Skip to main content

Models, Entropy and Information of Temporal Social Networks

  • Chapter
  • First Online:
Temporal Networks

Part of the book series: Understanding Complex Systems ((UCS))

Abstract

Temporal social networks are characterized by heterogeneous duration of contacts, which can either follow a power-law distribution, such as in face-to-face interactions, or a Weibull distribution, such as in mobile-phone communication. Here we model the dynamics of face-to-face interaction and mobile phone communication by a reinforcement dynamics, which explains the data observed in these different types of social interactions. We quantify the information encoded in the dynamics of these networks by the entropy of temporal networks. Finally, we show evidence that human dynamics is able to modulate the information present in social network dynamics when it follows circadian rhythms and when it is interfacing with a new technology such as the mobile-phone communication technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dorogovtsev, S.N., Mendes, J.F.F.: Evolution of Networks: From Biological Nets to the Internet and WWW. Oxford University Press, Oxford (2003)

    Google Scholar 

  2. Newman, M.E.J.: The structure and function of complex networks. SIAM Rev. 45, 167–256 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.U.: Complex networks: structure and dynamics. Phys. Rep. 424, 175–308 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  4. Caldarelli, G.: Scale-Free Networks. Oxford University Press, Oxford (2007)

    Book  MATH  Google Scholar 

  5. Dorogovtsev, S.N., Goltsev, A.V., Mendes, J.F.F.: Rev. Mod. Phys. 80, 1275 (2008)

    Article  ADS  Google Scholar 

  6. Barrat, A., Barthélemy, M., Vespignani, A.: Dynamical Processes on Complex Networks. Cambridge University Press, Cambridge (2008)

    Book  MATH  Google Scholar 

  7. Castellano, C., Fortunato, S., Loreto, V.: Statistical physics of social dynamics. Rev. Mod. Phys. 81, 591–646 (2009)

    Article  ADS  Google Scholar 

  8. Palla, G., Barabási, A.L., Vicsek, T.: Quantifying social group evolution. Nature 446, 664–667 (2007)

    Article  ADS  Google Scholar 

  9. Ahn, Y.Y., Bagrow, J.P., Lehmann, S.: Link communities reveal multiscale complexity in networks. Nature 466, 761–764 (2010)

    Article  ADS  Google Scholar 

  10. Bianconi, G., Pin, P., Marsili, M.: Assessing the relevance of node features for network structure. Proc. Natl. Acad. Sci. U.S.A. 106, 11433–11438 (2009)

    Article  ADS  Google Scholar 

  11. Bianconi, G.: Phys. Lett. A 303, 166 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. Bradde, S., Caccioli, F., Dall’Asta, L., Bianconi, G.: Phys. Rev. Lett. 104, 218701 (2010)

    Article  ADS  Google Scholar 

  13. Holme, P.: Network reachability of real-world contact sequences. Phys. Rev. E 71, 046119 (2005)

    Article  ADS  Google Scholar 

  14. Tang, J., Scellato, S., Musolesi, M., Mascolo, C., Latora, V.: Small-world behavior in time-varying graphs. Phys. Rev. E 81, 055101 (2010)

    Article  ADS  Google Scholar 

  15. Parshani, R., Dickison, M., Cohen, R., Stanley, H.E., Havlin, S.: Dynamic networks and directed percolation. Europhys. Lett. 90, 38004 (2010)

    Article  ADS  Google Scholar 

  16. Cattuto, C., Van den Broeck, W., Barrat, A., Colizza, V., Pinton, J.F., Vespignani, A.: Dynamics of person-to-person interactions from distributed RFID sensor networks. PLoS One 5, e11596 (2010)

    Article  ADS  Google Scholar 

  17. Isella, L., Stehlé, J., Barrat, A., Cattuto, C., Pinton, J.F., Van den Broeck, W.: What’s in a crowd? Analysis of face-to-face behavioral networks. J. Theor. Biol. 271, 166–180 (2011)

    Google Scholar 

  18. Holme, P., Saramäki, J.: Phys. Rep. 519, 97–125 (2012)

    Article  ADS  Google Scholar 

  19. Granovetter, M.: The strength in weak ties. Am. J. Sociol. 78, 1360–1380 (1973)

    Article  Google Scholar 

  20. Wasserman, S., Faust, K.: Social Network Analysis: Methods and Applications. Cambridge University Press, Cambridge (1994)

    Book  Google Scholar 

  21. Eagle, N., Pentland, A.S.: Reality mining: sensing complex social systems. Pers. Ubiquit. Comput. 10, 255–268 (2006)

    Article  Google Scholar 

  22. Hui, P., Chaintreau, A., Scott, J., Gass, R., Crowcroft, J., Diot, C.: Pocket switched networks and human mobility in conference environments. In: Proceedings of the 2005 ACM SIGCOMM Workshop on Delay-Tolerant Networking, Philadelphia, PA, pp. 244–251 (2005)

    Google Scholar 

  23. Onnela, J.P., Saramäki, J., Hyvönen, J., Szabó, G., Lazer, D., Kaski, K., Kertész, J., Barabàsi, A.L.: Structure and tie strengths in mobile communication networks. Proc. Natl. Acad. Sci. U.S.A. 104, 7332–7336 (2007)

    Article  ADS  Google Scholar 

  24. Brockmann, D., Hufnagel, L., Geisel, T.: The scaling laws of human travel. Nature 439, 462–465 (2006)

    Article  ADS  Google Scholar 

  25. González, M.C., Hidalgo, A.C., Barabási, A.L.: Understanding individual human mobility patterns. Nature 453, 779–782 (2008)

    Article  ADS  Google Scholar 

  26. Davidsen, J., Ebel, H., Bornholdt, S.: Emergence of a small world from local interactions: modeling acquaintance networks. Phys. Rev. Lett. 88, 128701 (2002)

    Article  ADS  Google Scholar 

  27. Marsili, M., Vega-Redondo, F., Slanina, F.: The rise and fall of a networked society: a formal model. Proc. Natl. Acad. Sci. U.S.A. 101, 1439–1442 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. Holme, P., Newman, M.E.J.: Nonequilibrium phase transition in the coevolution of networks and opinions. Phys. Rev. E 74, 056108 (2006)

    Article  ADS  Google Scholar 

  29. Vazquez, F., Eguíluz, V.M., San Miguel, M.: Generic absorbing transition in coevolution dynamics. Phys. Rev. Lett. 100, 108702 (2008)

    Article  ADS  Google Scholar 

  30. Barabási, A.L.: The origin of bursts and heavy tails in humans dynamics. Nature 435, 207–211 (2005)

    Article  ADS  Google Scholar 

  31. Vázquez, A., et al.: Phys. Rev. E 73, 036127 (2006)

    Article  ADS  Google Scholar 

  32. Rybski, D., Buldyrev, S.V., Havlin, S., Liljeros, F., Makse, H.A.: Scaling laws of human interaction activity. Proc. Natl. Acad. Sci. U.S.A. 106, 12640–12645 (2009)

    Article  ADS  Google Scholar 

  33. Malmgren, R.D., Stouffer, D.B., Campanharo, A.S.L.O., Nunes Amaral, L.A.: On universality in human correspondence activity. Science 325, 1696–1700 (2009)

    Article  ADS  Google Scholar 

  34. Scherrer, A., Borgnat, P., Fleury, E., Guillaume, J.L., Robardet, C.: Description and simulation of dynamic mobility networks. Comput. Netw. 52, 2842–2858 (2008)

    Article  MATH  Google Scholar 

  35. Stehlé, J., Barrat, A., Bianconi, G.: Dynamical and bursty interactions in social networks. Phys. Rev. E 81, 035101 (2010)

    Article  ADS  Google Scholar 

  36. Zhao, K., Stehlé, J., Bianconi, G., Barrat, A.: Social network dynamics of face-to-face interactions. Phys. Rev. E 83, 056109 (2011)

    Article  ADS  Google Scholar 

  37. Karsai, M., Kaski, K., Barabási, A.L., Kertész, J.: Universal features of correlated bursty behaviour. Sci. Rep. 2, 397 (2012)

    Article  ADS  Google Scholar 

  38. Jo, H.H., Karsai, M., Kertész, J., Kaski, K.: Circadian pattern and burstiness in mobile phone communication. New J. Phys. 14, 013055 (2012)

    Article  ADS  Google Scholar 

  39. Vázquez, A., Rácz, B., Lukacs, A., Barabàsi, A.L.: Impact of Non-Poissonian activity patterns on spreading processes. Phys. Rev. Lett. 98, 158702 (2007)

    Article  ADS  Google Scholar 

  40. Karsai, M., Kivelä, M., Pan, R.K., Kaski, K., Kertész, J., Barabási, A.-L., Saramäki, J.: Small but slow world: how network topology and burstiness slow down spreading. Phys. Rev. E 83, 025102 (2011)

    Article  ADS  Google Scholar 

  41. Zhao, K., Karsai, M., Bianconi, G.: Entropy of dynamical social networks. PLoS One 6, e28116 (2011)

    Article  ADS  Google Scholar 

  42. Zhao, K., Bianconi, G.: Social interaction model and adaptability of human behavior. Front. Physiol. 2, 101 (2011)

    Article  Google Scholar 

  43. Bisson, G., Bianconi, G., Torre, V.: The dynamics of group formation among leeches. Front. Physiol. 3, 133 (2012)

    Article  Google Scholar 

  44. Anteneodo, C., Chialvo, D.R.: Unraveling the fluctuations of animal motor activity. Chaos 19, 033123 (2009)

    Article  ADS  Google Scholar 

  45. Altmann, E.G., Pierrehumbert, J.B., Motter, A.E.: Beyond word frequency: bursts, lulls, and scaling in the temporal distributions of words. PLoS One 4, e7678 (2009)

    Article  ADS  Google Scholar 

  46. Quercia, D., Lambiotte, R., Stillwell, D., Kosinski, M., Crowcroft, J.: The personality of popular facebook users. In: ACM CSCW 12, pp. 955–964 (2012). http://www.acm.org/

  47. Cover, T., Thomas, J.A.: Elements of Information Theory. Wiley-Interscience, New York (2006)

    MATH  Google Scholar 

  48. Kleinberg, J.M.: Navigation in a small world. Nature 406, 845 (2000)

    Article  ADS  Google Scholar 

  49. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393, 440–442 (1998)

    Article  ADS  Google Scholar 

  50. Newman, M.E.J.: The structure of scientific collaboration networks. Proc. Natl. Acad. Sci. U.S.A. 98, 404–409 (2001)

    Article  ADS  MATH  Google Scholar 

  51. Bianconi, G.: The entropy of randomized network ensembles. Europhys. Lett. 81, 28005 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  52. Anand, K., Bianconi, G.: Entropy measures for networks: toward an information theory of complex topologies. Phys. Rev. E 80, 045102 (2009)

    Article  ADS  Google Scholar 

  53. Gómez-Gardenẽs, J., Latora, V.: Entropy rate of diffusion processes on complex networks. Phys. Rev. E 78, 065102(R) (2008)

    Google Scholar 

  54. Eckmann, J.P., Moses, E., Sergi, D.: Entropy of dialogues creates coherent structures in e-mail traffic. Proc. Natl. Acad. Sci. U.S.A. 101, 14333 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  55. Song, C., Qu, Z., Blumm, N., Barabási, A.L.: Limits of predictability in human mobility. Science 327, 1018–1021 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  56. Lambiotte, R., Blondel, V.D., de Kerchovea, C., Huensa, E., Prieurc, C., Smoredac, Z., Van Dooren, P.: Geographical dispersal of mobile communication networks. Physica A 387, 5317–5325 (2008)

    Article  ADS  Google Scholar 

  57. Malmgren, R.D., Stouffer, D.B., Motter, A.E., Amaral, L.A.N.: A Poissonian explanation for heavy tails in e-mail communication. Proc. Natl. Acad. Sci. U.S.A. 47, 18153–18158 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank A. Barrat and J. Stehlé for a collaboration that started our research on face-to-face interactions. Moreover we especially thank A.-L. Barabási for his useful comments and for the mobile call data used in this research. MK acknowledges the financial support from EUs 7th Framework Programs FET-Open to ICTeCollective project no. 238597.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ginestra Bianconi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zhao, K., Karsai, M., Bianconi, G. (2013). Models, Entropy and Information of Temporal Social Networks. In: Holme, P., Saramäki, J. (eds) Temporal Networks. Understanding Complex Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36461-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36461-7_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36460-0

  • Online ISBN: 978-3-642-36461-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics