Skip to main content

Plant Breeding: Male Sterility in Higher Plants - Fundamentals and Applications

  • Chapter

Part of the book series: Progress in Botany ((BOTANY,volume 60))

Abstract

Under normal conditions, plants undergo a life cycle that consits of an alternating vegetative sporophytic generation and a much-reduced sexual gametophytic generation. During these cycles, seeds germinate, the mature plant organs differentiate, and finally vegetative growth terminates in flower formation, which in principle leads to sepals, petals, anthers, and carpels. Male sterile mutants which cannot produce fertile pollen or functional anthers can often be observed in higher plant species. In this chapter we differentiate between nuclear and cytoplasmicnuclear male sterility (CMS); the latter is particularly useful for production of hybrid seed, which is the main application of CMS. To date, Fl hybrid varieties are produced in most agricultural and horticultural crops. The successful exploitation of heterosis requires a simple and reliable system to produce female parents and perform crosses for the production of hybrid seed. Without a CMS system, male floral organs must be removed mechanically, which is usually not economical nor practical. While nuclear male sterility is based solely on mutations which occur in nuclear genes, CMS is maternally inherited and based on changes in mitochondrial gene expression as influenced by nuclear genes. Importantly, the CMS phenotype may be corrected by nuclear fertility restoration (RF) genes. In the first section, we discuss anther and pollen development and present recent molecular data as well. In the second part, some of the most important CMS systems are presented. Finally, approaches to genetically engineering male sterility in higher plants are discussed. Genetically engineered male sterility may be applied to any crop, including those crops where CMS systems are not available or are unreliable. This area thus has a tremendous potential in plant breeding.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aarts MGM, Dirkse WG, Stiekema WJ, Pereira A (1993) Transposon tagging of a male sterility gene in Arabidopsis. Nature 363:715–717

    Article  PubMed  CAS  Google Scholar 

  • Aarts MGM, Hodge R, Kalantidis K, Florack D, Wilson ZA, Mulligan BJ, Stiekeman WJ, Scott R, Pereira A (1997) The Arabidopsis MALE STERILITY 2 protein shares similarity with reductases in elongation/condensation complexes. Plant J 12:615–623

    Article  PubMed  CAS  Google Scholar 

  • Abad AR, Mehrtens BJ, Mackenzie SA (1995) Specific expression in reproductive tissues and fate of a mitochondrial sterility-associated protein in cytoplasmic male-sterile bean. Plant Cell 7:271–285

    Article  PubMed  CAS  Google Scholar 

  • Akagi H, Sakamoto M, Shinjyo C, Shimada H, Fujimura T (1994) A unique sequence located downstream from the rice mitochondrial atp6 may cause male sterility. Curr Genet 25:52–58

    Article  PubMed  CAS  Google Scholar 

  • Albertsen MC, Palmer RG (1979) A comparative light- and electron-microscopic study of microsporogenesis in male sterile (msl) and male fertile soybeans. Am J Bot 66:253–265

    Article  Google Scholar 

  • Albertsen MC, Phillips RL (1981) Developmental cytology of 13 genetic male sterile loci in maize. Can J Genet Cytol 23:195–208

    Google Scholar 

  • Allison DC, Fisher WD (1964) A dominant gene for male sterility in upland cotton. Crop Sci 4:548–549

    Article  Google Scholar 

  • Bailey-Serres J, Hanson DK, Fox TD, Leaver CJ (1986) Mitochondrial genome rearrangement leads to extension and relocation of the cytochrome c oxidase subunit I gene in sorghum. Cell 47:567–576

    Article  PubMed  CAS  Google Scholar 

  • Beals TP, Goldberg RB (1997) A novel cell ablation strategy blocks tobacco anther dehiscence. Plant Cell 9:1527–1545

    Article  PubMed  CAS  Google Scholar 

  • Begu D, Graves PV, Domec C, Arselin G, Litvak S, Araya A (1990) RNA editing of wheat mitochondrial ATP synthase subunit 9: direct protein and cDNA sequencing. Plant Cell 2:1283–1290

    Article  PubMed  CAS  Google Scholar 

  • Bonhomme S, Budar R, Ferault J, Pelletier G (1991) A 2.5 kb Ncol fragment of Ogura radish mitochondrial DNA is correlated with cytoplasmic male sterility in Brassica cybrids. Curr Genet 19:121–127

    Article  CAS  Google Scholar 

  • Bonhomme S, Budar F, Lancelin D, Small I, Defrance MC, Pelletier G (1992) Sequence and transcript analysis of the Nco2.5 Ogura-specific fragment correlated with cytoplasmic male-sterility in Brassica cybrids. Mol Gen Genet 235:340–348

    Article  PubMed  CAS  Google Scholar 

  • Bonner LJ, Dickinson HG (1989) Anther dehiscence in Lycopersicon esculetum. I. Structural aspects. New Phytol 113:97–115

    Google Scholar 

  • Bowman JL, Smyth DR, Meyerowith EM (1989) Genetic directing flower development in Arabidopsis. Plant Cell 1:37–52

    Article  PubMed  CAS  Google Scholar 

  • Braun CJ, Siedow JN, Levings CS III (1990) Fungal toxins bind to the URF-13 protein in maize mitochondria and Escherichia coli. Plant Cell 2:153–161

    Article  PubMed  CAS  Google Scholar 

  • Chase CD (1994) Expression of CMS-unique and flanking mitochondrial DNNA sequences in Phaseolus vulgaris L. Curr Genet 25:245–251

    Article  PubMed  CAS  Google Scholar 

  • Chase CD, Ortega VM (1992) Organization of ATPA coding and 3’ flanking sequences associated with cytoplasmic male sterility in Phaseolus vulgaris L. Curr Genet 22:147–153

    Article  PubMed  CAS  Google Scholar 

  • Chaudhury AM (1993) Nuclear genes controlling male fertility. Plant Cell 5:1277–1283

    Article  PubMed  Google Scholar 

  • Chaudhury AM, Craig S, Farell L, Bloemer K, Dennis ES (1992) Genetic control of male fertility in higher plants. Aust J Plant Physiol 19:419–425

    Article  Google Scholar 

  • Chaumont F, Bernier B, Buxant R, Williams ME, Levings CS III, Boutry M (1995) Targeting the maize T-urfl3 product into tobacco mitochondria confers methomyl sensitivity to mitochondrial respiration. Proc Natl Acad Sci USA 92:1167–1171

    Article  PubMed  CAS  Google Scholar 

  • Chen YC, McCormick S (1996) sidecar pollen, an Arabidopsis thaliana male gametophytic mutant with abberant cell divisions during pollen development. Development Suppl 122:3243–3253

    CAS  Google Scholar 

  • Coen ES (1992) Flower development. Curr Opin Cell Biol 4:929–933

    Article  PubMed  CAS  Google Scholar 

  • Conley CA, Hanson MR (1995) How do alterations in plant mitochondrial genomes disrupt pollen development? J Bioenerg Biomemb 27:447–457

    Article  CAS  Google Scholar 

  • Conley CA, Nivison HT, Wilson RK, Hanson MR (1991) Localization of mitochondrial proteins in tissue prints of cytoplasmic male sterile (cms) and fertile Petunia lines. J Cell Biol 115:300A

    Google Scholar 

  • Covellos PS, Gray MW (1989) RNA editing in plant mitochondria. Nature 341:662–666

    Article  Google Scholar 

  • Cui X, Wise RP, Schnable PS (1996) The rf2 nuclear restorer gene of male-sterile Tcytoplasm maize. Science 272:1334–1336

    Article  PubMed  CAS  Google Scholar 

  • Dawson J, Wilson ZA, Aarts MGM, Braithwaite A, Briarty LGB, Mulligan BJ (1993) Microspore and pollen development in six male-sterile mutants of Arabidopsis thaliana. Can J Bot 71:629–638

    Article  Google Scholar 

  • Dewey RE, Levings CS III, Timothy DH (1986) Novel recombinations in the maize mitochondrial genome produce a unique transcriptional unit in the Texas male-sterile cytosplasm. Cell 44:439–449

    Article  PubMed  CAS  Google Scholar 

  • Dewey RE, Timothy DH, Levings CS III (1987) A unique mitochondrial protein associated with cytoplasmic male sterility in the T cytoplasm of maize. Proc Natl Acad Sci USA 84:5374–5378

    Article  PubMed  CAS  Google Scholar 

  • Dewey RE, Timothy DH, Levings CS III (1991) Chimeric mitochondrial genes expressed in the C male-sterile cytoplasm of maize. Curr Genet 20:475–482

    Article  PubMed  CAS  Google Scholar 

  • Dill CL, Wise RP, Schnable PS (1997) Rf8 and Rf* mediate unique T-urfl3-transcript accumulation, revealing a conserved motif associated with RNA processing and restoration of fertility restoration in T-cytoplasm maize. Genetics 147:1367–1379

    PubMed  CAS  Google Scholar 

  • Duvick DN (1965) Cytoplasmic pollen sterility in corn. Adv Genet 13:1–56

    Article  Google Scholar 

  • Esau K (1977) Anatomy of Seed Plants.Wiley, New York

    Google Scholar 

  • Escote LJ, Gabay-Laughnan SJ, Laughnan JR (1985) Cytoplasmic reversion to fertility in cms-S maize need not involve loss of linear mitochondrial plasmids. Plasmid 14:264– 267

    Article  PubMed  CAS  Google Scholar 

  • Estelle MA, Somerville CR (1987) Auxin-resistant mutants of Arabidopsis with an altered morphology. Mol Gen Genet 206:200–206

    Article  CAS  Google Scholar 

  • Flavell R (1974) A model for the mechanism of cytoplasmic male sterility in plants, with special reference to maize. Plant Sci Lett 3:259–263

    Article  Google Scholar 

  • Gabay-Laughnan S, Zabala G, Laughnan JR (1995) S-type cytoplasmic male sterility in maize. In: Levings CS III, Vasil IK (eds) The molecular biology of plant mitochondria. Kluwer, Dordrecht, pp 395–432

    Chapter  Google Scholar 

  • Goldberg R, Beals TP, Sanders PM (1993) Anther development: basic principles and practical applications. Plant Cell 5:1217–1229

    Article  PubMed  CAS  Google Scholar 

  • Grelon M, Budar F, Bonhomme S, Pelletier G (1994) Ogura cytoplasmic male-sterility (CMS)-associated orfl38 is translated into a mitochondrial membrane polypeptide in male-sterile Brassica cybrids. Mol Gen Genet 243:540–547

    Article  PubMed  CAS  Google Scholar 

  • Grossmann LI, Shoubridge EA (1996) Mitochondrial genetics and human disease. Bioessays 18:983–991

    Article  Google Scholar 

  • Gualberto JM, Lamattina L, Bonnard G, Weil JH, Grienenberger JM (1989) RNA editing in wheat mitochondria results in the conservation of protein sequences. Nature 341:660–662

    Article  PubMed  CAS  Google Scholar 

  • Handa H, Nakajima K (1992) Different organization and altered transcription of the mitochondrial atp6 gene in the male-sterile cytoplasm of rapeseed (Brassica napus L.). Curr Genet 21:153–159

    Article  PubMed  CAS  Google Scholar 

  • Handa H, Gualberto JM, Grienenberger JM (1995) Characterization of the mitochondrial orfB and its derivative orf224 a chimeric open reading frame specific to one mitochondrial genome of the Polima male-sterile cytoplasm in rapeseed (Brassica napus L.). Curr Genet 28:546–552

    Article  PubMed  CAS  Google Scholar 

  • Hanson MR, Younr EG, Rothenberg M (1988) Sequence and expression of a fused mitochondrial gene, associated with Petuni cytoplasmic male sterility, compared with normal mitochondrial genes in fertile and sterile plants. Philos Trans R Soc Lond 319:199–208

    Article  CAS  Google Scholar 

  • Hanson MR, Folkerts O (1992) Structure and function of the higher plant mitochondrial genome. Int Rev Cytol 141:129–172

    Article  CAS  Google Scholar 

  • Hanson MR, Nivison HT, Conley MR (1995) Cytoplasmic male sterility in Petunia. In: Levings CS III, Vasil IK (eds) The Molecular Biology of Plant Mitochondria. Kluwer, Boston, pp 497–514

    Chapter  Google Scholar 

  • He S, Abad AR, Gelvin SB, Mackenzie S (1996) A cytoplasmic male sterility-associated mitochondrial protein causes pollen disruption in transgenic tobacco. Proc Natl Acad Sci USA 93:11763–11768

    Article  PubMed  CAS  Google Scholar 

  • Hernould M, Shuharsono S, Litvak S, Araya A, Mouras A (1993) Male sterility induction in transgenic tobacco plants with an unedited apt9 mitochondrial gene from wheat. Proc Natl Acad Sci USA 90:2370–2374

    Article  PubMed  CAS  Google Scholar 

  • Hiesel R, Wissinger B, Schuster W, Brennicke A (1989) RNA editing in plant mitochondria. Science 246:1632–1634

    Article  PubMed  CAS  Google Scholar 

  • Horn R, Kohler RH, Zetsche K (1991) A mitochondrial 16 kDa protein is associated with cytoplasmic male sterility in sunflower. Plant Mol Biol 17:29–36

    Article  PubMed  CAS  Google Scholar 

  • Horn R, Hahn V, Friedt W (1994) Recombination: Effects on structure and function of the mitochondrial genome. Prog Bot 55:219–235

    CAS  Google Scholar 

  • Horn R, Hustedt JEG, Horstmeyer A, Hahnen A, Zetsche K, Friedt W (1996) The CMSassociated 16-kDa protein encoded by orfH522 in the PET1 cytoplasm is also present in other male-sterile cytoplasms of sunflower. Plant Mol Biol 30:523–538

    Article  PubMed  CAS  Google Scholar 

  • Houchins JP, Ginsburg H, Rohrbaugh M, Dale RMK, Schardl CL, Hodge TP, Lonsdale DM (1986) DNA sequence analysis of a 5.27-kiolobase repeat occurring adjacent to the regions of S-episome homology in maize mitochondria. EMBO J 5:2781–2788

    PubMed  CAS  Google Scholar 

  • Howad W, Kempken F (1997a) Sequence analysis and transcript processing of the mitochondrial nad3-rpsl2 genes from Sorghum bicolor. Plant Sci 129:65–68

    Article  CAS  Google Scholar 

  • Howad W, Kempken F (1997b) Cell-type specific loss of atp6 RNA editing in cytoplasmic male sterile Sorghum bicolor. Proc Natl Acad Sci USA 94:11090–11095

    Article  PubMed  CAS  Google Scholar 

  • Hu J, Rutger JN (1992) Pollen characteristics and genetics of induced and spontaneous genetic male-sterile mutants in rice. Plant Breed 109:97–107

    Article  Google Scholar 

  • Hulskamp M, Parekh NS, Grini P, Schneitz K, Zimmermann I, Lolle SJ, Pruitt RE (1997) The STUD gene is required for male-specific cytokinesis after telophase II of meiosis in Arabidopsis thaliana. Dev Biol 187:114–124

    Article  PubMed  CAS  Google Scholar 

  • Iwabuchi M, Kyozuka J, Shimamoto K (1993) Processing followed by complete editing of an altered mitochondrial atp6 RNA restores fertility of cytoplasmic male sterile rice. EMBO J 12:1437–1446

    PubMed  CAS  Google Scholar 

  • Jean M, Brown GG, Landry BS (1997) Genetic mapping of nuclear fertility restorer genes for the ‘Polima’ cytoplasmic male sterility in canola (Brassica napus L.) using DNA markers. Theor Appl Genet 95:321–328

    Article  CAS  Google Scholar 

  • Jia MH, He S, Vanhouten W, Mackenzie S (1997) Nuclear fertility restorer genes map to the same linkage group in cytoplasmic male-sterile bean. Theor Appl Genet 95:205–210

    Article  CAS  Google Scholar 

  • Johns C, Lu M, Lyznik A, Mackenzie S (1992) A mitochondrial DNA sequence is associated with abnormal pollen development in cytoplasmic male sterile bean plants. Plant Cell 4:435–449

    Article  PubMed  CAS  Google Scholar 

  • Kamps TL, McCarthy DR, Chase CD (1996) Gametophytic genetics in Zea mays L. dominance of a restoration-of-fertility allele (Rf3) in diploid pollen. Genetics 142:1001– 1007

    PubMed  CAS  Google Scholar 

  • Kaul MLH (1988) Male sterility in higher plants. Monographs on theoretical and applied genetics, vol 10. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Kennell JC, Pring DR (1989) Initiation and processing of atp6, T-urfl3 and ORF221 transcripts from mitochondria of T cytoplasm maize. Mol Gen Genet 216:16–24

    Article  CAS  Google Scholar 

  • Köhler RH, Horn R, Lossl A, Zetsche K (1991) Cytoplasmic male sterility in sunflower is correlated with the co-transcription of a new open reading frame with the atpA gene. Mol Gen Genet 227:369–376

    Article  PubMed  Google Scholar 

  • Koltunow AM, Truettner J, Cox KH, Wallroth M, Goldberg RB (1990) Different temporal and spatial gene expression patterns occur during anther development. Plant Cell 2:1201–1224

    Article  PubMed  CAS  Google Scholar 

  • Kriete G, Niehaus K, Perlick AM, Puhler A, Broer I (1996) Male sterility in transgenic tobacco plants induced by tapetum-specific deacetylation of the externally applied non-toxic compound N-acetyl-L-phosphinothricin. Plant J 9:809–818

    Article  PubMed  CAS  Google Scholar 

  • Krishnasamy S, Makaroff CA (1993) Characterization of the radish mitochondrial orfB locus: possible relationship with male sterility in Ogura radish. Curr Genet 24:156–163

    Article  PubMed  CAS  Google Scholar 

  • Krishnasamy S, Makaroff CA (1994) Organ-specific reduction in the abundance of a mitochondrial protein accompanies fertility restoration in cytoplasmic male-sterile radish. Plant Mol Biol 26:935–946

    Article  PubMed  CAS  Google Scholar 

  • Krishnasamy S, Grant RA, Makaroff CA (1994) Subunit 6 of the Fo-ATP synthase complex from cytoplasmic male-sterile radish: RNA editing and NH2-terminal protein sequencing. Plant Mol Biol 24:129–141

    Article  PubMed  CAS  Google Scholar 

  • Kück U, Wricke G (1995) Genetic mechanisms for hybrid breeding. Advances in plant breeding 18. Berlin: Blackwell Wissenschafts-Verlag

    Google Scholar 

  • L’Homme Y, Brown GG (1993) Organizational differences between cytoplasmic malesterile and male-fertile Brassica mitochondrial genomes are confined to a single transposed locus. Nucleic Acids Res 21:1903–1909

    Article  PubMed  Google Scholar 

  • L’Homme Y, Stahl RJ, Li X-Q Hameed A, Brown GG (1997) Brassica nap cytoplasmic male sterility is associated with expression of a mtDNA region containing a chimeric gene similar to the pol CMS-associated orf224 gene. Curr Genet 31:325–335

    Article  PubMed  Google Scholar 

  • Landgren M, Zetterstrand M, Sundberg E, Glimelius K (1996) Alloplasmic male-sterility Brassica lines containing B. tournefortii mitochondria express an ORF 3 of the atp6 gene and a 32 kDA protein. Off. Plant Mol Biol 32:879–890

    Article  CAS  Google Scholar 

  • Laughnan JR, Gabay-Laughnan S (1983) Cytoplasmic male sterility in maize. Annu Rev Genet 17:27–48

    Article  PubMed  CAS  Google Scholar 

  • Laser B, Kück U (1995) The mitochondrial atpA/atp9 co-transcript in wheat and triticale: RNA processing depends on the nuclear genotype. Curr Genet 29:50–57

    Article  PubMed  CAS  Google Scholar 

  • Laver HK, Reynolds SJ, Monegar F, Leaver CJ (1991) Mitochondrial genome organization and expression associated with cytoplasmic male sterility in sunflower (Helianthus annuus). Plant J 1:185–193

    Article  PubMed  CAS  Google Scholar 

  • Lee S-LJ, Warmke HE (1979) Organelle size and number in fertile and T-cytoplasmic male-sterile corn. Am J Bot 66:141–148

    Article  Google Scholar 

  • Levings CS III (1993) Thoughts on cytoplasmic male sterility in cms-T maize. The Plant Cell 5:1285–1290

    Article  PubMed  Google Scholar 

  • Levings CS III (1996) Infertility treatment: A nuclear restorer gene in maize. Science 272:1279–1280

    Article  PubMed  CAS  Google Scholar 

  • Levings CS III, Siedow JN (1992) Molecular basis of disease susceptibility in the Texas cytoplasm of maize. Plant Mol Biol 19:135–147

    Article  PubMed  CAS  Google Scholar 

  • Levings CS III, Rhoads DM, Siedow JN (1995) Molecular interactions of Bipolaris maydis T-toxin and maize. Can J Bot 73–S483-S489

    Google Scholar 

  • Mackenzie SA, Pring DR, Bassett M, Chase C (1988) Mitochondrial DNA rearrangement associated with fertility restoration and cytoplasmic reversion to fertility in cytoplasmic male sterile Phaseolus vulgaris L. Proc Natl Acad Sci USA 85:2714–2717

    Article  PubMed  CAS  Google Scholar 

  • Mackenzie SA, Chase CD (1990) Fertility restoration is associated with loss of a portion of the mitochondrial genome in cytoplasmic male-sterile common bean. Plant Cell 2:905–912

    Article  PubMed  CAS  Google Scholar 

  • Mackenzie SA (1991) Identification of a sterility-inducing cytoplasm in a fertile accession line of Phaseolus vulgaris L. Genetics 127:411–416

    PubMed  CAS  Google Scholar 

  • Maier RM, Zeltz P, Kossel H, Bonnard G, Gualberto JM, Grienenberger JM (1996) RNA editing in plant mitochondria and chloroplasts. Plant Mol Biol 32:343–365

    Article  PubMed  CAS  Google Scholar 

  • Makaroff CA (1995) Cytoplasmic male sterility in Brassica species. In: Levings CS III, Vasil IK (eds) The molecular biology of plant mitochondria. Kluwer, Boston, pp 515– 555

    Chapter  Google Scholar 

  • Mariani C, DeBeuckeleer M, Truettner J, Leemans J, Goldberg RB (1990) Induction of male sterility in plants by a chimaeric ribonuclease gene. Nature 347:737–741

    Article  CAS  Google Scholar 

  • Mariani C, Gossele V, DeBeuckeleer M, DeBlock M, Goldberg RB, DeGreef W, Leemans J (1992) A chimaeric ribonuclease-inhibitor gene restores fertility to male-sterile plants. Nature 357:384–387

    Article  CAS  Google Scholar 

  • Moneger F, Smart CJ, Leaver CJ (1994) Nuclear restoration of cytoplasmic male sterility in sunflower is associated with the tissue-specific regulation of a novel mitochondrial gene. EMBO J 13:8–17

    PubMed  CAS  Google Scholar 

  • Nivison HT, Hanson MR (1989) Identification of a mitochondrial protein associated with cytoplasmic male sterility in Petunia. Plant Cell 1:1121–1130

    Article  PubMed  CAS  Google Scholar 

  • Nivison HT, Sutton CA, Wilson RK, Hanson MR (1994) Sequencing, processing, and localization of the petunia CMS-associated mitochondrial protein. Plant J 5:613–623

    Article  PubMed  CAS  Google Scholar 

  • Nowak C, Kück U (1990) RNA editing of the mitochondrial atp9 transcript from wheat. Nucleic Acids Res 18:7164

    Article  PubMed  CAS  Google Scholar 

  • Op den Camp RGL, Kuhlemeier C (1997) Aldehyde dehydrogenase in tobacco pollen. Plant Mol Biol 35:355–365

    Article  PubMed  CAS  Google Scholar 

  • Preuss D, Lemieux B, Yen G, Davis RW (1993) A conditional sterile mutation eliminates surface components from Arabidopsis pollen and disrupts cell signaling during fertilization. Genes Dev 7:974–985

    Article  PubMed  CAS  Google Scholar 

  • Preuss D, Rhee SY, Davis RW (1994) Tetrad analysis possible in Arabidopsis with mutation of the QUARTET (QRT) genes. Science 264:1458–1460

    Article  PubMed  CAS  Google Scholar 

  • Pring DR, Lonsdale DM (1989) Cytoplasmic male sterility and maternal inheritance of disease susceptibility in maize. Annu Rev Phytopathol 27:483–502

    Article  Google Scholar 

  • Pring DR, Gengbach BG, Wise RP (1988) Recombination is associated with polymorphism of the mitochondrial genomes of maize and sorghum. Phil Trans R Soc Lond [Biol] 319:187–198

    Article  CAS  Google Scholar 

  • Pring DR Brennicke A, Schuster W (1993) RNA editing gives a new meaning to the genetic information in mitochondria and chloroplasts. Plant Mol Biol 21:1163–1170

    Article  PubMed  CAS  Google Scholar 

  • Pring DR, Tang HV, Schertz KF (1995) Cytoplasmic male sterility and organelle DNAs of sorghum. In: Levings CS III, Vasil IK (eds) The molecular biology of plant mitochondria. Kluwer, pp 461-495

    Google Scholar 

  • Pruitt KD, Hanson MR (1991) Transcription of the Petunia mitochondrial CMSassociated pcf locus in male sterile and fertility-restored lines. Mol Gen Genet 227:348–355

    Article  PubMed  CAS  Google Scholar 

  • Rasmussen J, Hanson MR (1989) A NADH dehydrogenase subunit gene is co-transcribed with the abnormal petunia mitochondrial gene associated with cytoplasmic male sterility. Mol Gen Genet 215:332–336

    Article  PubMed  CAS  Google Scholar 

  • Rathburn HB, Hedgcoth C (1991) A chimeric open reading frame in the 5’ flanking region of coxl mitochondrial DNA from cytoplasmic male-sterile wheat. Plant Mol Biol 16:909–912

    Article  PubMed  CAS  Google Scholar 

  • Rhoads DM, Levings CS III, Siedow JN (1995) URF13, a ligand-gated, pore-forming receptor for T-toxin in the inner mitochondrial membrane of cms-T mitochondria. J Bioenerg Biomembr 27:437–445

    Article  PubMed  CAS  Google Scholar 

  • Riechmann JL, Meyerowitz EM (1997) MADS domain proteins in plant development. Biol Chem 378:1079–1101

    Article  PubMed  CAS  Google Scholar 

  • Rottman WH, Brears T, Hodge TP, Lonsdale DM (1987) A mitochondrial gene is lost via homologous recombination during reversion of CMST maize to fertility. EMBO J 6:1541–1546

    Google Scholar 

  • Schardl CL, Lonsdale DM, Pring DR, Rose KR (1984) Linearization of maize mitochondrial chromosomes by recombination with linear episomes. Nature 310:292–296

    Article  CAS  Google Scholar 

  • Schardl CL, Pring DR, Fauron CM-R, Lonsdale DM (1985) Mitochondrial DNA rearrangements resulting in fertile revertants of S-type male sterile maize. Cell 43:361–368

    Article  PubMed  CAS  Google Scholar 

  • Schnable PS, Wise RP (1994) Recovery of heritable, transposon-induced, mutant alleles of the rf 2 nuclear restorer of T-cytoplasm maize. Genetics 136:1171–1185

    PubMed  CAS  Google Scholar 

  • Schwarz-Sommer Z, Hue I, Huijser P, Flor PJ, Hansen R, Tetens F, Lonnig WE, Saedler H, Sommer H (1992) Characterization of the Antirrhinum floral homeotic MADS-box gene deficiens: evidence for DNA binding and autoregulation of its persistent expression throughout flower development. EMBO J 11:251–263

    PubMed  CAS  Google Scholar 

  • Siedow JN, Rhoads DM, Ward GC, Levings CS III (1995) The relationship between the mitochondrial gene T-urfl3 and fungal pathotoxin sensitivity in maize. Biochim Biophys Acta 1271:235–240

    PubMed  Google Scholar 

  • Singh M, Brown GG (1991) Suppression of cytoplasmic male sterility by nuclear genes alters expression of a novel mitochondrial gene region. The Plant Cell 3:1349–1362

    Article  PubMed  CAS  Google Scholar 

  • Singh M, Brown GG (1993) Characterization of expression of a mitochondrial gene region associated with the Brassica Polima CMS: developmental influences. Curr Genet 24:316–322

    Article  PubMed  CAS  Google Scholar 

  • Singh M, Hamel N, Menassa R, Li X-Q, Young B, Jean M, Landry B, Brown GG (1996) Nuclear genes associated with a single Brassica CMS restorer locus influence transcripts of three different mitochondrial gene regions. Genetics 143:505–516

    PubMed  CAS  Google Scholar 

  • Small ID, Earle ED, Escote-Carlson LJ, Gabay-Laughnan JR, Leaver CJ (1988) A comparison of cytoplasmic revertants to fertility from different CMS-S maize sources. Theor Appl Genet 76:609–618

    Article  Google Scholar 

  • Smart CJ, Moneger F, Leaver CJ (1994) Cell-specific regulation of gene expression in mitochondria during anther development in sunflower. Plant Cell 6:811–825

    Article  PubMed  CAS  Google Scholar 

  • Song J, Hedgcoth C (1994a) Influence of nuclear background and transcription on a chimeric gene (orf256) and coxl in fertile and cytoplasmic male sterile wheats. Genome 37:203–209

    Article  PubMed  CAS  Google Scholar 

  • Song J, Hedgcoth C (1994b) A chimeric gene (orf256) is expressed as protein only in cytoplasmic male-sterile lines of wheat. Plant Mol Biol 26:535–539

    Article  PubMed  CAS  Google Scholar 

  • Spena A, Estruch JJ, Prensen E, Nacken W, VanOnckelen H, Sommer H (1992) Antherspecific expression of the rolB gene of Agrobacterium rhizogenes increases IAA content in anthers and alters anther development in whole flower growth. R Appl Genet 84:520–527

    Google Scholar 

  • Spielman M, Preuss D, Li FL, Browne W, Scott R, Dickinson H (1997) TETRASPORE is required for male meiotic cytokinesis in Arabidopsis thaliana. Development Suppl 124:2645–2657

    CAS  Google Scholar 

  • Stahl R, Sun S, L’Homme Y, Ketela T, Brown GG (1994) RNA editing of transcripts of a chimeric mitochondrial gene associated with cytoplasmic male-sterility in Brassica. Nucleic Acids Res 22:2109–2113

    Article  PubMed  CAS  Google Scholar 

  • Tadege M, Kuhlemeier C (1997) Aerobic fermentation during tobacco pollen development. Plant Mol Biol 35:343–354

    Article  PubMed  CAS  Google Scholar 

  • Tang HV, Pring DR, Muza RF, Yan B (1996a) Sorghum mitochondrial orf25 and a related chimeric configuration of a male-sterile cytoplasm. Curr Genet 29:265–274

    Article  PubMed  Google Scholar 

  • Tang HV, Pring DR, Shaw LC, Salazar FA, Muza FR, Yan B, Schertz KF (1996b) Transcript processing internal to a mitochondrial open reading frame is correlated with fertility restoration in male-sterile sorghum. The Plant J 10:123–133

    Article  CAS  Google Scholar 

  • Theißen G, Saedler H (1995) MADS-box genes in plant ontogeny and phylogeny: Haeckel’s biogenetic law revisited. Curr Opin Gene Dev 5:628–639

    Article  Google Scholar 

  • Tröbner W, Ramirez L, Motte P, Hue I, Huijser P, Lonnig WE, Saedler H, Sommer H, Schwarz-Sommer Z (1992) GLOBOSA: A homeotic gene which interacts with DEFICIENS in the control of Antirrhinum floral organogenesis. EMBO J 11:4693–4704

    PubMed  Google Scholar 

  • Tsuchiya T, Toriyama K, Yoshikawa M, Ejiri S, Hinata K (1995) Tapetum-specific expression of the gene for an endo-beta-l,3-glucanase causes male sterility in transgenic tobacco. Plant Cell Physiol 36:487–494

    PubMed  CAS  Google Scholar 

  • Van derMeer IM, Stam ME, vanTunen AJ, Mol JNM Stuitje AR (1992) Antisense inhibition of flavonoid biosynthesis in petunia anthers results in male sterility. Plant Cell 4:253–262

    Article  PubMed  Google Scholar 

  • Ward GC (1995) The Texas male-sterile cytoplasm of maize. In: Levings CS III, Vasil IK (eds) The molecular biology of plant mitochondria. Kluwer, Dordrecht, pp 433–459

    Chapter  Google Scholar 

  • Warmke HE, Lee S-LJ (1978) Pollen abortion in T cytoplasmic male-sterile corn (Zea mays): a suggested mechanism. Science 200:561–563

    Article  PubMed  CAS  Google Scholar 

  • Weigel D (1995) The genetic of flower development: From floral induction to ovule morphogenesis. Annu Rev Genet 29:19–39

    Article  PubMed  CAS  Google Scholar 

  • Weigel D, Meyerowitz EM (1994) The ABCs of floral homeotic genes. Cell 78:203–209

    Article  PubMed  CAS  Google Scholar 

  • Weijer J (1952) A catalogue of genetic maize types together with a maize bibliography. Bibl Genet 14:189–425

    Google Scholar 

  • Wintz H, Chen HC, Sutton CA, Conley CA, Cobb A, Ruth D, Hanson MR (1995) Expression of the CMS-associated urfS sequence in transgenic petunia and tobacco. Plant Mol Biol 28:83–92

    Article  PubMed  CAS  Google Scholar 

  • Wise RP, Pring DR, Gengenbach BG (1987a) Mutation to male fertility and toxin intensitivity in T-cytoplasm maize is associated with a frameshift in a mitochondrial open reading frame. Proc Natl Acad Sci USA 84:2858–2862

    Article  PubMed  CAS  Google Scholar 

  • Wise RP, Fliss AE Jr, Pring DR, Gengenbach GB (1987b) urfl3-T of T cytoplasm maize mitochondria encodes a 13,000 kD polypeptide. Plant Mol Biol 9:121–126

    Article  CAS  Google Scholar 

  • Wise RP, Dill CL, Schnable PS (1996) Mutator-induced mutations of the rfl nuclear fertility restorer of T-cytoplasm maize alter the accumulation of T-urfl3 mitochondrial transcripts. Genetics 143:1383–1394

    PubMed  CAS  Google Scholar 

  • Witt U, Hansen S, Albaum M, Abel WO (1991) Molecular analyses of the CMS-inducing Polima cytoplasm in Brassica napus L. Curr Genet 19:323–327

    Article  CAS  Google Scholar 

  • Worrall D, Hird DL, Hodge R, Paul W, Draper J, Scott R (1992) Premature dissolution of the microsporocyte callose wall causes male sterility in transgenic tobacco. Plant Cell 4, 759–771

    Article  PubMed  CAS  Google Scholar 

  • Xu G-W, Cui Y-X, Schertz KF, Hart GE (1995) Isolation of mitochondrial DNA sequences that distinguish male-sterility-inducing cytoplasms in Sorghum bicolor (L.) Moench. Theor Appl Genet 90:1180–1187

    Article  CAS  Google Scholar 

  • Xu H, Know RB, Taylor PE, Singh MB (1995) Bcpl, a gene required for male fertility in Arabidopsis. Proc Natl Acad Sci USA 92:2106–2110

    Article  PubMed  CAS  Google Scholar 

  • Yan B, Pring DR (1997) Transcriptional initiation sites in sorghum mitochondrial DNA indicate conserved and variable features. Curr Genet 32:287–295

    Article  PubMed  CAS  Google Scholar 

  • Young EG, Hanson MR (1987) A fused mitochondrial gene is associated with cytoplasmic male sterility is developmentally regulated. Cell 50:41–49

    Article  PubMed  CAS  Google Scholar 

  • Zabala G, Gabay-Laughnan S, Laughnan JR (1997) The nuclear gene Rf3 affects the expression of the mitochondrial chimeric sequence R implicated in S-type male sterility in maize. Genetics 147:847–860

    PubMed  CAS  Google Scholar 

  • Zabaleta E, Mouras A, Hernould M, Araya S, Araya A (1996) Transgenic male-sterile plant induced by an unedited atp9 gene is restored to fertility by inhibiting its expression with antisense RNA. Proc Natl Acad Sci USA 93:11259–11263

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kempken, F., Pring, D. (1999). Plant Breeding: Male Sterility in Higher Plants - Fundamentals and Applications. In: Esser, K., Kadereit, J.W., Lüttge, U., Runge, M. (eds) Progress in Botany. Progress in Botany, vol 60. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59940-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59940-8_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64189-3

  • Online ISBN: 978-3-642-59940-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics