Skip to main content

Coding and Computation in the Cortex: Single-Neuron Activity and Cooperative Phenomena

  • Conference paper
Information Processing in the Cortex

Abstract

There is widespread consensus among neurophysiologists and neuropsychologists that neurons are involved in information processing and computations carried out by the brain. Yet there is still remarkably little understanding of the mechanisms underlying these processes. Similarly, also the nature of the neural code (or codes) being used by the brain is still very much open for discussion. In view of this, it is essential to consider different alternatives. Not only does each of them dictate a way of thinking about brain mechanisms, they also suggest different experimental approaches toward experimental studies of these mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abeles M, Assaf J, Gottlieb Y, Hodis H, Vaadia E (1975) Speculation on a neural substrate for immediate memory. Sensory Physiology and Behavior 15:117–126

    Google Scholar 

  • Abeles M, Goldstein MH (1977) Multiple spike train analysis. Proc. IEEE 65:762–773

    Google Scholar 

  • Abeles, M. (1982a) Local cortical circuits. An electrophysiological study. Springer, Berlin

    Google Scholar 

  • Abeles M (1982b) Quantification, smoothing, and confidence limits for single units’ histograms. J Neurosci Meth 5:317–325

    CAS  Google Scholar 

  • Abeles M (1983) The quantification and graphic display of correlations among three spike trains. IEEE Trans Biomed Engin BME-30:236–239

    Google Scholar 

  • Abeles M, de Ribaupierre F, de Ribaupierre E (1983) Detection of single unit responses which are loosely time-locked to a stimulus. IEEE Trans Syst Man Cyber SMC-13:683–691

    Google Scholar 

  • Abeles M, Gerstein GL (1988) Detecting spatiotemporal firing patterns among simultaneously recorded single neurons. J Neurophysiol 60:909–924

    CAS  PubMed  Google Scholar 

  • Abeles M, Vaadia E, Bergman H (1990) Firing patterns of single units in the prefrontal cortex and neural network models. Network 1:13–35

    Google Scholar 

  • Abeles M (1991) Corticonics. Neural circuits in the cerebral cortex. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Aertsen AMHJ, Gerstein GL (1985) Evaluation of neuronal connectivity: sensitivity of cross correlation. Brain Res 340:341–354

    CAS  PubMed  Google Scholar 

  • Aertsen A, Gerstein G, Johannesma, P (1986) From neuron to assembly: Neuronal organisation and stimulus representation. In: Palm G, Aertsen A (eds) Brain Theory. Springer, Berlin, pp 7–24

    Google Scholar 

  • Aertsen A, Bonhoeffer T, Krüger J (1987) Coherent activity in neuronal populations: analysis and interpretation. In: Caianiello, ER (ed) Physics of Cognitive Processes. World Scientific Publishing, Singapore, pp 1–34

    Google Scholar 

  • Aertsen AMHJ, Gerstein GL, Habib MK, Palm G (1989) Dynamics of neuronal firing correlation: modulation of “effective connectivity”. J Neurophysiol 61:900–917

    CAS  PubMed  Google Scholar 

  • Aertsen AMHJ, Gerstein GL (1991) Dynamic aspects of neuronal cooperativity: fast stimulus-locked modulations of ‘effective connectivity’. In: Krüger J. (ed) Neuronal Cooperativity. Springer, Berlin, p 52–67

    Google Scholar 

  • Aertsen A, Preissl H (in press, 1991) Dynamics of activity and connectivity in physiological neuronal networks. In: Schuster H (ed) Nonlinear dynamics and neuronal networks. VCH Verlag, Weinheim

    Google Scholar 

  • Ahissar E, Vaadia E (1990) Oscillatory activity of single units in a somatosensory cortex of an awake monkey and their possible role in texture analysis. Proc Natl Acad Sci USA 87:8935–8939

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ahissar M, Ahissar E, Bergman H, Vaadia E (1992) Encoding of sound source location and movement: activity of single neurons and interaction between adjacent neurons in the monkey auditory cortex. J Neurophysiol (in press)

    Google Scholar 

  • Allum JHJ, Hepp-Reymond MC, Gysin R (1982) Cross-correlation analysis of intemeuronal connectivity in the motor cortex of the monkey. Brain Res 231:325–334

    CAS  PubMed  Google Scholar 

  • Amit D (1989) Modeling brain function. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Barlow HB (1972) Single units and sensation: A neuron doctrine for percepteral psychology. Perception 1:371–394.

    CAS  PubMed  Google Scholar 

  • Bedenbaugh PH, Gerstein GL, Boven K-H, Aertsen AMHJ (1988) The meaning of stimulus dependent changes in cross correlation between neuronal spike trains. Soc Neurosci Abstr 14:651

    Google Scholar 

  • Bedenbaugh PH, Gerstein GL, Aertsen AMHJ (1990) Dynamic convergence in neural assemblies. Soc Neurosci Abstr 16:1224

    Google Scholar 

  • Bialek W, Rieke F, de Ruyter van Steveninck R, Wariand D (1991) Reading a neural code. Science 252:1854–1857

    CAS  PubMed  Google Scholar 

  • Boven K-H, Aertsen A (1989) Dynamics of activity in neuronal networks give rise to fast modulations of functional connectivity. In: Eckmiller R et al. (eds) Parallel processing in neural systems and computers. Elsevier Science Publishers, pp 53–56

    Google Scholar 

  • Braitenberg V (1978) Cell assemblies in the cerebral cortex. In: Heim R, Palm G (eds) Theoretical Approaches to Complex Systems. Lecture Notes in Biomathematics, Vol. 21. Springer, Berlin Heidelberg New York, pp 171–188

    Google Scholar 

  • Braitenberg V, Schüz A (1991) Anatomy of the cortex. Statistics and geometry. Springer, Berlin

    Google Scholar 

  • Butters N, Pandya D (1969) Retention of delayed alternation: Effect of selective lesions of sulcus principalis. Science 165:1271–1273

    CAS  PubMed  Google Scholar 

  • Dayhoff JE, Gerstein GL (1983) Favored patterns in spike trains. 1. Detection. J Neurophysiol 49:1334–1348

    CAS  PubMed  Google Scholar 

  • Dayhoff JE, Gerstein GL (1983) Favored patterns in spike trains. IL Application. J Neurophysiol 49:1349–1363

    CAS  PubMed  Google Scholar 

  • Deeke L, Komhuber HH, Lang W, Lang M, Shreiber H (1985) Timing function of the frontal cortex in sequential motor cortex in motor and learning tasks. Human Neurobiol 4:143–154

    Google Scholar 

  • Dickson JW, Gerstein GL (1974) Interactions between neurons in auditory cortex of the cat. J Neurophysiol 37:1239–1261

    CAS  PubMed  Google Scholar 

  • Donchin E (ed) (1984) Cognitive Psychophysiology. The Carmal Conferences. Vol. 1. Erlbaum Pub., New Jersey

    Google Scholar 

  • Eckhom R, Bauer R, Jordan W, Kruse W, Münk M, Reitboeck HJ (1988) Coherent oscillations: a mechanism of feature linking in the visual cortex? Multiple electrode and correlation analysis in the cat. Biol Cybem 60:121–130

    Google Scholar 

  • Eckhom R, Reitboeck HJ, Arndt M, Dicke P (1990) Feature linking via a synchronization among distributed assemblies: simulations of results from cat visual cortex. Neural Computation 2:293–307

    Google Scholar 

  • Eckhom R (1991) Stimulus-specific synchronisations in visual cortex: linking features into global figures? In: Krüger J (ed) Neural Cooperativity. Springer, Berlin Heidelberg New York, pp 184–219

    Google Scholar 

  • Edelman GM (1981) Group selection as the basis for higher brain function. The organization of the cerebral cortex. In: Proc of a neuroscience research program colloquium. Schmitt et. al. (eds) The MIT Press, Cambridge, pp 536–563

    Google Scholar 

  • Eggermont JJ (1990) The correlative brain. Theory and experiment in neural interaction. Springer, Berlin

    Google Scholar 

  • Eggermont JJ, Epping WJM, Aertsen AMHJ (1983) Stimulus dependent neural correlations in the auditory midbrain of the grassfrog (Rana temporaria L.). Biol Cybem 47:103–117

    CAS  Google Scholar 

  • Erb M, Palm G, Aertsen A, Bonhoeffer T (1986) Functional versus structural connectivity in neuronal nets. In: Strukturbildung und Musteranalyse, Proc. 9th Cybemetics Congress (DGK) Göttingen (FRG), p 23

    Google Scholar 

  • Erb M, Aertsen A, Palm G (1989) Functional connectivity in neuronal systems: context-dependence of effective network organization does not require synaptic plasticity. In: Eisner N, Singer W (eds) Dynamics and plasticity in neuronal systems. Thieme, Stuttgart, New York, p 445

    Google Scholar 

  • Erb M, Aertsen A, Palm G (1990) Stability in physiology-oriented neuronal network models. In: Eisner N, Roth G (eds) Brain — Perception — Cognition. Thieme, Stuttgart, New York, p 527

    Google Scholar 

  • Evarts EV, Shinoda Y, Wise SP (1984) Neurophysiological approach to higher brain function. Wiley Intersciences Press, New York

    Google Scholar 

  • Frostig R, Gottlieb Y, Vaadia E, Abeles M (1983) The effects of stimuli on the activity and functional connectivity of local neuronal groups in the cat auditory cortex. Brain Res 272:211–221

    CAS  PubMed  Google Scholar 

  • Frostig R, Frostig Z, Frysinger R, Schechtman V (1985) Multineuron analysis reveals complex patterns of interaction among neurons. Soc Neurosci Abstr 11:1020

    Google Scholar 

  • Fuster JM (1973) Unit activity in the prefrontal cortex during delayed response performance: neuronal correlates of transient memoiy. J Neurophysiol 36:61–78

    CAS  PubMed  Google Scholar 

  • Fuster JM (1989) The prefrontal cortex. Anatomy, physiology, and neuropsychology of the frontal lobe. Raven Press, New York

    Google Scholar 

  • Gassanov UG, Galashina AG, Bogdanov AV (1980) A study of neuron systems activity in learning. Neural Mechanisms of Goal-Directed Behavior and Learning 341–352

    Google Scholar 

  • Gerstein GL, Bloom MJ, Espinosa IE, Evanczuk S, Turner MR (1983) Design of a laboratory for multi-neuron studies. IEEE Trans Systems, Man and Cybernetics SMC-13:668–676

    Google Scholar 

  • Gerstein G, Perkel D, Dayhoff J (1985) Cooperative firing activity in simultaneously recorded populations of neurons: detection and measurement. J Neurosci 5:881–889

    CAS  PubMed  Google Scholar 

  • Gerstein G, Aertsen A (1985) Representation of cooperative firing activity among simultaneously recorded neurons. J Neurophysiol 54:1513–1527

    CAS  PubMed  Google Scholar 

  • Gerstein GL (1988) Information flow and state in cortical neural networks: Interpreting multi-neuron experiments. In: von Seelen W, Shaw G, Leinhos UM (eds) Organization of neural networks. VCH Verlag, Weinheim (FRG), pp 53–75

    Google Scholar 

  • Gerstein GL, Bedenbaugh P, Aertsen AMHJ (1989) Neuronal Assemblies. IEEE Trans on Biomed Engin 36:4–14

    CAS  Google Scholar 

  • Georgopoulos AP, Kettner RE, Schwartz AB (1988) Primate motor cortex and free arm movements to visual targets in three-dimensional space. II. Coding of the direction of movement by a neuronal population. J Neurosci 8:2928–2937

    CAS  PubMed  Google Scholar 

  • Georgopoulos AP, Lurito JT, Petrides M, Schwartz AB, Massey JT (1989) Mental rotation of the neuronal population vector. Science 243:234–236

    CAS  PubMed  Google Scholar 

  • Gielen CCAM, Hesselmans GHFM, Johannesma PIM (1988) Sensory interpretation of neural activity patterns. Math Biosci 92:15–35

    Google Scholar 

  • Goldberg ME, Segraves MA (1987) Visuospatial and motor attention in the monkey. Neuropsychologia 25(1A): 107–118

    CAS  PubMed  Google Scholar 

  • Goldman PS, Nauta WJH (1977) Columnar distribution of cortico-cortical fibers in the frontal association, limbic and motor cortex of the developing Rhesus monkey. Brain Res 122:393–413

    CAS  PubMed  Google Scholar 

  • Goldman-Rakic PS (1987) Circuitry of primate prefrontal cortex and the regulation of behavior by representational knowledge. In: Mountcastle VB, Plum F (eds) The Nervous System, Vol. V, Handbook of Physiology. Am Physiol Soc, Bethesda, MD, pp 373–417

    Google Scholar 

  • Gottlieb Y, Vaadia E, Abeles M (1989) Single unit activity in the auditory cortex of a monkey performing a short term memory to tones task. Exp Brain Res 74:139–148

    CAS  PubMed  Google Scholar 

  • Gray CM, Singer W (1989) Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. Proc Natl Acad Sci USA 86:1698–1702

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gray CM, König P, Engel AK, Singer W (1989) Oscillatory responses in cat visual cortex exhibit inter-columnar synchronisation which reflects global stimulus properties. Nature 388:334–337

    Google Scholar 

  • Hebb D (1949) The organization of behavior. A neuropsychological theory. Wiley, New York

    Google Scholar 

  • Hesselmans GHFM, Johannesma PIM (1989) Spectro-temporal interpretation of activity patterns of auditoiy neurons. Math Biosci 93:31–51

    CAS  PubMed  Google Scholar 

  • Hopfield JJ (1982) Neuronal networks and physical systems with emeigent collective computational abilities. Proc Natl Acad Sci USA, 79:2554–2556

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hopfield JJ and Tank DW (1986) Computing with neural circuits: A model. Science 233:625–633

    CAS  PubMed  Google Scholar 

  • Hubel DH, Wiesel TN (1968) Receptive fields and functional architecture of monkey striate cortex. J Physiol 195:215–243

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hubel DH, Wiesel TN (1977) Functional architecture of macaque monkey visual cortex (Ferrier Lecture). Proc Roy Soc London, Vol. B. 198:1–59

    CAS  Google Scholar 

  • Johannesma PIM (1981) Neural representation of sensory stimuli and sensory interpretation of neural activity. In: Szekely Gy, Labos E, Damjanovich S (eds) Neural communication and control. Adv Physiol Sci 30:103–125

    Google Scholar 

  • Johannesma P, Aertsen A, van den Boogaard H, Eggermont J, Epping W (1986) From synchrony to harmony: Ideas on the function of neural assemblies and on the interpretation of neural synchrony. In: Palm G, Aertsen A (eds) Brain Theory. Springer, Berlin Heidelberg New York, pp 25–47

    Google Scholar 

  • König P, Schillen TB (1991) Stimulus-dependent assembly formation of oscillatoiy responses. 1: Synchronisation. Neural Computation 3:155–167

    Google Scholar 

  • Krüger J (1983) Simultaneous individual recordings from many cerebral neurons: techniques and results. Rev Physiol Biochem Pharmacol 98:177–233

    PubMed  Google Scholar 

  • Krüger J, Aiple F (1988) Multimicroelectrode investigation of monkey striate cortex: spike trains correlations in infragranular layers. J Neurophysiol 60(2):798–828

    PubMed  Google Scholar 

  • Krüger J (1991) Spike train correlations on slow time scales in monkey visual cortex. In: Krüger J (ed) Neuronal Cooperativity. Springer, Berlin, pp 105–132

    Google Scholar 

  • Lavner Y (1989) Functional interactions between cells in the prefrontal cortex of behaving monkeys. M.Sc. Thesis (in Hebrew), Hebrew University, Jerusalem

    Google Scholar 

  • Lee C, Rohrer WH, Sparks DL (1988) Population coding of saccadic eye movements by neurons in the superior colliculus. Nature 332:357–360

    CAS  PubMed  Google Scholar 

  • Legendy C, Salcmann M (1985) Bursts and recurrences of bursts in the spike trains of spontaneously active striate cortex neurons. J Neurophysiol 53:926–939

    CAS  PubMed  Google Scholar 

  • Lurito JT, Schwartz AB, Petrides M, Kettner RE, Georgopoulos AP (1988) Crosscorrelations between motor cortical cells simultaneously recorded during reaching task in the monkey. Soc Neurosci Abst 14:142.5

    Google Scholar 

  • Moore GP, Perkel DH, Segundo JP (1966) Statistical analysis and functional interpretation of neuronal spike data. Ann Rev Physiol 28:493–522

    CAS  Google Scholar 

  • Moore GP, Segundo JP, Perkel DH, Levitan H (1970) Statistical signs of synaptic interactions in neurons. Biophys J 10:876–900

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mountcastle VB (1957) Modality and topographic properties of single neurons of cat’s somatic sensory cortex. J Neurophysiol 20:408–434

    CAS  PubMed  Google Scholar 

  • Mountcastle VB (1977) An organizing principle for cerebral function: the unit module and the distributed system. In: Edelman GM, Mountcastle VB (eds) The Mindful Brain. MIT Press, Cambridge (MA), pp 7–50

    Google Scholar 

  • Murphy JT, Kwan HC, Wong YC (1985) Cross-correlation studies in primate motor cortex: Synaptic interaction and shared input. Can J Neurol Sci 12:11–23

    CAS  PubMed  Google Scholar 

  • Neven H, Aertsen A (1992) Rate coherence and event coherence in the visual cortex: a neuronal model of object recognition (submitted)

    Google Scholar 

  • Niki H, Watanabe M (1976) Pre-frontal unit activity and delayed response: Relation to cue location versus direction of response. Brain Res 105:79–88

    CAS  PubMed  Google Scholar 

  • Niki H, Watanabe M (1979) Prefrontal and cingulate unit activity during timing behavior in the monkey. Brain Res 171:213–224

    CAS  PubMed  Google Scholar 

  • Optican LM, Richmond B (1987) Temporal encoding of two-dimensional patterns by single units in primate inferior temporal cortex. III. Information theoretic analysis. J Neurophysiol 57:162–178

    CAS  PubMed  Google Scholar 

  • Palm G (1982) Neural assemblies. An alternative approach to artificial intelligence. Springer, Berlin

    Google Scholar 

  • Palm G, Aertsen A (1986) Brain Theory. Springer, Berlin

    Google Scholar 

  • Palm G, Aertsen AMHJ, Gerstein GL (1988) On the significance of correlations among neuronal spike trains. Biol Cybem 59:1–11

    CAS  Google Scholar 

  • Passingham RE (1975) Delayed matching after selective prefrontal lesions in monkeys (macaca mulata). Brain Res 92:89–102

    CAS  PubMed  Google Scholar 

  • Perkel DH, Gerstein GL, Moore GP (1967) Neuronal spike trains and stochastic point processes. 11. Simultaneous spike trains. Biophys J 7:419–440

    CAS  PubMed Central  PubMed  Google Scholar 

  • Perkel DH, Bullock TH (1968) Neural Coding. Neurosci Res Progr Bull Vol. 6

    Google Scholar 

  • Perkel DH, Gerstein GL, Smith M, Tatton WG (1975) Nerve-impulse patterns: a quantitative display technique for three neurons. Brain Res 100:271–296

    CAS  PubMed  Google Scholar 

  • Perrett DI, Rolls ET, Caan W (1982) Visual neurons responsive to faces in monkey temporal cortex. Exp Brain Res 47:329–342

    CAS  PubMed  Google Scholar 

  • Petrides M (1986) The effect of periarcuate lesions in the monkey on performance of symmetrically and asymmetrically reinforced and auditory go, no-go tasks. J Neurosci 6:2054–2063

    CAS  PubMed  Google Scholar 

  • Richmond BJ, Optican LM (1987) Temporal encoding of two-dimensional patterns by single units in primate inferior temporal cortex. IL Quantification of response waveform. J Neurophysiol 57:147–161

    CAS  PubMed  Google Scholar 

  • Rumelhart DE, McClelland JL, and the PDP Research Group (1986) Parallel distributed processing. Explorations in the microstructure of cognition. MIT Press, Cambridge, Mass.

    Google Scholar 

  • Schillen TB, König P (1991) Stimulus-dependent assembly formation of oscillatory responses. 2: Desynchronisation. Neural Computation 3:167–178

    Google Scholar 

  • Sompolinsky H, Golomb D, Kleinfeld D (1990) Global processing of visual stimuli in a network of coupled oscillators. Proc Natl Acad Sci USA 87:7200–7204

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sompolinsky H, Golomb D, Kleinfeld D (1991) Cooperative dynamics in visual processing. Physical Rev A 43:6990–7011

    Google Scholar 

  • Sporns O, Gaily JA, Reeke GN Jr, Edelman GM, (1989) Reentrant signaling among simulated neuronal groups leads to coherency in their oscillatoiy avtivity. Proc Natl Acad Sci USA 86:7265–7269

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stevens JK, Gerstein GL (1976) Interactions between cat lateral geniculate neurons. J Neurophysiol 39:239–256

    CAS  PubMed  Google Scholar 

  • Toyama K, Kimura M and Tanaka K (1981) Crosscorelation analysis of interneuronal connectivity in cat visual cortex. J Neurophysiol 46:191–201

    CAS  PubMed  Google Scholar 

  • Vaadia E, Benson DA, Hienz RD, Goldstein MH, Jr. (1986) Unit study of monkey frontal cortex: active localization of auditory and visual stimuli. J Neurophysiol 56:934–952

    CAS  PubMed  Google Scholar 

  • Vaadia E, Abeles M (1987) Temporal firing patterns of single units, pairs and triplets of units in the auditory cortex. J Isr Med Sci 23:75–83

    CAS  Google Scholar 

  • Vaadia E, Kurata K, Wise SP (1988) Neuronal activity preceding directional and nondirectional cues in the premotor cortex of rhesus monkeys. Somatosensory and Motor Res 6:207–2309

    CAS  Google Scholar 

  • Vaadia E, Bergman H, Abeles M (1989) Neuronal activities related to higher brain functions — theoretical and experimental implications. IEEE Trans on Biomed Engin 36:25–35

    CAS  Google Scholar 

  • Vaadia E, Ahissar E, Bergman H, Lavner Y (1991) Correlated activity of neurons: a neural code for higher brain functions? In: Krüger J (ed) Neuronal Cooperativity. Springer, Berlin, p 249–279

    Google Scholar 

  • van Gisbergen JAM, van Opstal AJ, Tax AA (1987) Collicular ensemble coding of saccades based on vector summation. Neurosci 21:541–555

    Google Scholar 

  • Vogels R (1990) Population coding of stimulus orientation by striate cortical cells. Biol Cybem 64:25–31

    CAS  Google Scholar 

  • von der Malsburg C (1981) The correlation theory of brain function. Internal report 81–2. Max-Planck-Institute for Biophysical Chemistry, Göttingen (FRG)

    Google Scholar 

  • von der Malsburg C (1986) Am I thinking assemblies? In: Palm G, Aertsen A (eds) Brain Theory. Springer, Berlin Heidelberg New York, pp 161–176

    Google Scholar 

  • Watanabe M (1986a) Prenatal unit activity during delayed conditional go/nogo discrimination in monkey I. Relation to stimulus. Brain Res 382:1–14

    CAS  PubMed  Google Scholar 

  • Watanabe M (1986b) Prefrontal unit activity during delayed conditional go/nogo discrimination in monkey IL Relation to go and nogo responses. Brain Res 382:15–27

    CAS  PubMed  Google Scholar 

  • Wise SP, Mauritz KH (1985) Set related neuronal activity in the premotor cortex of rhesus monkeys: effects of changes in motor set. Proc R Soc Lond B 223:331–354

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Vaadia, E., Aertsen, A. (1992). Coding and Computation in the Cortex: Single-Neuron Activity and Cooperative Phenomena. In: Aertsen, A., Braitenberg, V. (eds) Information Processing in the Cortex. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-49967-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-49967-8_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-49969-2

  • Online ISBN: 978-3-642-49967-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics