Skip to main content

Human Reidentification with Transferred Metric Learning

  • Conference paper
Computer Vision – ACCV 2012 (ACCV 2012)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7724))

Included in the following conference series:

Abstract

Human reidentification is to match persons observed in non-overlapping camera views with visual features for inter-camera tracking. The ambiguity increases with the number of candidates to be distinguished. Simple temporal reasoning can simplify the problem by pruning the candidate set to be matched. Existing approaches adopt a fixed metric for matching all the subjects. Our approach is motivated by the insight that different visual metrics should be optimally learned for different candidate sets. We tackle this problem under a transfer learning framework. Given a large training set, the training samples are selected and reweighted according to their visual similarities with the query sample and its candidate set. A weighted maximum margin metric is online learned and transferred from a generic metric to a candidate-set-specific metric. The whole online reweighting and learning process takes less than two seconds per candidate set. Experiments on the VIPeR dataset and our dataset show that the proposed transferred metric learning significantly outperforms directly matching visual features or using a single generic metric learned from the whole training set.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gheissari, N., Sebastian, T.B., Rittscher, J., Hartley, R.: Person reidentification using spatiotemporal appearance. In: CVPR (2006)

    Google Scholar 

  2. Schwartz, W., Davis, L.: Learning discriminative appearance-based models using partial least sqaures. In: Proc. XXII SIBGRAPI (2009)

    Google Scholar 

  3. Farenzena, M., Bazzani, L., Perina, A., Murino, V., Cristani, M.: Person re-identification by symmetry-driven accumulation of local features. In: CVPR (2010)

    Google Scholar 

  4. Zheng, W., Gong, S., Xiang, T.: Person re-identification by probabilistic relative distance comparison. In: CVPR (2011)

    Google Scholar 

  5. Park, U., Jain, A., Kitahara, I., Kogure, K., Hagita, N.: Vise: Visual search engine using multiple networked cameras. In: ICPR (2006)

    Google Scholar 

  6. van de Weijer, J., Schmid, C.: Coloring Local Feature Extraction. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part II. LNCS, vol. 3952, pp. 334–348. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  7. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: CVPR (2005)

    Google Scholar 

  8. Wang, X., Doretto, G., Sebastian, T., Rittscher, J., Tu, P.: Shape and appearance context modeling. In: ICCV (2007)

    Google Scholar 

  9. Daugman, J.G.: Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters. Journal of the Optical Society of America A 2, 1160–1169 (1985)

    Article  Google Scholar 

  10. Ojala, T., Pietikäinen, M., Mäenpää, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. on PAMI, 971–987 (2002)

    Google Scholar 

  11. Torralba, A., Murphy, K., Freeman, W., Rubin, M.: Context-based vision system for place and object recognition. In: ICCV (2003)

    Google Scholar 

  12. Porikli, F.: Inter-camera color calibration by correlation model function. In: ICIP (2003)

    Google Scholar 

  13. Javed, O., Shafique, K., Shah, M.: Appearance modeling for tracking in multiple non-overlapping cameras. In: CVPR (2005)

    Google Scholar 

  14. Gilbert, A., Bowden, R.: Tracking Objects Across Cameras by Incrementally Learning Inter-camera Colour Calibration and Patterns of Activity. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part II. LNCS, vol. 3952, pp. 125–136. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  15. Prosser, B., Gong, S., Xiang, T.: Multi-camera matching using bi-directional cumulative brightness transfer function. In: BMVC (2008)

    Google Scholar 

  16. Gray, D., Tao, H.: Viewpoint Invariant Pedestrian Recognition with an Ensemble of Localized Features. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. LNCS, vol. 5302, pp. 262–275. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  17. Shan, Y., Sawhney, H.S., Kumar, R.: Unsupervised Learning of Discriminative Edge Measures for Vehicle Matching between Nonoverlapping Cameras. IEEE Transactions on Pattern Analysis and Machine Intelligence 30, 700–711 (2008)

    Article  Google Scholar 

  18. Lin, Z., Davis, L.S.: Learning Pairwise Dissimilarity Profiles for Appearance Recognition in Visual Surveillance. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Remagnino, P., Porikli, F., Peters, J., Klosowski, J., Arns, L., Chun, Y.K., Rhyne, T.-M., Monroe, L. (eds.) ISVC 2008, Part I. LNCS, vol. 5358, pp. 23–34. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  19. Prosser, B., Zheng, W., Gong, S., Xiang, T., Mary, Q.: Person re-identification by support vector ranking. In: BMVC (2010)

    Google Scholar 

  20. Tsochantaridis, I., Joachims, T., Hofmann, T., Altun, Y.: Large margin methods for structured and interdependent output variables. Journal of Machine Learning Research 6, 1453–1484 (2005)

    MathSciNet  MATH  Google Scholar 

  21. Gray, D., Brennan, S., Tao, H.: Evaluating appearance models for recognition, reacquisition and tracking (2007)

    Google Scholar 

  22. Dai, W., Yang, Q., Xue, G., Yu, Y.: Boosting for transfer learning. In: Proc. of ICML (2007)

    Google Scholar 

  23. Wu, X., Srihari, R.: Incorporating prior knowledge with weighted margin support vector machines. In: Proc. of SIGKDD (2004)

    Google Scholar 

  24. Jiang, W., Zavesky, E., Chang, S., Loui, A.: Cross-domain learning methods for high-level visual concept classification. In: ICIP (2008)

    Google Scholar 

  25. Saenko, K., Kulis, B., Fritz, M., Darrell, T.: Adapting Visual Category Models to New Domains. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part IV. LNCS, vol. 6314, pp. 213–226. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  26. Yao, Y., Doretto, G.: Boosting for transfer learning with multiple sources. In: CVPR (2010)

    Google Scholar 

  27. Qi, G., Aggarwal, C., Huang, T.: Towards semantic knowledge propagation from text corpus to web images. In: Proc. of WWW (2011)

    Google Scholar 

  28. Yang, J., Yan, R., Hauptmann, A.G.: Cross-domain video concept detection using adaptive svms. In: Proc. of ACM Multimedia (2007)

    Google Scholar 

  29. Duan, L., Tsang, I.W., Xu, D., Maybank, S.J.: Domain transfer svm for video concept detection. In: CVPR (2009)

    Google Scholar 

  30. Qi, G., Aggarwal, C., Rui, Y., Tian, Q., Chang, S., Huang, T.: Towards cross-category knowledge propagation for learning visual concepts. In: CVPR (2011)

    Google Scholar 

  31. Zhan, D.C., Li, M., Li, Y.F., Zhou, Z.H.: Learning instance specific distances using metric propagation. In: Proc. of ICML, p. 154 (2009)

    Google Scholar 

  32. Sande, K., Gevers, T., Snoek, C.G.M.: Evaluating color descriptors for object and scene recognition. IEEE Trans. on PAMI 32, 1582–1596 (2010)

    Article  Google Scholar 

  33. Liu, T., Moore, A.W., Gray, A.G., Yang, K.: An investigation of practical approximate nearest neighbor algorithms. In: Proc. of NIPS (2004)

    Google Scholar 

  34. Fletcher, R.: Semi-definite matrix constraints in optimization. SIAM J. Control Optim. 23, 493–513 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  35. Weinberger, K.Q., Saul, L.K.: Distance metric learning for large margin distance metric learning for large margin. Journal of Machine Learning Research 10, 207–244 (2009)

    MATH  Google Scholar 

  36. Luenberger, D.G., Ye, Y.: Linear and Nonlinear Programming. Springer (2008)

    Google Scholar 

  37. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends in Machine Learning 3, 1–122 (2011)

    Article  Google Scholar 

  38. Davis, J.V., Kulis, B., Jain, P., Sra, S., Dhillon, I.S.: Information-theoretic metric learning. In: Proc. of ICML (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Li, W., Zhao, R., Wang, X. (2013). Human Reidentification with Transferred Metric Learning. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds) Computer Vision – ACCV 2012. ACCV 2012. Lecture Notes in Computer Science, vol 7724. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37331-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37331-2_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37330-5

  • Online ISBN: 978-3-642-37331-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics