Skip to main content

2014 | OriginalPaper | Buchkapitel

5. Fluctuations, Trajectory Entropy and Ziegler’s Maximum Entropy Production Principle

verfasst von : Vladimir D. Seleznev, Leonid M. Martyushev

Erschienen in: Beyond the Second Law

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter discusses two current interpretations of the maximum entropy production principle—as a physical principle and as an inference procedure. A simple model of relaxation of an isolated system towards equilibrium is considered for this purpose.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
According to their definitions [2729], γ ii  > 0 and γ11γ22−γ 12 2  ≥ 0.
 
2
For small τ values: β ij Δα i Δα j  ≪ γ ij Δα i Δα j * (because γ ij  = γ ij 0 ).
 
3
For small τ values: dα i * /dt ≈ −Δα i * /τ. The minus sign arises from the fact that Δα i * is the difference between the initial and final value.
 
4
For one approximation, extremization is carried out for a random deviation from the equilibrium, whereas for the other approximation, it is carried out for a thermodynamic flux, i.e. the most probable deviation.
 
5
Mathematical models are absolutely unsuitable for falsification. So, a model is only some more or less crude and often one-sided reflection of some part of a phenomenon, whereas MEPP is the principle reflecting the dissipative properties that are observed in nature rather than in its model.
 
6
Indeed, the researcher’s intention to mathematically make the most unprejudiced prediction in the conditions of incomplete information about the system is the essence of this method. Therefore, if a phenomenon is very poorly experimentally studied (i.e. there are insufficient constraints), then anything can be predicted using MaxEnt (i.e. there are no truth criteria). In contrast, when MaxEP or MaxEnt are considered as physical principles, there are far fewer possibilities for drawing arbitrary conclusions. Methods that predict something specific for poorly studied phenomena (from which their falsifiability derives) are especially valuable.
 
7
If this cannot be achieved by selecting the constraints, then other kinds of informational entropy can always be used, for example, by Tsallis, Abe, Kullback, and many others [23, 30].
 
Literatur
1.
Zurück zum Zitat Martyushev, L.M., Seleznev, V.D.: Maximum entropy production principle in physics, chemistry and biology. Phys. Report 426(1), 1–45 (2006)MathSciNetCrossRef Martyushev, L.M., Seleznev, V.D.: Maximum entropy production principle in physics, chemistry and biology. Phys. Report 426(1), 1–45 (2006)MathSciNetCrossRef
2.
Zurück zum Zitat Kleidon, A., Lorenz, R.D. (eds.): Non-equilibrium Thermodynamics and the Production of Entropy in Life, Earth, and Beyond. Springer, Heidelberg (2004) Kleidon, A., Lorenz, R.D. (eds.): Non-equilibrium Thermodynamics and the Production of Entropy in Life, Earth, and Beyond. Springer, Heidelberg (2004)
3.
Zurück zum Zitat Ozawa, H., Ohmura, A., Lorenz, R.D., Pujol, T.: The second law of thermodynamics and the global climate systems—a review of the maximum entropy production principle. Rev. Geophys. 41(4), 1018–1042 (2003)CrossRef Ozawa, H., Ohmura, A., Lorenz, R.D., Pujol, T.: The second law of thermodynamics and the global climate systems—a review of the maximum entropy production principle. Rev. Geophys. 41(4), 1018–1042 (2003)CrossRef
4.
Zurück zum Zitat Dewar, R.: Information theory explanation of the fluctuation theorem, maximum entropy production and self-organized criticality in non-equilibrium stationary state. J. Phys. A: Math. Gen. 36, 631–641 (2003)MathSciNetCrossRefMATH Dewar, R.: Information theory explanation of the fluctuation theorem, maximum entropy production and self-organized criticality in non-equilibrium stationary state. J. Phys. A: Math. Gen. 36, 631–641 (2003)MathSciNetCrossRefMATH
5.
Zurück zum Zitat Dewar, R.: Maximum entropy production and the fluctuation theorem. J. Phys. A: Math. Gen. 38, L371–L381 (2005) Dewar, R.: Maximum entropy production and the fluctuation theorem. J. Phys. A: Math. Gen. 38, L371–L381 (2005)
6.
Zurück zum Zitat Grinstein, G., Linsker, R.: Comments on a derivation and application of the ‘maximum entropy production’ principle. J. Phys. A: Math. Theor. 40, 9717–9720 (2007)MathSciNetCrossRefMATH Grinstein, G., Linsker, R.: Comments on a derivation and application of the ‘maximum entropy production’ principle. J. Phys. A: Math. Theor. 40, 9717–9720 (2007)MathSciNetCrossRefMATH
7.
Zurück zum Zitat Dewar, R.C.: Maximum entropy production as an inference algorithm that translates physical assumptions into macroscopic predictions: don’t shoot the messenger. Entropy 11, 931–944 (2009)CrossRef Dewar, R.C.: Maximum entropy production as an inference algorithm that translates physical assumptions into macroscopic predictions: don’t shoot the messenger. Entropy 11, 931–944 (2009)CrossRef
8.
Zurück zum Zitat Dewar, R.C., Maritan, A.: The theoretical basis of maximum entropy production. (Chapter in this book) Dewar, R.C., Maritan, A.: The theoretical basis of maximum entropy production. (Chapter in this book)
9.
Zurück zum Zitat Niven, R.K.: Steady state of a dissipative flow-controlled system and the maximum entropy production principle. Phys. Rev. E 80, 021113, (15 pp) (2009) Niven, R.K.: Steady state of a dissipative flow-controlled system and the maximum entropy production principle. Phys. Rev. E 80, 021113, (15 pp) (2009)
10.
Zurück zum Zitat Dyke, J., Kleidon, A.: The maximum entropy production principle: its theoretical foundations and applications to the earth system. Entropy 12, 613–630 (2010)CrossRef Dyke, J., Kleidon, A.: The maximum entropy production principle: its theoretical foundations and applications to the earth system. Entropy 12, 613–630 (2010)CrossRef
11.
Zurück zum Zitat Jones, W.: Variational principles for entropy production and predictive statistical mechanics. J. Phys. A: Math. Gen. 16, 3629–3635 (1983)CrossRefMATH Jones, W.: Variational principles for entropy production and predictive statistical mechanics. J. Phys. A: Math. Gen. 16, 3629–3635 (1983)CrossRefMATH
12.
Zurück zum Zitat Martyushev, L.M.: The maximum entropy production principle: two basic questions. Phil. Trans. R. Soc. B 365, 1333–1334 (2010)CrossRef Martyushev, L.M.: The maximum entropy production principle: two basic questions. Phil. Trans. R. Soc. B 365, 1333–1334 (2010)CrossRef
13.
14.
15.
Zurück zum Zitat Ziegler, H.: Some extremum principles in irreversible thermodynamics. In: Sneddon, I.N., Hill, R. (eds.) Progress in Solid Mechanics, vol. 4, pp. 91–193. North-Holland, Amsterdam (1963) Ziegler, H.: Some extremum principles in irreversible thermodynamics. In: Sneddon, I.N., Hill, R. (eds.) Progress in Solid Mechanics, vol. 4, pp. 91–193. North-Holland, Amsterdam (1963)
16.
Zurück zum Zitat Ziegler, H.: An Introduction to Thermomechanics. North-Holland, Amsterdam (1983)MATH Ziegler, H.: An Introduction to Thermomechanics. North-Holland, Amsterdam (1983)MATH
17.
Zurück zum Zitat Martyushev, L.M., Konovalov, M.S.: Thermodynamic model of nonequilibrium phase transitions. Phys. Rev. E. 84(1), 011113, (7 pages) (2011) Martyushev, L.M., Konovalov, M.S.: Thermodynamic model of nonequilibrium phase transitions. Phys. Rev. E. 84(1), 011113, (7 pages) (2011)
18.
20.
Zurück zum Zitat Filyukov, A.A., Karpov, V.Ya.: Method of the most probable path of evolution in the theory of stationary irreversible processes. J. Engin. Phys. Thermophys. 13(6), 416–419 (1967) Filyukov, A.A., Karpov, V.Ya.: Method of the most probable path of evolution in the theory of stationary irreversible processes. J. Engin. Phys. Thermophys. 13(6), 416–419 (1967)
21.
Zurück zum Zitat Monthus, C.: Non-equilibrium steady state: maximization of the Shannon entropy associated with the distribution of dynamical trajectories in the presence of constraints. J. Stat. Mechanics: Theor. Exp. 3, P03008 (36 pp) (2011) Monthus, C.: Non-equilibrium steady state: maximization of the Shannon entropy associated with the distribution of dynamical trajectories in the presence of constraints. J. Stat. Mechanics: Theor. Exp. 3, P03008 (36 pp) (2011)
22.
Zurück zum Zitat Smith, E.: Large-deviation principle, stochastic effective actions, path entropies, and the structure and meaning of thermodynamic descriptions. Rep. Prog. Phys. 74, 046601 (38 pp) (2011) Smith, E.: Large-deviation principle, stochastic effective actions, path entropies, and the structure and meaning of thermodynamic descriptions. Rep. Prog. Phys. 74, 046601 (38 pp) (2011)
23.
Zurück zum Zitat Stock, G., Ghosh, K., Dill, K.A.: Maximum Caliber: a variational approach applied to two-state dynamics. J. Chem. Phys. 128, 194102 (12 pp) (2008) Stock, G., Ghosh, K., Dill, K.A.: Maximum Caliber: a variational approach applied to two-state dynamics. J. Chem. Phys. 128, 194102 (12 pp) (2008)
24.
Zurück zum Zitat Ge, H., Presse, S., Ghosh, K., Dill, K.A.: Markov processes follow from the principle of maximum caliber. J. Chem. Phys. 136, 064108 (5 pp) (2012) Ge, H., Presse, S., Ghosh, K., Dill, K.A.: Markov processes follow from the principle of maximum caliber. J. Chem. Phys. 136, 064108 (5 pp) (2012)
25.
Zurück zum Zitat Ghosh, K., Dill, K.A., Inamdar, M.M., Seitaridou, E., Phillips, R.: Teaching the principles of statistical dynamics. Am. J. Phys. 74(2), 123–133 (2006)CrossRef Ghosh, K., Dill, K.A., Inamdar, M.M., Seitaridou, E., Phillips, R.: Teaching the principles of statistical dynamics. Am. J. Phys. 74(2), 123–133 (2006)CrossRef
26.
Zurück zum Zitat Landau, L.D., Lifshitz E.M.: Statistical Physics, Part 1. vol. 5. Butterworth-Heinemann, Oxford (1980) Landau, L.D., Lifshitz E.M.: Statistical Physics, Part 1. vol. 5. Butterworth-Heinemann, Oxford (1980)
27.
Zurück zum Zitat De Groot, S.R., Mazur, P.: Non-Equilibrium Thermodynamics. North-Holland, Amsterdam (1962) De Groot, S.R., Mazur, P.: Non-Equilibrium Thermodynamics. North-Holland, Amsterdam (1962)
28.
Zurück zum Zitat van Kampen, N.G.: Stochastic Processes in Physics and Chemistry. Elsevier, New York (2007) van Kampen, N.G.: Stochastic Processes in Physics and Chemistry. Elsevier, New York (2007)
29.
Zurück zum Zitat Onsager, L.: Reciprocal Relations in irreversible processes II. Phys. Rev. 38, 2265–2279 (1953)CrossRef Onsager, L.: Reciprocal Relations in irreversible processes II. Phys. Rev. 38, 2265–2279 (1953)CrossRef
30.
Zurück zum Zitat Onsager, L., Machlup, S.: Fluctuations and irreversible processes. Phys Rev. 91(6), 1505–1512 (1953) Onsager, L., Machlup, S.: Fluctuations and irreversible processes. Phys Rev. 91(6), 1505–1512 (1953)
31.
Zurück zum Zitat Beck, C.: Generalised information and entropy measures in physics. Contemp. Phys. 50(4), 495–510 (2009)CrossRef Beck, C.: Generalised information and entropy measures in physics. Contemp. Phys. 50(4), 495–510 (2009)CrossRef
32.
Zurück zum Zitat Martyushev, L.M.: e-print arXiv:1011.4137 Martyushev, L.M.: e-print arXiv:1011.4137
33.
Zurück zum Zitat Reichenbach, H.: The Direction of Time. University of California Press, California (1991) Reichenbach, H.: The Direction of Time. University of California Press, California (1991)
34.
Zurück zum Zitat Grunbaum, A.: Philosophical Problems of Space and Time. Knopf, New York (1963) Grunbaum, A.: Philosophical Problems of Space and Time. Knopf, New York (1963)
35.
Zurück zum Zitat Reichenbach, H.: The Philosophy of Space and Time. Dover, New York (1958)MATH Reichenbach, H.: The Philosophy of Space and Time. Dover, New York (1958)MATH
36.
Zurück zum Zitat Caldeira, K.: The maximum entropy principle: a critical discussion. An editorial comment. Clim. Change 85, 267–269 (2007)CrossRef Caldeira, K.: The maximum entropy principle: a critical discussion. An editorial comment. Clim. Change 85, 267–269 (2007)CrossRef
38.
Zurück zum Zitat Lavenda, B.H.: Statistical Physics. A Probabilistic Approach. Wiley, New York (1991) Lavenda, B.H.: Statistical Physics. A Probabilistic Approach. Wiley, New York (1991)
Metadaten
Titel
Fluctuations, Trajectory Entropy and Ziegler’s Maximum Entropy Production Principle
verfasst von
Vladimir D. Seleznev
Leonid M. Martyushev
Copyright-Jahr
2014
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-642-40154-1_5