Skip to main content

2013 | OriginalPaper | Buchkapitel

Steady-State Navier–Stokes Problem Past a Rotating Body: Geometric-Functional Properties and Related Questions

verfasst von : Giovanni P. Galdi

Erschienen in: Topics in Mathematical Fluid Mechanics

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

As is well known, the three-dimensional steady motion of a viscous, incompressible (Navier–Stokes) liquid around a rigid body, \(\mathcal{B}\), is among the fundamental and most studied questions in fluid dynamics; see e.g. [4].

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
\({}^{\ddag }\)Partially supported by NSF grant DMS-1062381
 
2
Or, equivalently, the body is at rest and the liquid tends to a constant uniform flow at large distances from the body.
 
3
A reasonably complete list of reference would be too long to be included here. A good source of information is provided by the articles collected in [26] and the bibliography quoted therein.
 
4
See the third term on the left-hand side of (1).
 
5
As a matter of fact, even in absence of rotation, this type of properties have been addressed only very recently; see [17, 18, 24, 25].
 
6
See e.g. [20, p. 10].
 
7
This assumption also implies, of course, that both \(\boldsymbol{\eta }\) and \(\boldsymbol{\omega }\) are non-zero. While the case \(\boldsymbol{\omega } = \boldsymbol{0}\) can be still treated by the methods described in these Notes to obtain very similar results [18], the same methods do not work if \(\boldsymbol{\eta } = \boldsymbol{0}\). We refer the reader to [20, Chap. XI] for the known results in this latter case.
 
8
As customary, \(\mathbb{R}_{+}\) denotes the set of all positive real numbers.
 
9
More precisely, Y is isomorphic to \(\mathcal{D}_{0}^{1,2}(\Omega )\).
 
10
This assumption is certainly verified if \(\boldsymbol{f}\) satisfies further summability hypothesis.
 
11
Let S be any space of real functions. As a rule, we shall use the same symbol S to denote the corresponding space of vector and tensor-valued functions.
 
12
Throughout these Notes, “linear” functional on a Banach space X, means a map \(F : X\mapsto \mathbb{R}\) (or \(\mathbb{C}\)) with D(F) = X, that is bounded and distributive. See Definition 9.
 
13
Sometimes in the literature, our definition of coerciveness is also referred to as weak coerciveness.
 
14
See Remark 34.
 
15
However, problem (33) is well-posed for \(\boldsymbol{u}\) and \(\boldsymbol{f}\) in suitable Lorentz spaces; see [30].
 
16
We recall that a subset B of X is said to be a Banach manifold of class C k if for any x ∈ B there is an open neighborhood U(x) in X such that U(x) ∩ B is C k -diffeomorphic to an open set in a Banach space X x.
 
17
The definition of degree can be suitably extended to the case when D(M) ⊊X. However, such a circumstance will not happen in the applications we have in mind. For this more general case, we refer the reader to, e.g., [5, p. 263 and ff.].
 
18
See (47) for notation.
 
19
Formally, (58) is obtained by first writing, in (58), \(\boldsymbol{v} = \boldsymbol{u} + \boldsymbol{V }\), then by taking the scalar product of both sides of the resulting equation by \(\boldsymbol{\varphi }\), and, finally, by integrating by parts over Ω.
 
20
In fact, one can easily construct examples proving the invalidity of (60), if \(\boldsymbol{u}\) only belongs to \(\mathcal{D}_{0}^{1,2}(\Omega )\).
 
21
See (??) below with q = 2.
 
22
Interpolation inequalities for positive anisotropic Sobolev spaces are well-known; see, e.g., [6].
 
23
For future reference, we remark that, in view of (79)2, the redefined pressure satisfies the asymptotic condition \(p_{k} - {p}^{(0)} = O(\vert x{\vert }^{-2})\) as | x | → .
 
24
See footnote 22.
 
25
Notice that from (117)1, (112) and (119) it follows \(\boldsymbol{w} \in {L}^{2}({\mathbb{R}}^{3})\).
 
26
For simplicity, in what follows, we suppress the dependence on \(\boldsymbol{\mathfrak{p}}\).
 
27
A detailed analysis of the spectrum of the lienearized operator is given in [9].
 
28
This may depend on the particular non-dimensionalization of the Navier–Stokes equations and on the special form of the family of solutions \(\boldsymbol{u}_{0}\). In fact, there are several interesting problems formulated in exterior domains where this circumstance takes place, like, for example, the problem of steady bifurcation considered in the previous section and the one studied in [23, Sect. 6].
 
29
Namely, that \((\boldsymbol{w}_{k},\boldsymbol{\Phi })\) can be uniquely extended to an element of \(\mathcal{D}_{0}^{-1,2}({\Omega }^{R})\) with preservation of the norm.
 
30
In fact, setting  −  = \(\frac{1}{2\pi}\int^{2\pi}_{0}\), and recalling (115)2 and (114) in Sect. 3, we find
$$\begin{array}{rl} \boldsymbol{w}_{0}({\boldsymbol{Q}}^{\top }(t) \cdot \boldsymbol{ y}) & =\displaystyle\int -\boldsymbol{Q}(\tau ) \cdot \boldsymbol{v}({\boldsymbol{Q}}^{\top }(\tau ) \cdot {\boldsymbol{Q}}^{\top }(t) \cdot \boldsymbol{ y})d\tau =\displaystyle\int -\boldsymbol{Q}(\tau ) \cdot \boldsymbol{v}({\boldsymbol{Q}}^{\top }(\tau + t) \cdot \boldsymbol{ y})d\tau \\ & =\displaystyle\int -\boldsymbol{Q}(\tau - t) \cdot \boldsymbol{v}({\boldsymbol{Q}}^{\top }(\tau ) \cdot \boldsymbol{ y})d\tau = \boldsymbol{Q}(-t) \cdot \displaystyle\int -\boldsymbol{Q}(\tau ) \cdot \boldsymbol{v}({\boldsymbol{Q}}^{\top }(\tau ) \cdot \boldsymbol{ y})d\tau \\ & ={ \boldsymbol{Q}}^{\top }(t) \cdot \displaystyle\int -\boldsymbol{w}(y,\tau )d\tau ={ \boldsymbol{Q}}^{\top }(t) \cdot \boldsymbol{w}_{0}(y) \end{array}$$
 
31
Of course, the assumption \(\boldsymbol{u}_{0} \in L_{\mathrm{loc}}^{4}(\overline{\Omega })\) is redundant if \(\boldsymbol{u}_{0} \in X(\Omega )\).
 
Literatur
2.
Zurück zum Zitat K.I. Babenko, On stationary solutions of the problem of flow past a body of a viscous incompressible fluid. Mat. Sb. 91(133), 3–27 (1973); English Transl.: Math. SSSR Sbornik 20, 1–25 (1973) K.I. Babenko, On stationary solutions of the problem of flow past a body of a viscous incompressible fluid. Mat. Sb. 91(133), 3–27 (1973); English Transl.: Math. SSSR Sbornik 20, 1–25 (1973)
3.
Zurück zum Zitat K.I. Babenko, Spectrum of the linearized problem of flow of a viscous incompressible liquid around a body. Dokl. Akad. Nauk SSSR 262(1), 64–68 (1982); English Transl.: Sov. Phys. Dokl. 27(1), 25–27 (1982) K.I. Babenko, Spectrum of the linearized problem of flow of a viscous incompressible liquid around a body. Dokl. Akad. Nauk SSSR 262(1), 64–68 (1982); English Transl.: Sov. Phys. Dokl. 27(1), 25–27 (1982)
4.
Zurück zum Zitat G.K. Batchelor, An Introduction to Fluid Mechanics (Cambridge University Press, Cambridge, 1981) G.K. Batchelor, An Introduction to Fluid Mechanics (Cambridge University Press, Cambridge, 1981)
5.
Zurück zum Zitat M.S. Berger, in Nonlinearity and Functional Analysis. Lectures on Nonlinear Problems in Mathematical Analysis (Academic, 1977) M.S. Berger, in Nonlinearity and Functional Analysis. Lectures on Nonlinear Problems in Mathematical Analysis (Academic, 1977)
6.
Zurück zum Zitat O.V. Besov, V.P. Il ′ in, L.D. Kudrjavcev, P.I. Lizorkin, S.M. Nikol ′ skiĭ, The Theory of the Imbeddings of Classes of Differentiable Functions of Several Variables. (Russian) Partial Differential Equations (Proc. Sympos. dedicated to the 60th birthday of S.L. Sobolev) (Russian), Izdat. “Nauka”, Moscow, 38–63 (1970) O.V. Besov, V.P. Il in, L.D. Kudrjavcev, P.I. Lizorkin, S.M. Nikol skiĭ, The Theory of the Imbeddings of Classes of Differentiable Functions of Several Variables. (Russian) Partial Differential Equations (Proc. Sympos. dedicated to the 60th birthday of S.L. Sobolev) (Russian), Izdat. “Nauka”, Moscow, 38–63 (1970)
7.
Zurück zum Zitat P. Cheng, Natural convection in a porous medium: external flows, in Natural Convection: Fundamentals and Applications, ed. by S. Kakaç, W. Awung, R. Viskanta (Hemisphere, Washington, D.C., 1985), pp. 475–513 P. Cheng, Natural convection in a porous medium: external flows, in Natural Convection: Fundamentals and Applications, ed. by S. Kakaç, W. Awung, R. Viskanta (Hemisphere, Washington, D.C., 1985), pp. 475–513
8.
Zurück zum Zitat P. Constantin, C. Foiaş, R. Temam, Attractors representing turbulent flows. Mem. Am. Math. Soc. 53(314) (1985) P. Constantin, C. Foiaş, R. Temam, Attractors representing turbulent flows. Mem. Am. Math. Soc. 53(314) (1985)
9.
Zurück zum Zitat R. Farwig, J. Neustupa, Spectral properties in L q of an Oseen operator modelling fluid flow past a rotating body. Tohoku Math. J. 62, 287–309 (2010)MathSciNetCrossRefMATH R. Farwig, J. Neustupa, Spectral properties in L q of an Oseen operator modelling fluid flow past a rotating body. Tohoku Math. J. 62, 287–309 (2010)MathSciNetCrossRefMATH
10.
Zurück zum Zitat R. Finn, On the exterior stationary problem for the Navier-Stokes equations, and associated perturbation problems. Arch. Ration. Mech. Anal. 19, 363–406 (1965)MathSciNetCrossRefMATH R. Finn, On the exterior stationary problem for the Navier-Stokes equations, and associated perturbation problems. Arch. Ration. Mech. Anal. 19, 363–406 (1965)MathSciNetCrossRefMATH
11.
Zurück zum Zitat P.M. Fitzpatrick, J. Pejsachowicz, P.J. Rabier, The degree of proper C 2 Fredholm mappings, I. J. Reine Angew. Math. 427, 1–33 (1992)MathSciNetMATH P.M. Fitzpatrick, J. Pejsachowicz, P.J. Rabier, The degree of proper C 2 Fredholm mappings, I. J. Reine Angew. Math. 427, 1–33 (1992)MathSciNetMATH
12.
Zurück zum Zitat C. Foiaş, G. Prodi, Sur le comportement global des solutions non-stationnaires des équations de Navier-Stokes en dimension 2. Rend. Sem. Mat. Univ. Padova 39, 1–34 (1967)MathSciNet C. Foiaş, G. Prodi, Sur le comportement global des solutions non-stationnaires des équations de Navier-Stokes en dimension 2. Rend. Sem. Mat. Univ. Padova 39, 1–34 (1967)MathSciNet
13.
Zurück zum Zitat C. Foiaş, R. Temam, Structure of the set of stationary solutions of the Navier-Stokes equations. Comm. Pure Appl. Math. 30(2), 149–164 (1977)MathSciNetCrossRefMATH C. Foiaş, R. Temam, Structure of the set of stationary solutions of the Navier-Stokes equations. Comm. Pure Appl. Math. 30(2), 149–164 (1977)MathSciNetCrossRefMATH
14.
Zurück zum Zitat C. Foiaş, R. Temam, Determination of the solutions of the Navier-Stokes equations by a set of Nodal values. Math. Comp. 43(167), 117–133 (1984)MathSciNetCrossRefMATH C. Foiaş, R. Temam, Determination of the solutions of the Navier-Stokes equations by a set of Nodal values. Math. Comp. 43(167), 117–133 (1984)MathSciNetCrossRefMATH
15.
Zurück zum Zitat C. Foiaş, R. Temam, Remarques sur les équations de Navier-Stokes stationnaires et les phénomènes successifs de bifurcation. Ann. Scuola Norm. Pisa 5, 29–63 (1978)MATH C. Foiaş, R. Temam, Remarques sur les équations de Navier-Stokes stationnaires et les phénomènes successifs de bifurcation. Ann. Scuola Norm. Pisa 5, 29–63 (1978)MATH
16.
17.
Zurück zum Zitat G.P. Galdi, Determining modes, nodes and volume elements for stationary solutions of the Navier-Stokes problem past a three-dimensional body. Arch. Ration. Mech. Anal. 180, 97–126 (2006)MathSciNetCrossRefMATH G.P. Galdi, Determining modes, nodes and volume elements for stationary solutions of the Navier-Stokes problem past a three-dimensional body. Arch. Ration. Mech. Anal. 180, 97–126 (2006)MathSciNetCrossRefMATH
18.
Zurück zum Zitat G.P. Galdi, Further properties of steady-state solutions to the Navier-Stokes problem past a threedimensional obstacle. J. Math. Phys. special issue dedicated to Mathematical Fluid Mechanics (2007) G.P. Galdi, Further properties of steady-state solutions to the Navier-Stokes problem past a threedimensional obstacle. J. Math. Phys. special issue dedicated to Mathematical Fluid Mechanics (2007)
20.
Zurück zum Zitat (MR2808162) G.P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations: Steady-State Problems, 2nd edn. (Springer, New York, 2011) (MR2808162) G.P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations: Steady-State Problems, 2nd edn. (Springer, New York, 2011)
21.
Zurück zum Zitat G.P. Galdi, J.G. Heywood, Y. Shibata, On the global existence and convergence to steady state of Navier-Stokes flow past an obstacle that is started from the rest. Arch. Ration. Mech. Anal. 138, 307–319 (1997)MathSciNetCrossRefMATH G.P. Galdi, J.G. Heywood, Y. Shibata, On the global existence and convergence to steady state of Navier-Stokes flow past an obstacle that is started from the rest. Arch. Ration. Mech. Anal. 138, 307–319 (1997)MathSciNetCrossRefMATH
22.
Zurück zum Zitat G.P. Galdi, M. Kyed, A simple proof of L q -estimates for the steady-state Oseen and Stokes equations in a rotating frame. Part II: weak solutions. Proc. Am. Math. Soc. (2012) (in press) G.P. Galdi, M. Kyed, A simple proof of L q -estimates for the steady-state Oseen and Stokes equations in a rotating frame. Part II: weak solutions. Proc. Am. Math. Soc. (2012) (in press)
23.
Zurück zum Zitat G.P. Galdi, M. Padula, A new approach to energy theory in the stability of fluid motion. Arch. Ration. Mech. Anal. 110, 187–286 (1990)MathSciNetCrossRefMATH G.P. Galdi, M. Padula, A new approach to energy theory in the stability of fluid motion. Arch. Ration. Mech. Anal. 110, 187–286 (1990)MathSciNetCrossRefMATH
24.
Zurück zum Zitat G.P. Galdi, P.J. Rabier, Functional properties of the Navier-Stokes operator and bifurcation of stationary solutions: planar exterior domains, in Topics in Nonlinear Analysis. Progress in Nonlinear Differential Equations and Applications, vol. 35 (Birkhäuser, Basel, 1999), pp. 273–303 G.P. Galdi, P.J. Rabier, Functional properties of the Navier-Stokes operator and bifurcation of stationary solutions: planar exterior domains, in Topics in Nonlinear Analysis. Progress in Nonlinear Differential Equations and Applications, vol. 35 (Birkhäuser, Basel, 1999), pp. 273–303
25.
Zurück zum Zitat G.P. Galdi, P.J. Rabier, Sharp existence results for the stationary Navier-Stokes problem in three-dimensional exterior domains. Arch. Ration. Mech. Anal. 154, 343–368 (2000)MathSciNetCrossRefMATH G.P. Galdi, P.J. Rabier, Sharp existence results for the stationary Navier-Stokes problem in three-dimensional exterior domains. Arch. Ration. Mech. Anal. 154, 343–368 (2000)MathSciNetCrossRefMATH
26.
Zurück zum Zitat G.P. Galdi, R. Rannacher, in Fundamental Trends in Fluid-Structure Interaction. Contemporary Challenges in Mathematical Fluid Dynamics and Its Applications, vol. 1 (World Scientific Publishing, Hackensack, 2010) G.P. Galdi, R. Rannacher, in Fundamental Trends in Fluid-Structure Interaction. Contemporary Challenges in Mathematical Fluid Dynamics and Its Applications, vol. 1 (World Scientific Publishing, Hackensack, 2010)
27.
Zurück zum Zitat G.P. Galdi, A.L. Silvestre, Further results on steady-state flow of a Navier-Stokes liquid around a rigid body. Existence of the Wake, RIMS, Kokyuroku Bessatsu Kyoto Univ., 2007, 127–143 G.P. Galdi, A.L. Silvestre, Further results on steady-state flow of a Navier-Stokes liquid around a rigid body. Existence of the Wake, RIMS, Kokyuroku Bessatsu Kyoto Univ., 2007, 127–143
28.
Zurück zum Zitat I. Gohberg, S. Goldberg, M.A. Kaashoek, in Classes of Linear Operators: I. Operator Theory. Advances and Applications, vol. 49 (Birkhäuser, Basel, 1990) I. Gohberg, S. Goldberg, M.A. Kaashoek, in Classes of Linear Operators: I. Operator Theory. Advances and Applications, vol. 49 (Birkhäuser, Basel, 1990)
29.
30.
Zurück zum Zitat H. Kozono, M. Yamazaki, Exterior problem for the stationary Navier-Stokes equations in the Lorentz space. Math. Ann. 310, 279–305 (1998)MathSciNetCrossRefMATH H. Kozono, M. Yamazaki, Exterior problem for the stationary Navier-Stokes equations in the Lorentz space. Math. Ann. 310, 279–305 (1998)MathSciNetCrossRefMATH
31.
Zurück zum Zitat H. Kozono, H. Sohr, On stationary Navier-Stokes equations in unbounded domains. Ricerche Mat. 42, 69–86 (1993)MathSciNetMATH H. Kozono, H. Sohr, On stationary Navier-Stokes equations in unbounded domains. Ricerche Mat. 42, 69–86 (1993)MathSciNetMATH
32.
Zurück zum Zitat H. Kozono, H. Sohr, M. Yamazaki, Representation formula, net force and energy relation to the stationary Navier-Stokes equations in 3-dimensional exterior domains. Kyushu J. Math. 51, 239–260 (1997)MathSciNetCrossRefMATH H. Kozono, H. Sohr, M. Yamazaki, Representation formula, net force and energy relation to the stationary Navier-Stokes equations in 3-dimensional exterior domains. Kyushu J. Math. 51, 239–260 (1997)MathSciNetCrossRefMATH
33.
Zurück zum Zitat S. Kračmar, S. Nečasová, P. Penel, L q -approach of weak solutions to stationary rotating Oseen equations in exterior domains. Q. Appl. Math. 68, 421–437 (2010)MATH S. Kračmar, S. Nečasová, P. Penel, L q -approach of weak solutions to stationary rotating Oseen equations in exterior domains. Q. Appl. Math. 68, 421–437 (2010)MATH
34.
Zurück zum Zitat O.A. Ladyzhenskaya, Investigation of the Navier-Stokes equation for a stationary flow of an incompressible fluid. Uspehi Mat. Nauk. (3) 14, 75–97 (1959) [in Russian] O.A. Ladyzhenskaya, Investigation of the Navier-Stokes equation for a stationary flow of an incompressible fluid. Uspehi Mat. Nauk. (3) 14, 75–97 (1959) [in Russian]
35.
Zurück zum Zitat J. Leray, Etude de diverses équations intégrales non linéaires et de quelques problèmes que pose l’ hydrodynamique. J. Math. Pures Appl. 12, 1–82 (1933)MathSciNet J. Leray, Etude de diverses équations intégrales non linéaires et de quelques problèmes que pose l’ hydrodynamique. J. Math. Pures Appl. 12, 1–82 (1933)MathSciNet
36.
Zurück zum Zitat J. Leray, Les problémes non linéaires. Enseignement Math. 35, 139–151 (1936) J. Leray, Les problémes non linéaires. Enseignement Math. 35, 139–151 (1936)
37.
Zurück zum Zitat J.H. Merkin, Free convection boundary layers on axisymmetric and twodimensional bodies of arbitrary shape in a saturated porous medium. Int. J. Heat Mass Transf. 22, 1461–1462 (1979)CrossRef J.H. Merkin, Free convection boundary layers on axisymmetric and twodimensional bodies of arbitrary shape in a saturated porous medium. Int. J. Heat Mass Transf. 22, 1461–1462 (1979)CrossRef
38.
Zurück zum Zitat D.A. Nield, A. Bejan, Convection in Porous Media, 2nd edn. (Springer, New York, 1999)CrossRefMATH D.A. Nield, A. Bejan, Convection in Porous Media, 2nd edn. (Springer, New York, 1999)CrossRefMATH
39.
Zurück zum Zitat J.-C. Saut, R. Temam, Generic properties of Navier-Stokes equations: genericity with respect to the boundary values. Indiana Univ. Math. J. 29, 427–446 (1980)MathSciNetCrossRefMATH J.-C. Saut, R. Temam, Generic properties of Navier-Stokes equations: genericity with respect to the boundary values. Indiana Univ. Math. J. 29, 427–446 (1980)MathSciNetCrossRefMATH
40.
Zurück zum Zitat C.G. Simader, H. Sohr, in The Dirichlet Problem for the Laplacian in Bounded and Unbounded Domains. A New Approach to Weak, Strong and (2+k)-Solutions in Sobolev-Type Spaces. Pitman Research Notes in Mathematics Series, vol. 360 (Longman, Harlow, 1996) C.G. Simader, H. Sohr, in The Dirichlet Problem for the Laplacian in Bounded and Unbounded Domains. A New Approach to Weak, Strong and (2+k)-Solutions in Sobolev-Type Spaces. Pitman Research Notes in Mathematics Series, vol. 360 (Longman, Harlow, 1996)
41.
Zurück zum Zitat H. Sohr, in The Navier-Stokes Equations. An Elementary Functional Analytic Approach. Birkhüser Advanced Texts (Birkhuser, Basel, 2001) H. Sohr, in The Navier-Stokes Equations. An Elementary Functional Analytic Approach. Birkhüser Advanced Texts (Birkhuser, Basel, 2001)
43.
Zurück zum Zitat E.M. Stein, Singular Integrals and Differentiability Properties of Functions (Princeton University Press, Princeton, 1970)MATH E.M. Stein, Singular Integrals and Differentiability Properties of Functions (Princeton University Press, Princeton, 1970)MATH
44.
Zurück zum Zitat A. Szulkin, M. Willem, Eigenvalue problems with indefinite weight. Studia Math. 135, 191–201 (1999)MathSciNetMATH A. Szulkin, M. Willem, Eigenvalue problems with indefinite weight. Studia Math. 135, 191–201 (1999)MathSciNetMATH
45.
Zurück zum Zitat R. Temam, Navier-Stokes Equations and Nonlinear Functional Analysis (SIAM, 1983) R. Temam, Navier-Stokes Equations and Nonlinear Functional Analysis (SIAM, 1983)
46.
Zurück zum Zitat E. Zeidler, in Nonlinear Functional Analysis and Applications, vol. 1. Fixed-Point Theorems (Springer, New York, 1986) E. Zeidler, in Nonlinear Functional Analysis and Applications, vol. 1. Fixed-Point Theorems (Springer, New York, 1986)
47.
Zurück zum Zitat E. Zeidler, in Nonlinear Functional Analysis and Applications, vol. 4. Application to Mathematical Physics (Springer, New York, 1988) E. Zeidler, in Nonlinear Functional Analysis and Applications, vol. 4. Application to Mathematical Physics (Springer, New York, 1988)
48.
Zurück zum Zitat E. Zeidler, in Applied Functional Analysis: Applications to Mathematical Physics. Applied Mathematical Sciences, vol. 108 (Springer, 1995) E. Zeidler, in Applied Functional Analysis: Applications to Mathematical Physics. Applied Mathematical Sciences, vol. 108 (Springer, 1995)
49.
Zurück zum Zitat E. Zeidler, in Applied Functional Analysis: Main Principles and their Applications. Applied Mathematical Sciences, vol. 109 (Springer, 1995) E. Zeidler, in Applied Functional Analysis: Main Principles and their Applications. Applied Mathematical Sciences, vol. 109 (Springer, 1995)
Metadaten
Titel
Steady-State Navier–Stokes Problem Past a Rotating Body: Geometric-Functional Properties and Related Questions
verfasst von
Giovanni P. Galdi
Copyright-Jahr
2013
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-642-36297-2_3

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.