Skip to main content

Counting Matchings of Size k Is \(\sharp\) W[1]-Hard

  • Conference paper
Automata, Languages, and Programming (ICALP 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7965))

Included in the following conference series:

Abstract

We prove \(\sharp\) W[1]-hardness of the following parameterized counting problem: Given a simple undirected graph G and a parameter k ∈ ℕ, compute the number of matchings of size k in G.

It is known from [1] that, given an edge-weighted graph G, computing a particular weighted sum over the matchings in G is \(\sharp\) W[1]-hard. In the present paper, we exhibit a reduction that does not require weights.

This solves an open problem from [5] and adds a natural parameterized counting problem to the scarce list of \(\sharp\) W[1]-hard problems. Since the classical version of this problem is well-studied, we believe that our result facilitates future \(\sharp\) W[1]-hardness proofs for other problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bläser, M., Curticapean, R.: Weighted counting of k-matchings is #W[1]-hard. In: Thilikos, D.M., Woeginger, G.J. (eds.) IPEC 2012. LNCS, vol. 7535, pp. 171–181. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  2. Courcelle, B.: The monadic second-order logic of graphs. I. Recognizable sets of finite graphs. Information and Computation 85(1), 12–75 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ehrenborg, R., Rota, G.-C.: Apolarity and canonical forms for homogeneous polynomials. European Journal of Combinatorics 14(3), 157–181 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  4. Flum, J., Grohe, M.: The parameterized complexity of counting problems. SIAM Journal on Computing, 538–547 (2002)

    Google Scholar 

  5. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer-Verlag New York, Inc., Secaucus (2006)

    Google Scholar 

  6. Hartshorne, R.: Algebraic geometry. Springer (1977)

    Google Scholar 

  7. Makowsky, J.: Algorithmic uses of the Feferman-Vaught theorem. Annals of Pure and Applied Logic 126, 159–213 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Schwartz, J.: Fast probabilistic algorithms for verification of polynomial identities. J. ACM 27(4), 701–717 (1980)

    Article  MATH  Google Scholar 

  9. Temperley, H., Fisher, M.: Dimer problem in statistical mechanics - an exact result. Philosophical Magazine 6(68) (1961) 1478–6435

    Google Scholar 

  10. Valiant, L.: The complexity of computing the permanent. Theoretical Computer Science 8(2), 189–201 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  11. Valiant, L.: The complexity of enumeration and reliability problems. SIAM Journal on Computing 8(3), 410–421 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  12. Valiant, L.: Holographic algorithms. In: Proceedings of the 45th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2004, pp. 306–315 (2004)

    Google Scholar 

  13. Vassilevska, V., Williams, R.: Finding, minimizing, and counting weighted subgraphs. In: Proceedings of the 41st Annual ACM Symposium on Theory of Computing, STOC 2009, pp. 455–464. ACM, New York (2009)

    Google Scholar 

  14. Xia, M., Zhang, P., Zhao, W.: Computational complexity of counting problems on 3-regular planar graphs. Theor. Comp. Sc. 384(1), 111–125 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Zippel, R.: Probabilistic algorithms for sparse polynomials. In: Ng, K.W. (ed.) EUROSAM 1979 and ISSAC 1979. LNCS, vol. 72, pp. 216–226. Springer, Heidelberg (1979)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Curticapean, R. (2013). Counting Matchings of Size k Is \(\sharp\) W[1]-Hard. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds) Automata, Languages, and Programming. ICALP 2013. Lecture Notes in Computer Science, vol 7965. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39206-1_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39206-1_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39205-4

  • Online ISBN: 978-3-642-39206-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics