Skip to main content

Carbon Sequestration

  • Chapter
  • First Online:
Genomics and Breeding for Climate-Resilient Crops

Abstract

With the rising levels of atmospheric carbon dioxide (CO2) threatening to alter global climate, carbon sequestration in plants has been proposed as a possible moderator or solution to the problem. This chapter examines the different mechanisms through which carbon sequestration can take place within the Earth’s natural carbon cycle with special focus on events surrounding plant development. Unfortunately, endeavors that have purposefully and successfully altered plant traits to improve carbon sequestration are currently quite few. Consequently, we delve deeply into the specific biological processes that allow plants to capture, allocate, and store CO2 long term in the form of both above-ground and below-ground biomass. Distinctions are made between the differing molecular mechanisms of C3, C4, and CAM plants, and we point out the importance of mycorrhizal and other soil community level interactions as an important reminder that healthy soils are required for the uptake of nutrients needed for efficient carbon sequestration. We suggest that, due the complexity of the biological interactions, modeling approaches designed to network multiple types of data input may provide the best means for generating more useful hypotheses that can target specific traits for improved carbon sequestration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aerts R, Chapin FS (2000) The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. Adv Ecol Res 30:1–65

    CAS  Google Scholar 

  • Alberton O, Kuyper TW, Gorissen A (2005) Taking mycocentrism seriously: mycorrhizal fungal and plant responses to elevated CO2. New Phytol 167:859–868

    PubMed  CAS  Google Scholar 

  • Altieri MA (1994) Sustainable agriculture. Encyclo Agric Sci 4:239–247

    Google Scholar 

  • Anderson-Teixeira KJ, Davis SC, Masters MD, Delucia EH (2009) Changes in soil organic carbon under biofuel crops. Glob Change Biol Bioenergy 1:75–96

    CAS  Google Scholar 

  • Andersson I (1996) Large structures at high resolution: the 1.6 A crystal structure of spinach ribulose-1,5-bisphosphate carboxylase/oxygenase complexed with 2-carboxyarabinitol bisphosphate. J Mol Biol 259:160–174

    PubMed  CAS  Google Scholar 

  • Andrews TJ, Whitney SM (2003) Manipulating ribulose bisphosphate carboxylase/oxygenase in the chloroplasts of higher plants. Arch Biochem Biophys 414(2):159–169

    Google Scholar 

  • Arnone JA, Zaller JG, Spehn JG, Niklaus PA, Wells CE, Korner C (2000) Dynamics of root systems in native grasslands: effects of elevated atmospheric CO2. New Phytol 147:73–85

    CAS  Google Scholar 

  • Baluška F, Mancuso S, Volkmann D, Barlow P (2009) The ‘root-brain’ hypothesis of Charles and Francis Darwin: revival after more than 125 years. Plant Signal Behav 4(12):1121–1127

    PubMed  Google Scholar 

  • Bardgett RD, Wardle DA (2010) Aboveground-belowground linkages: biotic interactions, ecosystem processes, and global change. Oxford University Press, Oxford

    Google Scholar 

  • Barea JM, Azcón R, Azcón-Aguilar C (2002) Mycorrhizosphere interactions to improve plant fitness and soil quality. Antonie Van Leeuwenhoek 81:343–351

    PubMed  CAS  Google Scholar 

  • Barnola JM, Anklin M, Porheron J, Raynaud D, Schwander J, Stauffer BTI (1995) CO2 evolution during the last millennium as recorded by Antarctic and Greenland ice. Tellus B 47:264–272

    Google Scholar 

  • Bates T, Lynch J (2000) Plant growth and phosphorus accumulation of wild type and two root hair mutants of Arabidopsis thaliana (Brassicaceae). Am J Bot 87:958–963

    PubMed  CAS  Google Scholar 

  • Beer C, Reichstein M, Tomelleri E, Ciais P, Jung M et al (2010) Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate. Science 329(5993):834–838

    PubMed  CAS  Google Scholar 

  • Bending GD, Aspray TJ, Whipps JM (2006) Significance of microbial interactions in the mycorrhizosphere. Adv Appl Microbiol 60:97–132

    PubMed  CAS  Google Scholar 

  • Bennett RN, Wallsgrove RM (1994) Secondary metabolites in plant defense mechanisms. New Phytol 127:617–633

    CAS  Google Scholar 

  • Berg G, Smalla K (2009) Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol Ecol 68(1):1–13

    PubMed  CAS  Google Scholar 

  • Bieniawska Z, Barratt DHP, Garlick AP, Thole V, Kruger NJ, Martin C, Zrenner R, Smith AM (2007) Analysis of the sucrose synthase gene family in Arabidopsis. Plant J 49:810–828

    PubMed  CAS  Google Scholar 

  • Binkley D, Menyailo O (eds) (2005) Tree species effects on soils: implications for global change. NATO Science Series. Kluwer Academic, Dordrecht

    Google Scholar 

  • Birdsey RA (1996) Regional estimates of timber volume and forest carbon for fully stocked timberland, average management after final clearcut harvest. In: Sampson RN, Hair D (eds) Forests and global change, vol 2, Forest management opportunities for mitigating carbon emissions. American Forests, Washington, DC, pp 309–334

    Google Scholar 

  • Block RMA, Van Rees KCJ, Knight JD (2006) A review of fine root dynamics in Populus plantations. Agrofor Syst 67:73–84

    Google Scholar 

  • Bonfante P, Genre A (2010) Mechanisms underlying beneficial plant-fungus interactions in mycorrhizal symbiosis. Nat Commun 1:48

    PubMed  Google Scholar 

  • Bougher NL, Grove TS, Malajczuk N (1990) Growth and phosphorus acquisition of karri (Eucalyptus diversicolor F. Muell.) seedlings inoculated with ectomycorrhizal fungi in relation to phosphorus supply. New Phytol 114:77–85

    CAS  Google Scholar 

  • Bowen GD, Rovira AD (1999) The rhizosphere and its management to improve plant growth. Adv Agron 66:1–102

    Google Scholar 

  • Bradford MA, Fierer N, Jackson RB, Maddox TR, Reynolds JF (2008) Nonlinear root-derived carbon sequestration across a gradient of nitrogen and phosphorous deposition in experimental mesocosms. Glob Change Biol Bioenergy 14:1113–1124

    Google Scholar 

  • Bradshaw HD, Stettler RF (1995) Molecular genetics of growth and development in Populus. IV. Mapping QTLs with large effects on growth, form, and phenology traits in a forest tree. Genetics 139:963–973

    PubMed  CAS  Google Scholar 

  • Brown ALP, Day FP, Hungate BA, Drake BG, Hinkle CR (2007) Root biomass and nutrient dynamics in a scrub-oak ecosystem under the influence of elevated atmospheric CO2. Plant Soil 292:219–232

    CAS  Google Scholar 

  • Cairney JWG, Ashford AE, Allaway WG (1989) Distribution of photosynthetically fixed carbon within root systems of Eucalyptus-Pilularis plants ectomycorrhizal with Pisolithus-Tinctorius. New Phytol 112:495–500

    Google Scholar 

  • Capell T, Christou P (2004) Progress in plant metabolic engineering. Curr Opin Biotechnol 15:148–154

    PubMed  CAS  Google Scholar 

  • Carney KM, Hungate BA, Drake BG, Megonigal JP (2007) Altered soil microbial community at elevated CO2 leads to loss of soil carbon. Proc Natl Acad Sci USA 104:4990–4995

    PubMed  CAS  Google Scholar 

  • Chan PH, Wildman SG (1972) Chloroplast DNA codes for the primary structure of the large subunit of fraction I protein. Biochim Biophys Acta 14:677–680

    Google Scholar 

  • Chen G, Larsen P, Almasri E, Dai Y (2006) Sample scale-free gene regulatory network using gene ontology. Proceedings of the annual international conference of the IEEE Engineering in Medicine and Biology Society. IEEE Eng Med Biol Soc Conf 1:5523–5526

    Google Scholar 

  • Cheng ZM, Tuskan GA (2009) Populus community mega-genomics: coming of age. Crit Rev Plant Sci 28:282–284

    Google Scholar 

  • Cleveland CC, Townsend AR (2006) Nutrient additions to a tropical rain forest drive substantial soil carbon dioxide losses to the atmosphere. Proc Natl Acad Sci USA 103:10316–10321

    PubMed  CAS  Google Scholar 

  • Coleman MD, Isebrands JG, Tolsted DN, Tolbert VR (2004) Comparing soil carbon of short rotation poplar plantations with agricultural crops and woodlands in North Central United States. Environ Manag 33:299–308

    Google Scholar 

  • Coleman HD, Canam T, Kang KY, Ellis DD, Mansfield SD (2007) Overexpression of UDP-glucose pyrophosphorylase in hybrid poplar affects carbon allocation. J Exp Bot 58:4257–4268

    PubMed  CAS  Google Scholar 

  • Cseke L, Cseke S, Podila G (2007) High efficiency poplar transformation. Plant Cell Rep 26:1529–1538

    PubMed  CAS  Google Scholar 

  • Deuter M (2000) Breeding approaches to improvement of yield and quality in Miscanthus grown in Europe. In: Lewandowski I, Clifton-Brown JC (eds) European Miscanthus improvement—Final report, Sept 2000. Institute of Crop Production and Grassland Research, University of Hohenheim, Stuttgart, pp 28–52

    Google Scholar 

  • Dixon RK, Brown S, Houghton RA, Solomon AM, Trexler MC, Wisniewski J (1994) Carbon pools and flux of global forest ecosystems. Science 263:185–190

    PubMed  CAS  Google Scholar 

  • Driebe EM, Whitham TG (2000) Cottonwood hybridization affects tannin and nitrogen content of leaf litter and alters decomposition. Oecologia 123:99–107

    Google Scholar 

  • Drigo B, Kowalchuk GA, van Veen JA (2008) Climate change goes underground: effects of elevated atmospheric CO2 on microbial community structure and activities in the rhizosphere. Biol Fertil Soil 44:667–679

    Google Scholar 

  • Drigo B, Pijl AS, Duytsc H, Kielaka AM, Gamper HA et al (2010) Shifting carbon flow from roots into associated microbial communities in response to elevated atmospheric CO2. Proc Natl Acad Sci USA 107(24):10938–10942

    PubMed  CAS  Google Scholar 

  • Ehleringer JR, Cerling TE, Helliker BR (1997) C4 photosynthesis, atmospheric CO2 and climate. Oecologia 112:285–299

    Google Scholar 

  • Ellis RJ (1979) Most abundant protein in the world. Trends Biochem Sci 4:241–244

    CAS  Google Scholar 

  • Farrar JF, Hawes M, Jones D, Lindow S (2003) How roots control the flux of carbon to the rhizosphere. Ecology 84:827–837

    Google Scholar 

  • Ferrol N, Barea JM, Azcon-Aguilar C (2002) Mechanisms of nutrient transport across interfaces in arbuscular mycorrhizas. Plant Soil 244:231–237

    CAS  Google Scholar 

  • Field C, Mooney HA (1986) The photosynthesis–nitrogen relationship in wild plants. In: Givnish TJ (ed) On the economy of plant form and function. Cambridge University Press, Cambridge, pp 22–55

    Google Scholar 

  • Fischer DG, Hart SC, Rehill BJ, Lindroth RL, Keim P, Whitham TG (2006) Do high-tannin leaves require more roots? Oecologia 149:668–675

    PubMed  CAS  Google Scholar 

  • Frank DA, Groffman PM (2009) Plant rhizospheric N processes: what we don’t know and why we should care. Ecology 90:1512–1519

    PubMed  Google Scholar 

  • Franklin O, Johansson J, Dewar RC, Dieckmann U, McMurtrie RE, Brännström A, Dybzinski R (2012) Modeling carbon allocation in trees: a search for principles. Tree Physiol 32(6):648–666

    PubMed  CAS  Google Scholar 

  • Frey BR, Lieffers VJ, Landhäusser SM, Comeau PG, Greenway KJ (2003) An analysis of sucker regeneration of trembling aspen. Can J For Res 33(7):1169–1179

    Google Scholar 

  • Gahoonia TS, Nielsen NE, Lyshede OB (1999) Phosphorus (P) acquisition of cereal cultivars in the field at three levels of P fertilization. Plant Soil 211:269–281

    CAS  Google Scholar 

  • Gamalei Y (1991) Phloem loading and its development related to plant evolution from trees to herbs. Trees 5:50–64

    Google Scholar 

  • Gamalei YV, Pakhomova MV, Sjutkina AV (1992) Ecological aspects of assimilate transport. I. Temperature. Fiziol Rast 39:1068–1078

    Google Scholar 

  • Gamper H, Hartwig UA, Leuchtmann A (2005) Mycorrhizas improve nitrogen nutrition of Trifolium repens after 8 yr of selection under elevated atmospheric CO2 partial pressure. New Phytol 167(2):531–542

    PubMed  CAS  Google Scholar 

  • Garten CT Jr, Wullschleger SD, Classen AT (2011) Review and model-based analysis of factors influencing soil carbon sequestration under hybrid poplar. Biomass Bioenergy 35:214–226

    CAS  Google Scholar 

  • Giardina CP, Ryan MG (2002) Total belowground carbon allocation in a fast growing Eucalyptus plantation estimated using a carbon balance approach. Ecosystems 5:487–499

    CAS  Google Scholar 

  • Giardina CP, Binkley D, Ryan MG, Fownes JH, Senock RS (2004) Belowground carbon cycling in a humid tropical forest decreases with fertilization. Oecologia 139:545–550

    PubMed  Google Scholar 

  • Giardina CP, Coleman MD, Binkley D, Hancock JE, King JS, Lilleskov EA, Loya WM, Pregitzer KS, Ryan MG, Trettin CC (2005) The response of belowground carbon allocation in forests to global change. In: Binkley D, Menyailo O (eds) Tree species effects on soils: implications for global change. Springer, Dordrecht, pp 119–154

    Google Scholar 

  • Głowacka K, Jeżowski S (2009a) Genetic and nongenetic factors influencing callus induction in Miscanthus sinensis (Anderss.) anther cultures. J Appl Genet 50(4):341–345

    PubMed  Google Scholar 

  • Głowacka K, Jeżowski S (2009b) In vitro culture of Miscanthus sinensis anthers. Acta Biol Cracov Sr Bot 51(1):17

    Google Scholar 

  • Głowacka K, Jeżowski S, Kaczmarek Z (2010) The effects of genotype, inflorescence developmental stage and induction medium on callus induction and plant regeneration in two Miscanthus species. Plant Cell Tiss Org Cult 102(1):79–86

    Google Scholar 

  • Glynn C, Herms DA, Orians CM, Hansen RC, Larsson S (2007) Testing the growth-differentiation balance hypothesis: dynamic responses of willows to nutrient availability. New Phytol 176:623–634

    PubMed  CAS  Google Scholar 

  • Gower ST, Vogt KA, Grier CC (1992) Carbon dynamics of Rocky Mountain Douglas-fir: influence of water and nutrient availability. Ecol Monogr 62:43–65

    Google Scholar 

  • Grace J, Rayment M (2000) Respiration in the balance. Nature 404:819–820

    PubMed  CAS  Google Scholar 

  • Grigal DF, Berguson WE (1998) Soil carbon changes associated with short-rotation systems. Biomass Bioenergy 14:371–377

    CAS  Google Scholar 

  • Gupta N, Kukal SS, Bawa SS, Dhaliwal GS (2009) Soil organic carbon and aggregation under poplar based agroforestry system in relation to tree age and soil type. Agrofor Syst 76:27–35

    Google Scholar 

  • Gutteridge S, Gatenby AA (1995) Rubisco synthesis, assembly, mechanism and regulation. Plant Cell 7:809–819

    PubMed  CAS  Google Scholar 

  • Haeusler RE, Rademacher T, Li J, Lipka V, Fischer KL, Schubert S, Kreuzaler F, Hirsch HJ (2001) Single and double overexpression of C4-cycle genes had differential effects on the pattern of endogenous enzymes, attenuation of photorespiration and on contents of UV protectants in transgenic potato and tobacco plants. J Exp Bot 52:1785–1803

    Google Scholar 

  • Hancock JE, Bradley KL, Giardina CP, Pregitzer KS (2008) The influence of soil type and altered lignin biosynthesis on the growth and above and belowground biomass allocation in Populus tremuloides. Plant Soil 308:239–253

    CAS  Google Scholar 

  • Hansen EA (1993) Soil carbon sequestration beneath hybrid poplar plantations in the north central United States. Biomass Bioenergy 5:431–436

    CAS  Google Scholar 

  • Hanson TE, Tabita FR (2001) A ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO)-like protein from Chlorobium tepidum that is involved with sulfur metabolism and the response to oxidative stress. Proc Natl Acad Sci USA 98:4397–4402

    PubMed  CAS  Google Scholar 

  • Haynes RW (1995) The 1993 RPA timber assessment update. USDA Forest Service general technical Report RM-259. Rocky Mountain Forest Experiment Station, Fort Collins, CO

    Google Scholar 

  • Haynes BE, Gower ST (1995) Belowground carbon allocation in unfertilized and fertilized red pine plantations in northern Wisconsin. Tree Physiol 15:317–325

    PubMed  Google Scholar 

  • Heaton EA, Clifton-Brown J, Voigt TB, Jones MB, Long SP (2004) Miscanthus for renewable energy generation: European Union experience and projections for Illinois. Mitig Adapt Strat Glob Change 9:433–451

    Google Scholar 

  • Herms DA, Mattson WJ (1997) Trees, stress, and pests. In: Lloyd JE (ed) Plant health care for woody ornamentals. International Society for Arboriculture, Champaign, IL, pp 3–25

    Google Scholar 

  • Hinsinger P, Bengough AG, Vetterlein D, Young IM (2009) Rhizosphere: biophysics, biogeochemistry and ecological relevance. Plant Soil 321:117–152

    CAS  Google Scholar 

  • Hirel B, Le Gouis J, Ney B, Gallais A (2007) The challenge of improving nitrogen use efficiency in crop plants: towards a more central role for genetic variability and quantitative genetics within integrated approaches. J Exp Bot 58:2369–2387

    PubMed  CAS  Google Scholar 

  • Horton P, Park K-J, Obayashi T, Fujita N, Harada H, Adams-Collier CJ, Nakai K (2007) WoLF PSORT: protein localization predictor. Nucleic Acids Res 35:W585–W587

    PubMed  Google Scholar 

  • Ibrahim ML, Proe F, Cameron AD (1997) Main effects of nitrogen supply, and drought stress upon whole plant carbon allocation in poplar. Can J For Res 27:1413–1419

    Google Scholar 

  • Ise T, Litton CM, Giardina CP, Ito A (2010) Comparison of modeling approaches for carbon partitioning: impact on estimates of global net primary production and equilibrium biomass of woody vegetation from MODIS GPP. J Geophys Res 115:G04025

    Google Scholar 

  • Ishimaru K, Ohkawa Y, Ishige T, Tobias DJ, Ohsugi R (1998) Elevated pyruvate, orthophosphate dikinase (PPDK) activity alters carbon metabolism in C3 transgenic potatoes with a C4 maize PPDK gene. Physiol Plant 103:340–346

    CAS  Google Scholar 

  • Izui K, Ishijima S, Yamaguchi Y, Katagiri F, Murata T, Shigesada K, Sugiyama T, Katsuki H (1986) Cloning and sequence analysis of a cDNA encoding active phosphoenolpyruvate carboxylase of the C4-pathway from maize. Nucleic Acids Res 14:1615–1628

    PubMed  CAS  Google Scholar 

  • Izumi H, Anderson IC, Alexander IJ, Killham K, Moore ER (2006) Endobacteria in some ectomycorrhiza of Scots pine (Pinus sylvestris). FEMS Microbiol Ecol 56:34–43

    PubMed  CAS  Google Scholar 

  • Jackson RB, Mooney HA, Schulze ED (1997) A global budget for fine root biomass, surface area, and nutrient contents. Proc Natl Acad Sci USA 94:7362–7366

    PubMed  CAS  Google Scholar 

  • Jansson C, Wullschleger SD, Kalluri UC, Tuskan GA (2010) Phytosequestration: carbon biosequestration by plants and the prospects of genetic engineering. Bioscience 60:685–696

    Google Scholar 

  • Jeffries P, Barea JM (2001) Arbuscular mycorrhiza – a key component of sustainable plant–soil ecosystems. In: Hock B (ed) The Mycota, vol 9, Fungal associations. Springer, Berlin, pp 95–113

    Google Scholar 

  • Jentschke G, Godbold DL (2000) Metal toxicity and ectomycorrhizas. Physiol Plant 109:107–116

    CAS  Google Scholar 

  • Jiang JX, Wang ZH, Tang BR, Xiao L, Ai X, Yi ZL (2012) Development of novel chloroplast microsatellite markers for Miscanthus species (Poaceae). Am J Bot 99(6):230–233

    Google Scholar 

  • Johansson JF, Paul LR, Finlay RD (2004) Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture. FEMS Microbiol Ecol 48:1–13

    PubMed  CAS  Google Scholar 

  • Johnson NC, Gehring CA (2007) Mycorrhizas: symbiotic mediators of rhizosphere and ecosystem processes. In: Cardon ZG, Whitbeck JL (eds) The rhizosphere. Elsevier Academic, Oxford, pp 73–100

    Google Scholar 

  • Johnson MG, Rygiewicz PT, Tingey DT, Phillips DL (2006) Elevated CO2 and elevated temperature have no effect on Douglas-fir fine-root dynamics in nitrogen-poor soil. New Phytol 170:345–356

    PubMed  CAS  Google Scholar 

  • Johnston CA, Groffman P, Breshears DD, Cardon ZG, Currie W, Emanuel W, Gaudinski J, Jackson RB, Lajtha K, Nadelhoffer K, Nelson D Jr, Post WM, Retallack G, Wielopolski L (2004) Carbon cycling in soil. Front Ecol Environ 2:522–528

    Google Scholar 

  • Jones MB, Walsh M (eds) (2001) Miscanthus for energy and fibre. James and James, London

    Google Scholar 

  • Kanevski I, Maliga P, Rhoades DF, Gutteridge S (1999) Plastome engineering of ribulose-1,5 bisphosphate carboxylase/oxygenase in tobacco to form a sunflower large subunit and tobacco small subunit hybrid. Plant Physiol 119:133–141

    PubMed  CAS  Google Scholar 

  • Kawashima N, Wildman SG (1972) Studies on fraction I protein. IV. Mode of inheritance of primary structure in relation to whether chloroplast or nuclear DNA contains the code for a chloroplast protein. Biochim Biophys Acta 262:42–49

    PubMed  CAS  Google Scholar 

  • Kennedy AC, Smith KL (1995) Soil microbial diversity and the sustainability of agricultural soils. Plant Soil 170:75–86

    CAS  Google Scholar 

  • Khanna M, Dhungana B, Clifton-Brown J (2008) Costs of producing miscanthus and switchgrass for bioenergy in Illinois. Biomass Bioenergy 32:482–493

    Google Scholar 

  • Kim C, Zhang D, Auckland SA, Rainville LK, Jakob K, Kronmiller B, Sacks EJ, Deuter M, Paterson AH (2012) SSR-based genetic maps of Miscanthus sinensis and M. sacchariflorus, and their comparison to sorghum. Theor Appl Genet 124(7):1325–1338

    PubMed  CAS  Google Scholar 

  • King JS, Kubiske ME, Pregitzer KS, Hendrey GR, McDonald EP, Giardina CP et al (2005) Tropospheric O-3 compromises net primary production in young stands of trembling aspen, paper birch and sugar maple in response to elevated atmospheric CO2. New Phytol 168:623–635

    PubMed  CAS  Google Scholar 

  • Kleczewski NM, Herms DA, Bonello P (2010) Effects of soil type, fertilization and drought on carbon allocation to root growth and partitioning between secondary metabolism and ectomycorrhizae of Betula papyrifera. Tree Physiol 30:807–813

    PubMed  CAS  Google Scholar 

  • Kleczewski NM, Herms DA, Bonello P (2012) Nutrient and water availability alter belowground patterns of biomass allocation, carbon partitioning, and ectomycorrhizal abundance in Betula nigra. Trees 26:525–533

    Google Scholar 

  • Ku MSB, Agarie S, Nomura M, Fukayama H, Tsuchida H, Ono K, Hirose S, Toki S, Miyao M, Matsuoka M (1999) High‐level expression of maize phosphoenolpyruvate carboxylase in transgenic rice plants. Nat Biotechnol 17:76–80

    PubMed  CAS  Google Scholar 

  • Lal R (2004) Soil carbon sequestration impacts on global climate change and food security. Science 304:1623–1627

    PubMed  CAS  Google Scholar 

  • Lal R, Kimble JM, Follett RF, Cole CV (eds) (1999) The potential of U.S. cropland to sequester carbon and mitigate the greenhouse effect. Lewis, Boca Raton, FL

    Google Scholar 

  • Landsberg JJ, Gower ST (eds) (1997) Applications of physiological ecology to forest management. Academic, New York

    Google Scholar 

  • Langenfeld-Heyser R, Gao J, Ducic T, Tachd P, Lu CF, Fritz E, Gafur A, Polle A (2007) Paxillus involutus mycorrhiza attenuate NaCl-stress responses in the salt-sensitive hybrid poplar Populus canescens. Mycorrhiza 17:121–131

    PubMed  CAS  Google Scholar 

  • Larsen P, Dai Y (2009) Using gene expression modeling to determine biological relevance of putative regulatory networks. Lect Notes Bioinformatics 5542:40–51

    CAS  Google Scholar 

  • Larsen P, Almasri E, Chen G, Dai Y (2007) A statistical method to incorporate biological knowledge for generating testable novel gene regulatory interactions from microarray experiments. BMC Bioinformatics 8:317

    PubMed  Google Scholar 

  • Larsen P, Collart F, Dai Y (2010) Incorporating network topology improves prediction of protein interaction networks from transcriptomic data. Int J Knowl Discov Bioinformatics 1(3):1–17

    Google Scholar 

  • Larsen P, Sreedasyam A, Trivedi G, Podila GK, Cseke LJ, Collart FR (2011a) Using next generation transcriptome sequencing to predict an ectomycorrhizal metabolome. BMC Syst Biol 5:70

    PubMed  Google Scholar 

  • Larsen PE, Collart F, Field D, Meyer F, Keegan KP et al (2011b) Predicted relative metabolomic turnover (PRMT): determining metabolic turnover from a coastal marine metagenomic dataset. Microb Informatics Exp 1(4)

    Google Scholar 

  • Larsen P, Field D, Gilbert JA (2012) Predicting bacterial community assemblages using an artificial neural network approach. Nat Methods 9:621–625

    PubMed  CAS  Google Scholar 

  • Leake J, Johnson D, Donnely D, Muckle G, Boddy L, Read D (2004) Networks of power and influence: the role of mycorrhizal mycelium in controlling plant communities and agroecosystem functioning. Can J Bot 82:1016–1045

    Google Scholar 

  • LeBauer DS, Treseder KK (2008) Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology 89:371–379

    PubMed  Google Scholar 

  • Leegood C, Sharkey TD, Caemmerer SV (2000) Photosynthesis: physiology and metabolism, vol 9, Advances in photosynthesis and respiration. Kluwer Academic, Netherlands

    Google Scholar 

  • Leegood RC (2002) C(4) photosynthesis: principles of CO(2) concentration and prospects for its introduction into C(3) plants. J Exp Bot 53:581–590

    PubMed  CAS  Google Scholar 

  • Lewandowski I, Clifton-Brown JC, Scurlock JMO, Huisman W (2000) Miscanthus: European experience with a novel energy crop. Biomass Bioenergy 19(4):209–227

    CAS  Google Scholar 

  • Lewandowski I, Scurlock JMO, Lindvall E, Christou M (2003) The development and current status of perennial rhizomatous grasses as energy crops in the US and Europe. Biomass Bioenergy 25(4):335–361

    Google Scholar 

  • Li L, Zhou Y, Cheng X, Sun J, Marita JM, Ralph J, Chiang VL (2003) Combinatorial modification of multiple lignin traits in trees through multigene cotransformation. Proc Natl Acad Sci USA 100:4939–4944

    PubMed  CAS  Google Scholar 

  • Lichter J, Barron SH, Bevacqua CE, Finzli AC, Irving KE, Stemmler EA et al (2005) Soil carbon sequestration and turnover in a pine forest after six years of atmospheric CO2 enrichment. Ecology 86:1835–1847

    Google Scholar 

  • Long SP, Zhu XG, Naidu SL, Ort DR (2006) Can improvement in photosynthesis increase crop yields? Plant Cell Environ 29:315–330

    PubMed  CAS  Google Scholar 

  • Lynch J, Deikman J (1998) Phosphorus in plant biology: regulatory roles in molecular, cellular, organismal, and ecosystem processes. American Society of Plant Physiologists, Rockville, MD

    Google Scholar 

  • Mack MC, Schuur EAG, Bret-Harte MS, Shaver GR, Chapin FS III (2004) Ecosystem carbon storage in arctic tundra reduced by long-term nutrient fertilization. Nature 431:440–443

    PubMed  CAS  Google Scholar 

  • Magnani F, Mencuccini M, Borghetti M, Berbigier P, Berninger F, Delzon S et al (2007) The human footprint in the carbon cycle of temperate and boreal forests. Nature 447:848–850

    PubMed  Google Scholar 

  • Majdi H, Kangas P (1997) Demography of fine roots in response to nutrient applications in a Norway spruce stand in south-western Sweden. Ecoscience 4:199–205

    Google Scholar 

  • Mao YJ, Yannarell AC, Mackie RI (2011) Changes in N-transforming Archaea and bacteria in soil during establishment of bioenergy crops. PLoS One 6:24750

    Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic, San Diego, CA

    Google Scholar 

  • Martin F, Aerts A, Ahren D, Brun A, Duchaussoy F, Kohler A, Lindquist E, Salamov A, Shapiro HJ, Wuyts J et al (2008) The genome sequence of the basidiomycete fungus Laccaria bicolor provides insights into the mycorrhizal symbiosis. Nature 452:88–92

    PubMed  CAS  Google Scholar 

  • McCormick AJ, Cramer MD, Watt DA (2006) Sink strength regulates photosynthesis in sugarcane. New Phytol 171:759–770

    PubMed  CAS  Google Scholar 

  • Miguez FE, Zhu XG, Humphries S, Bollero GA, Long SP (2009) A semimechanistic model predicting the growth and production of the bioenergy crop Miscanthus x giganteus: description, parameterization and validation. Glob Change Biol Bioenergy 1:282–296

    Google Scholar 

  • Milchunas DG, Morgan JA, Mosier AR, LeCain DR (2005) Root dynamics and demography in shortgrass steppe under elevated CO2, and comments on minirhizotron technology. Glob Change Biol 11:1837–1855

    Google Scholar 

  • Newman J, Gutteridge S (1993) The X-ray structure of Synechococcus ribulose-bisphosphate carboxylase/oxygenase-activated quaternary complex at 2.2 Å resolution. J Biol Chem 268:25876–25886

    PubMed  CAS  Google Scholar 

  • Nielsen KL, Bouma TJ, Lynch JP, Eissenstat DM (1998) Effects of phosphorus availability and vesicular–arbuscular mycorrhizas on the carbon budget of common bean (Phaseolus vulgaris). New Phytol 139:647–656

    Google Scholar 

  • NRC (2010) Advancing the science of climate change. National Research Council. National Academies, Washington, DC

    Google Scholar 

  • Ogata H, Goto S, Sato K, Fujibuchi W, Bono H, Kanehisa M (1999) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 27(1):29–34

    PubMed  CAS  Google Scholar 

  • Ostle NJ, Smith P, Fisher R, Woodward FI, Fisher JB et al (2009) Integrating plant-soil interactions into global carbon cycle models. J Ecol 97:851–863

    CAS  Google Scholar 

  • Parr JF, Papendick RI, Hornick SB, Meyer RE (1992) Soil quality: attributes and relationship to alternative and sustainable agriculture. Am J Altern Agric 7:2–3

    Google Scholar 

  • Paul MJ, Pellny TK, Goddijn O (2001) Enhancing photosynthesis with sugar signals. Trends Plant Sci 6:197–200

    PubMed  CAS  Google Scholar 

  • Pearce RB (1996) Antimicrobial defenses in the wood of living trees. New Phytol 132:203–233

    CAS  Google Scholar 

  • Pellny T, Paul MJ, Goddijn JM (2002) Unravelling the role of trehalose‐6‐phosphate in metabolic signalling in photosynthetic tissue. Comp Biochem Physiol 132:102

    Google Scholar 

  • Plomion C, Leprovost G, Stokes A (2001) Wood formation in trees. Plant Physiol 127(4):1513–1523

    PubMed  CAS  Google Scholar 

  • Podila GK, Sreedasyam A, Muratet MA (2009) Populus rhizosphere and the ectomycorrhizal interactome. Crit Rev Plant Sci 28:359–367

    CAS  Google Scholar 

  • Poorter H, Nagel O (2000) The role of biomass allocation in the growth response of plants to different levels of light, CO2, nutrients and water: a quantitative review. Aust J Plant Physiol 27:1191

    Google Scholar 

  • Pritchard SG (2011) Soil organisms and global climate change. Plant Pathol 60:82–99

    Google Scholar 

  • Pritchard SG, Rogers HH (2000) Spatial and temporal deployment of crop roots in CO2-enriched environments. New Phytol 147:55–71

    CAS  Google Scholar 

  • Pritchard SG, Prior SA, Rogers HH, Davis MA, Runion GB, Popham TW (2006) The effects of elevated atmospheric CO2 concentration on root dynamics of sorghum grown under sustainable and conventional agricultural management systems. Agric Ecosyst Environ 113:175–183

    Google Scholar 

  • Purves D, Pacala S (2008) Predictive models of forest dynamics. Science 320:1452–1453

    PubMed  CAS  Google Scholar 

  • Pyter R, Voigt T, Heaton E, Dohleman F, Long S (2007) Giant miscanthus: biomass crop for Illinois. Proceedings of the 6th national new crops symposium, San Diego, CA, pp 39–42

    Google Scholar 

  • Qiu J, Israel DW (1992) Diurnal starch accumulation and utilization in phosphorus-deficient soybean plants. Plant Physiol 98:316–323

    PubMed  CAS  Google Scholar 

  • Quoreshi AM, Khasa DP (2008) Effectiveness of mycorrhizal inoculation in the nursery on root colonisation, growth and nutrient uptake of aspen and balsam poplar. Biomass Bioenergy 32:381–391

    CAS  Google Scholar 

  • Rae AM, Street NR, Robinson KM, Harris N, Taylor G (2009) Five QTL hotspots for yield in short rotation coppice bioenergy poplar: the poplar biomass loci. BMC Plant Biol 9:23

    PubMed  Google Scholar 

  • Rillig MC, Allen MF (1999) What is the role of arbuscular mycorrhizal fungi in plant-to-ecosystem responses to elevated atmospheric CO2? Mycorrhiza 9:1–8

    Google Scholar 

  • Rogers HH, Prior SA, Runion GB, Mitchell RJ (1996) Root to shoot ratio of crops as influenced by CO2. Plant Soil 187:229–248

    CAS  Google Scholar 

  • Rogers A, McDonald K, Muehlbauer MF, Hoffman A, Koenig K, Newman L, Taghavi S, van der Lelie LD (2012) Inoculation of hybrid poplar with the endophytic bacterium Enterobacter sp 638 increases biomass but does not impact leaf level physiology. Glob Change Biol Bioenergy 4:364–370

    Google Scholar 

  • Roitsch T, Gonzalez MC (2004) Function and regulation of plant invertases: sweet sensations. Trends Plant Sci 9:606–613

    PubMed  CAS  Google Scholar 

  • Rooney DC, Killham K, Bending GD, Baggs E, Weih M, Hodge A (2009) Mycorrhizas and biomass crops: opportunities for future sustainable development. Trends Plant Sci 14(10):542–549

    PubMed  CAS  Google Scholar 

  • Rovira AD (2005) Plant root excretions in relation to the rhizosphere effect. Plant Soil 7:178–194

    Google Scholar 

  • Ryan MG, Hubbard RM, Pongracic S, Raison RJ, McMurtrie RE (1996) Autotrophic respiration in Pinus radiata in relation to nutrient status. Tree Physiol 16:333–343

    PubMed  Google Scholar 

  • Sage RF (2002) C4 photosynthesis in terrestrial plants does not require Kranz anatomy. Trends Plant Sci 7(7):1360–1385

    Google Scholar 

  • Sage RF, Pearcy RW, Seemann JR (1987) The nitrogen use efficiency of C3 and C4 plants. III. Leaf nitrogen effects on the activity of carboxylating enzymes in Chenopodium album (L.) and Amaranthus retroflexus (L.). Plant Physiol 85:355–359

    PubMed  CAS  Google Scholar 

  • Sanchez FG, Coleman M, Garten CT, Luxmoore RJ, Stanturf JA, Trettin C, Wullschleger SD (2007) Soil carbon, after 3 years, under short-rotation woody crops grown under varying nutrient and water availability. Biomass Bioenergy 31:793–801

    CAS  Google Scholar 

  • Satori F, Lal R, Ebinger MH, Eaton JA (2007) Changes in soil carbon and nutrient pools along a chronosequence of poplar plantations in the Columbia Plateau, Oregon, USA. Agric Ecosyst Environ 122:325–339

    Google Scholar 

  • Schimel DS, Braswell BH, Holland EA, McKeown R, Ojima DS, Painter TH, Parton WJ, Townsend AR (1994) Climatic, edaphic, and biotic controls over storage and turnover of carbon in soils. Glob Biogeochem Cycles 8:279–293

    CAS  Google Scholar 

  • Schneider G, Lindqvist Y, Lundqvist T (1990) Crystallographic refinement and structure of ribulose-1,5-bisphosphate carboxylase from Rhodospirillum rubrum at 1.7 Å resolution. J Mol Biol 211:989–1008

    PubMed  CAS  Google Scholar 

  • Schreuder HA, Knight S, Curmi PMG, Andersson I, Cascio D, Sweet RM, Brändén CI, Eisenberg D (1993) Crystal structure of activated tobacco rubisco complexes with the reaction-intermediate analog 2-caroxy-arabinitol 1.5-bisphosphate. Prot Struct 2:1136–1146

    CAS  Google Scholar 

  • Schützendübel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal- induced oxidative stress and protection by mycorrhization. J Exp Bot 53:1351–1365

    PubMed  Google Scholar 

  • Schweitzer JA, Bailey JK, Rehill BJ, Martinsen SD, Hart SC, Lindroth RL et al (2004) Genetically based trait in a dominant tree affects ecosystem processes. Ecol Lett 7:127–134

    Google Scholar 

  • Shetty KG, Hetrick BAD, Figge DAH, Schwab AP (1994) Effects of mycorrhizae and other soil microbes on revegetation of heavy-metal contaminated mine spoil. Environ Pollut 86:181–188

    PubMed  CAS  Google Scholar 

  • Shipley B, Meziane D (2002) The balanced-growth hypothesis and the allometry of leaf and root biomass. Funct Ecol 16:326–331

    Google Scholar 

  • Silpi U, Lacointe A, Kasempsap P, Thanysawanyangkura S, Chantuma P et al (2007) Carbohydrate reserves as competing sink: evidence from tapping rubber trees. Tree Physiol 27:881–889

    PubMed  CAS  Google Scholar 

  • Smidansky ED, Meyer FD, Blakeslee B, Weglarz TE, Greene TW, Giroux MJ (2007) Expression of a modified ADP-glucose pyrophosphorylase large subunit in wheat seeds stimulates photosynthesis and carbon metabolism. Planta 225:965–976

    PubMed  CAS  Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis, 2nd edn. Academic, London

    Google Scholar 

  • Smith SM, Ellis RJ (1981) Light-stimulated accumulation of transcripts of nuclear and chloroplast genes for ribulosebisphosphate carboxylase. J Mol Appl Genet 1:127–137

    PubMed  CAS  Google Scholar 

  • Spreitzer RJ, Salvucci ME (2002) Rubisco: structure, regulatory interactions, and possibilities for a better enzyme. Annu Rev Plant Biol 53:449–475. doi: 10.1146/annurev.arplant.53.100301.135233

    PubMed  CAS  Google Scholar 

  • Stott PA, Tett SFB, Jones GS, Allen MR, Mitchell JFB, Jenkins GJ (2000) External control of 20th century temperature by natural and anthropogenic forcing. Science 290:2133–2137

    PubMed  CAS  Google Scholar 

  • Suzuki S, Murai N, Burnell JN, Arai M (2000) Changes in photosynthetic carbon Flow in transgenic rice plants that express C4-type phosphoenolpyruvate carboxykinase from Urochloa panicoides. Plant Physiol 124:163–172

    PubMed  CAS  Google Scholar 

  • Suzuki S, Murai N, Kasaoka K, Hiyoshi T, Imaseki H, Burnell JN, Arai M (2006) Carbon metabolism in transgenic rice plants that express phosphoenolpyruvate carboxylase and/or phosphoenolpyruvate carboxykinase. Plant Sci 170(5):1010–1019

    CAS  Google Scholar 

  • Suzuki Y, Ohkubo M, Hatakeyama H, Ohashi K, Yoshizawa R, Kojima S, Hayakawa T, Yamaya T, Mae T, Makino A (2007) Increased Rubisco content in transgenic rice transformed with the ‘sense’ rbcS gene. Plant Cell Physiol 48:626–637

    PubMed  CAS  Google Scholar 

  • Swaminathan K, Chae WB, Mitros T, Varala K, Xie L, Barling A, Glowacka K, Hall M, Jezowski S, Ming R et al (2012) A framework genetic map for Miscanthus sinensis from RNAseq-based markers shows recent tetraploidy. BMC Genomics 13(1):142

    PubMed  CAS  Google Scholar 

  • Tcherkez GG, Farquhar GD, Andrews TJ (2006) Despite slow catalysis and confused substrate specificity, all ribulose bisphosphate carboxylases may be nearly perfectly optimized. Proc Natl Acad Sci USA 103:7246–7251

    PubMed  CAS  Google Scholar 

  • Thivierge JP, Minai A, Siegelmann H, Alippi C, Geourgiopoulos M (2012) A year of neural network research: special issue on the 2011 international joint conference on neural networks. Neural Netw 32:1–2

    PubMed  Google Scholar 

  • Treseder KK (2004) A meta-analysis of mycorrhizal responses to nitrogen, phosphorus, and atmospheric CO2 in field studies. New Phytol 164:347–355

    Google Scholar 

  • Treseder KK (2008) Nitrogen additions and microbial biomass: a meta-analysis of ecosystem studies. Ecol Lett 11:1111–1120

    PubMed  Google Scholar 

  • Tuberosa R, Salvi S (2006) Genomics-based approaches to improve drought tolerance of crops. Trends Plant Sci 11:405–412

    PubMed  CAS  Google Scholar 

  • Uroz S, Calvaruso C, Turpault MP, Pierrat JC, Mustin C, Frey-Klett P (2007) Effect of the mycorrhizosphere on the genotypic and metabolic diversity of the soil bacterial communities involved in mineral weathering in a forest soil. Appl Environ Microbiol 73:3019–3027

    PubMed  CAS  Google Scholar 

  • Valentini R, Matteucchi G, Dolman H, Schulze E-D, Rebmann C et al (2000) Respiration as the main determinant of carbon balance in European forests. Nature 404:861–865

    PubMed  CAS  Google Scholar 

  • Wang X, Yamada T, Kong FJ, Abe Y, Hoshino Y, Sato H, Takamizo T, Kanazawa A, Yamada T (2011) Establishment of an efficient in vitro culture and particle bombardment-mediated transformation systems in Miscanthus sinensis Anderss., a potential bioenergy crop. GCB Bioenergy 3:322–332

    CAS  Google Scholar 

  • Warnock DD, Lehmann J, Kuyper TW, Rillig MC (2007) Mycorrhizal responses to biochar in soil – concepts and mechanisms. Plant Soil 300:9–20

    CAS  Google Scholar 

  • Wassen MJ, Venterink HO, Lapshina ED, Tanneberger F (2005) Endangered plants persist under phosphorus limitation. Nature 437:547–550

    PubMed  CAS  Google Scholar 

  • Webb EC (1992) Enzyme nomenclature 1992: recommendations of the Nomenclature Committee of the International Union of Biochemistry and Molecular Biology on the nomenclature and classification of enzymes. Academic, New York

    Google Scholar 

  • Wechsung G, Wechsung F, Wall GW, Adamsen FJ, Kimball BA et al (1995) Biomass and growth rate of a spring wheat root system grown in free-air CO2 enrichment (FACE) and ample soil moisture. J Biogeogr 22:623–634

    Google Scholar 

  • Werner D (1998) Organic signals between plants and microorganisms. In: Pinton R, Varanini Z, Nannipieri P (eds) The rhizosphere: biochemistry and organic substances at the soil–plant interfaces. MarcelDekker, New York

    Google Scholar 

  • West TO, Post WM (2002) Soil carbon sequestration by tillage and crop rotation: a global data analysis. Soil Sci Soc Am J 66:1930–1946, Available at DOE CDIAC site

    CAS  Google Scholar 

  • Williams L, Miller A (2001) Transporters responsible for the uptake and partitioning of nitrogenous solutes. Annu Rev Plant Physiol Plant Mol Biol 52:659–688

    PubMed  CAS  Google Scholar 

  • Wullschleger SD, Yin TM, DiFazio SP, Tschaplinski TJ, Gunter LE, Davis MF, Tuskan GA (2005) Phenotypic variation in growth and biomass distribution for two advanced-generation pedigrees of hybrid poplar. Can J For Res 35:1779–1789

    CAS  Google Scholar 

  • Xia JY, Wan SQ (2008) Global response patterns of terrestrial plant species to nitrogen addition. New Phytol 179:428–439

    PubMed  CAS  Google Scholar 

  • Yang D-L, Yao J, Mei C-S, Tong X-H, Zeng L-J et al (2012) Plant hormone jasmonate prioritizes defense over growth by interfering with gibberellin signaling cascade. Proc Natl Acad Sci USA 109(19):1192–1200

    Google Scholar 

  • Zhang QX, Sun Y, Hu HK, Chen B, Hong CT, Guo HP, Pan YH, Zheng BS (2012) Micropropagation and plant regeneration from embryogenic callus of Miscanthus sinensis. In Vitro Cell Dev Biol–Plant 48(1):50–57

    CAS  Google Scholar 

  • Zhu XG, Portis AR, Long SP (2004) Would transformation of C-3 crop plants with foreign Rubisco increase productivity? A computational analysis extrapolating from kinetic properties to canopy photosynthesis. Plant Cell Environ 7:155–165

    Google Scholar 

  • Zhu XG, de Sturler E, Long SP (2007) Optimizing the distribution of resources between enzymes of carbon metabolism can dramatically increase photosynthetic rate: a numerical simulation using an evolutionary algorithm. Plant Physiol 145:513–526

    PubMed  CAS  Google Scholar 

  • Zhu XG, Long SP, Ort DR (2010) Improving photosynthetic efficiency for greater yield. Annu Rev Plant Biol 61:235–261

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Office of Science (BER), U.S. Department of Energy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leland J. Cseke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cseke, L.J., Wullschleger, S.D., Sreedasyam, A., Trivedi, G., Larsen, P.E., Collart, F.R. (2013). Carbon Sequestration. In: Kole, C. (eds) Genomics and Breeding for Climate-Resilient Crops. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37048-9_12

Download citation

Publish with us

Policies and ethics