)

    Google Scholar 

  9. Kallel, F., et al.: Speckle motion artifact under tissue rotation. IEEE T. Ultrason. Ferr. 41(1), 105–122 (1994)

    Article  Google Scholar 

  10. Lang, A., et al.: Fusion of electromagnetic tracking with speckle-tracked 3D freehand ultrasound using an unscented Kalman filter. In: Proc. SPIE Med. Imaging, vol. 7265, pp. 72651A–1–72651A–12 (2009)

    Google Scholar 

  11. Lang, A., et al.: Multi-modal registration of speckle-tracked freehand 3D ultrasound to CT in the lumbar spine. Med. Image Anal. 16, 675–686 (2012)

    Article  Google Scholar 

  12. Laporte, C., Arbel, T.: Combinatorial and probabilistic fusion of noisy correlation measurements for untracked freehand 3D ultrasound. IEEE T. Med. Imaging 27(7), 984–994 (2008)

    Article  Google Scholar 

  13. Laporte, C., Arbel, T.: Learning to estimate out-of-plane motion in ultrasound imagery of real tissue. Med. Image Anal. 15, 202–213 (2011)

    Article  Google Scholar 

  14. Li, P.-C., et al.: Tissue motion and elevational speckle decorrelation in freehand 3D ultrasound. Ultrason. Imaging 24, 1–12 (2002)

    Google Scholar 

  15. Prager, R.W., et al.: Decompression and speckle detection for ultrasound images using the homodyned k-distribution. Patt. Recogn. Lett. 24, 705–713 (2003)

    Article  Google Scholar 

  16. Prager, R.W., et al.: Sensorless freehand 3-D ultrasound using regression of the echo intensity. Ultrasound Med. Biol. 29(3), 437–446 (2003)

    Article  MathSciNet  Google Scholar 

  17. Prager, R.W., et al.: Three dimensional ultrasound imaging. P. I. Mech. Eng. H 24(2), 193–223 (2010)

    Article  Google Scholar 

  18. Thayananthan, A., Navaratnam, R., Stenger, B., Torr, P., Cipolla, R.: Multivariate Relevance Vector Machines for Tracking. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3953, pp. 124–138. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  19. Tipping, M.E.: Sparse Bayesian learning and the relevance vector machine. J. Machine Learning Research 1, 211–244 (2001)

    MathSciNet  MATH  Google Scholar 

  20. Tuthill, T.A., et al.: Automated three-dimensional US frame positioning computed from elevational speckle decorrelation. Radiology 209(2), 575–582 (1998)

    Google Scholar 

  21. Umeyama, S.: Least-squares estimation of transformation parameters between two point patterns. IEEE T. Pattern Anal. 13(4), 376–380 (1991)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Conrath, J., Laporte, C. (2012). Towards Improving the Accuracy of Sensorless Freehand 3D Ultrasound by Learning. In: Wang, F., Shen, D., Yan, P., Suzuki, K. (eds) Machine Learning in Medical Imaging. MLMI 2012. Lecture Notes in Computer Science, vol 7588. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35428-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35428-1_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35427-4

  • Online ISBN: 978-3-642-35428-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics