Skip to main content

The Kinetics, Specificities and Structural Features of Lipases

  • Conference paper

Part of the book series: NATO ASI Series ((ASIH,volume 96))

Abstract

The four main classes of biological substances are carbohydrates, proteins, nucleic acids and lipids. The first three of these substances have been clearly defined on the basis of their structural features, whereas the property which is common to all lipids is a physicochemical one. Lipids are in fact a group of structurally heterogeneous molecules which are all insoluble in water but soluble in apolar and slightly polar solvents such as ether, chloroform and benzene.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Small D.M. (1968) A classification of biological lipids based upon their interaction in aqueous systems. J. Amer. Oil Chemists Soc. 45, 108–119.

    Article  CAS  Google Scholar 

  2. Sarda L. and Desnuelle P. (1958) Action de la lipase pancröatique sur les esters en Emulsion. Biochim. Biophys. Acta 30, 513–521.

    Article  PubMed  CAS  Google Scholar 

  3. Holwerda K., Verkade P.E. and de Willigen A.H.A. (1936) Vergleichende Untersuchungen iiber die Verseifungsgeschwindigkeit einiger einsauriger Triglyceride unter Einfluss von Pankreasextrakt. Rec. Trav. Chim. Pays-Bas 55,43–57.

    Article  CAS  Google Scholar 

  4. Sch0nheyder F. and Volqvartz K. (1945) On the affinity of pig pancreas lipase for tricaproin in heterogenous solution. Acta Physiol Scand. 9, 57–67.

    Article  Google Scholar 

  5. Desnuelle P., Sarda L. and Ailhaud G. (1960) Inhibition de la lipase pancreatique par le difthyl-/?-nitrophdnyl phosphate en Emulsion. Biochim. Biophys. Acta 37, 570–571.

    Article  PubMed  CAS  Google Scholar 

  6. Brady L.. Brzozowski A.M., Derewenda Z.S., Dodson E., Dodson G., Tolley S., Turkenburg J.P., Christiansen L., Huge-Jensen B., Norskov L., Thim L. and Menge U. (1990) A serine protease triad forms the catalytic centre of a triacylglycerol lipase. Nature 343, 767–770.

    Article  PubMed  CAS  Google Scholar 

  7. Winkler F.K., d’Arcy A. and Hunziker W. (1990) Structure of human pancreatic lipase. Nature 343, 771–774.

    Article  PubMed  CAS  Google Scholar 

  8. Deveer A. (1992) Mechanism of activation of lipolytic enzymes. Thesis, University of Utrecht, Netherlands.

    Google Scholar 

  9. Noble M.E.M., Cleasby A., Johnson L.N., Egmond M.R. and Frenken L.GJ. (1993) The crystal structure of triacylglycerol lipase from Pseudomonas glumae reveals a partially redundant catalytic aspartate. FEBS Lett. 331, 123–128.

    Article  PubMed  CAS  Google Scholar 

  10. Jaeger K.-E., Ransac S., Koch H.B., Ferrato F. and Dijkstra B.W. (1993) Topological characterization and modeling of the 3D structure of lipase from Pseudomonas aeruginosa. FEBS Lett. 332, 143–149.

    Article  PubMed  CAS  Google Scholar 

  11. Jaeger K.-E., Ransac S., Dijkstra B.W., Colson C., Vanheuvel M. and Misset O. (1994) Bacterial lipases. FEMS Microbiol Rev. 15, 29–63.

    Article  PubMed  CAS  Google Scholar 

  12. Uppenberg J., Hansen M.T., Patkar S. and Jones T.A. (1994) Sequence, crystal structure determination and refinement of two crystal forms of lipase B from Candida antarctica. Structure 2, 293–308.

    Article  PubMed  CAS  Google Scholar 

  13. Giller T., Buchwald P., Blum-Kaelin D. and Hunziker W. (1992) Two novel human pancreatic lipase related proteins, hPLRPl and hPLRP2. Differences in colipase dependence and in lipase activity. J. Biol. Chem. 267,16509–16516.

    CAS  Google Scholar 

  14. Hjorth A., Carrifcre F., Cudrey C., Woldike H., Boel E., Lawson D.M., Ferrato F., Cambillau C., Dodson G.G., Thim L. and Verger R. (1993) A structural domain (the lid) found in pancreatic lipases is absent in the guinea pig (phospho)lipase. Biochemistry 32, 4702–4707.

    Article  PubMed  CAS  Google Scholar 

  15. Thirstrup K., Verger R. and Carriere F. (1994) Evidence for a pancreatic lipase subfamily with new kinetic properties. Biochemistry 33, 2748–2756.

    Article  PubMed  CAS  Google Scholar 

  16. van Oort M.G., Deveer A.M.T.J., Dijkman R., Leuveling Tjeenk M., Verheij H.M., de Haas G.H., Wenzig E. and Gotz F. (1989) Purification and substrate specificity of Staphylococcus hyicus lipase. Biochemistry 28, 9278–9285.

    Article  PubMed  Google Scholar 

  17. Pieterson W.A., Vidal J.C., Volwerk J.J. and de Haas G.H. (1974) Zymogen-catalysed hydrolysis of monomeric substrates and the presence of a recognition site for lipid-water interfaces in phospholipase A2 . Biochemistry 13, 1455–1460.

    Article  PubMed  CAS  Google Scholar 

  18. van Eijk J.H., Verheij H.M., Dijkman R. and de Haas G.H. (1983) Interaction of phospholipase A2 from Naja melanoleuca snake venom with monomeric substrate analogs. Activation of the enzyme by protein-protein or lipid-protein interactions?Eur. J. Biochem. 13, 183–188.

    Article  PubMed  Google Scholar 

  19. van den Berg B., Tessari M., Boelens R.. Dijkman R., Kaptein R., de Haas G.H. and Verheij H.M. (1995) Solution structure of porcine pancreatic phospholipase complexed with micelles and a competitive inhibitor. Journal of Biomolecular NMR 5,110–121.

    Article  PubMed  Google Scholar 

  20. Soares de Araujo P., Rosseneu M.Y., Kremer J.M.H., van Zoelen E.J.J. and de Haas G.H. (1979) Structure and thermodynamic properties of the complexes between phospholipase and lipid micelles. Biochemistry 18, 580–586.

    Article  Google Scholar 

  21. Verger R. and de Haas G.H. (1976) Interfacial enzyme kinetics of lipolysis. Annual Review Biophys. Bioeng. 5, 77–117.

    Article  CAS  Google Scholar 

  22. Verger R. (1980) Enzyme kinetics of lipolysis. Methods Enzymol. 64, 340–392.

    Article  PubMed  CAS  Google Scholar 

  23. Verger R. and Pattus F. (1982) Lipid-protein interactions in monolayers. Chem. Phys. Lipids 30,189–227.

    Article  CAS  Google Scholar 

  24. Ransac S., Moreau H., Rivi&re C. and Verger R. (1991) Monolayer techniques for studying phospholipase kinetics. Methods Enzymol. 197,49–65.

    Article  PubMed  CAS  Google Scholar 

  25. Pieroni G., Gargouri Y., Sarda L. and Verger R. (1990) Interactions of lipases with lipid monolayers. Facts and questions. Adv. Colloid Interface Sci. 32, 341–378.

    Article  CAS  Google Scholar 

  26. Verger R., Ferrato F., Mansbach C.M. and Pieroni G. (1982) Novel intestinal phospholipase A Purification and some molecular characteristics. Biochemistry 21, 6883–6889.

    Article  PubMed  CAS  Google Scholar 

  27. Zografi G., Verger R. and de Haas G.H. (1971) Kinetic analysis of the hydrolysis of lecithin monolayers by phospholipase A. Chem. Phys. Lipids 7,185–206.

    Article  PubMed  CAS  Google Scholar 

  28. Verger R. and de Haas G.H. (1973) Enzyme reactions in a membrane model. I: A new technique to study enzyme reactions in monolayers. Chem. Phys. Lipids 10, 127–136.

    CAS  Google Scholar 

  29. Pieroni G. and Verger R. (1979) Hydrolysis of mixed monomolecular films of triglyceride/lecithin by pancreatic lipase. J. Biol. Chem. 254, 10090–10094.

    PubMed  CAS  Google Scholar 

  30. Hughes A. (1935) The action of snake venoms on surface films. Biochem. J. 29, 437–444.

    PubMed  CAS  Google Scholar 

  31. Smaby J.M., Muderhwa J.M. and Brockman H.L. (1994) Is lateral phase separation required for fatty acid to stimulate lipases in a phosphatidylcholine interface?Biochemistry 33, 1915–1922.

    Article  PubMed  CAS  Google Scholar 

  32. Muderhwa J.M. and Brockman H.L. (1992) Lateral lipid distribution is a major regulator of lipase activity. Implications for lipid-mediated signal transduction. J. Biol. Chem. 267, 24184–24192.

    PubMed  CAS  Google Scholar 

  33. Peters G.H., Toxvaerd S., Larsen N.B., BjØrnholm T., Schaumburg K. and Kjaer K. (1995) Structure and dynamics of lipid monolayers: implications for enzyme catalysed lipolysis. Structural Biology 2. 395–401.

    Article  PubMed  CAS  Google Scholar 

  34. Esposito S., Sömeriva M. and Desnuelle P.(1973) Effect of surface pressure on the hydrolysis of ester monolayers by pancreatic lipase. Biochim. Biophys. Acta 302, 293–304.

    PubMed  CAS  Google Scholar 

  35. Pattus F., Slotboom A.J. and de Haas G.H. (1979) Regulation of Phospholipase A9 Activity by the Lipid -Water Interface: a Monolayer Approach. Biochemistry 13, 2691–2697.

    Article  Google Scholar 

  36. Rietsch J., Pattus F., Desnuelle P. and Verger R. (1977) Further studies of mode of action of lipolytic enzymes. J. Biol. Chem. 252, 4313–4318.

    PubMed  CAS  Google Scholar 

  37. Bhat S.G. and Brockman H.L. (1981) Enzymatic Synthesis/Hydrolysis of Cholesteryl Oleate in Surface Films. J. Biol. Chem. 256, 3017–3023.

    PubMed  CAS  Google Scholar 

  38. Momsen W.E. and Brockman H.L. (1981) The adsorption to and hydrolysis of 1,3-didecanoyl glycerol monolayers by pancreatic lipase. Effect of substrate packing density. J. Biol. Chem. 256, 6913–6916.

    CAS  Google Scholar 

  39. Aoubala M., Ivanova M., Douchet I., de Caro A. and Verger R. (1995) Interfacial binding of Human Gastric Lipase to lipid monolayers, measured with an ELISA. Biochemistry accepted,

    Google Scholar 

  40. Gargouri Y., Moreau H., Piöroni G. and Verger R. (1989 ) Role of a sulfhydryl group in gastric lipases. A binding study using the monomolecular-film technique. Eur. J. Biochem. 180, 367–371.

    Article  PubMed  CAS  Google Scholar 

  41. Guesdon J.L., T£mynck T. and Avrameas S.(1979) J. Histoch. Cytochem. 8, 1131–1139.

    Article  Google Scholar 

  42. Aoubala Mf, Douchet I., Laugier R., Hirn M., Verger R. and de Caro A. (1993) Purification of human gastric lipase by immunoaffinity and quantification of this enzyme in the duodenal contents using a new ELISA procedure. Biochim. Biophys. Acta 1169, 183–188.

    PubMed  CAS  Google Scholar 

  43. Laurent S., Ivanova M.G., Pioch D., Graille J. and Verger R. (1994) Interactions between p-Cyclodextrin and insoluble glyceride monomolecular films at the argon/water interface: application to lipase kinetics. Chem. Phys. Lipids 70, 35–42.

    Article  PubMed  CAS  Google Scholar 

  44. Brockerhoff H. and Jensen R.G. (1974) Lipolytic Enzymes.(Academic Press, New York).

    Google Scholar 

  45. Borgstrom B. and Brockman H.L. (1984) Lipases. (Elsevier, Amsterdam).

    Google Scholar 

  46. Chen C.-S. and Sih C.J. (1989) Angew. Chem Int. Engl. 28, 695–707.

    Article  Google Scholar 

  47. Morley N., Kuksis A. and Buchnea D. (1974) Hydrolysis of synthetic triacylglycerols by pancreatic and lipoprotein lipase. Lipids 9,481–488.

    Article  PubMed  CAS  Google Scholar 

  48. Akesson B., Gronowitz S., Herslof B., Michelsen P. and Olivecrona T. (1983) Stereospecificity of different lipases. Lipids 18, 313–318.

    Article  CAS  Google Scholar 

  49. Jensen R.G., Galluzzo D.R. and Bush V.J. (1990) Selectivity is an important characteristic of lipase (acylglycerol hydrolases). Biocatalysis 3, 307–316.

    Article  CAS  Google Scholar 

  50. Rogalska E., Ransac S. and Verger R. (1990) Stereoselectivity of lipases. II. Stereoselective hydrolysis of triglycerides by gastric and pancreatic lipases. J. Biol. Chem. 265, 20271–20276.

    PubMed  CAS  Google Scholar 

  51. Rogalska E., Ransac S. and Verger R. (1993) Controlling lipase stereoselectivity via the surface pressure. J. Biol. Chem. 268, 792–794.

    PubMed  CAS  Google Scholar 

  52. Hult K. and Norin T. (1992) Enantioselectivity of some lipases : control and prediction. Pure and Appi Chem. (A, 1129–1134.

    Google Scholar 

  53. Holmquist M., Martinelle M., Berglund P., Clausen I.G., Patkar S., Svendsen A. and Hult K. (1993) Lipases from Rhizomucor miehei and Humicola lanuginosa. Modification of the lid covering the active site alters enantioselectivity. J. Protein Chem. 12, 749–757.

    Article  PubMed  CAS  Google Scholar 

  54. Rogalska E., Cudrey C., Ferrato F. and Verger R. (1993) Stereoselective hydrolysis of triglycerides by animal and microbial lipases. Chirality 5,24–30.

    Article  PubMed  CAS  Google Scholar 

  55. Cernia E., Delfini M., Magri A.D. and Palocci C. (1994) Enzymatic catalysis by lipase from Candida cylindracea, enantiomeric activity evaluation by H and C NMR. Cell. Mol. Biol. 40, 193–199.

    PubMed  CAS  Google Scholar 

  56. Holmberg E. and Hult K. (1991) Temperature as an enantioselective parameter in enzymic resolutions of racemic mixtures. Biotechnol. Lett. 13, 323–326.

    Article  CAS  Google Scholar 

  57. Lam L.K., Hui R.A.H.F. and Jones J.B. (1986) Enzymes in Organic Synthesis. 35. Stereoselective Pig Liver Esterase Catalysed Hydrolyses of 3-Substituted Glutarate Diesters. Optimization of Enantiomeric Excess Via Reaction Conditions Control. J. Org. Chem. 51,

    Google Scholar 

  58. Parida S. and Dordick J.S. (1991) Substrate Structure and Solvent Hydrophobicity Control Lipase Catalysis and Enantioselectivity in Organic Media. J. Am. Chem. Soc. 113, 2253–2259.

    Article  CAS  Google Scholar 

  59. Wu S.H., Guo Z.W. and Sih C.J. (1990) Enhancing the enantioselectivity of Candida lipase catalyzed ester hydrolysis via noncovalent enzyme modification. J. Am. Chem. Soc. 112, 1990–1995.

    Article  CAS  Google Scholar 

  60. Matori M., Asahara T. and Ota Y. (1991) Reaction conditions influencing positional specificity index (PSI) of microbial lipases. J. Ferment. Bioeng. 72, 413–415.

    Article  CAS  Google Scholar 

  61. Makamura K., Takebe Y., Kitayama T. and Ohno A. (1991) Effect of solvent structure on enantioselectivity of lipase catalyzed transesterification. Tetrahedron Lett. 32, 4941–4944.

    Article  Google Scholar 

  62. Kamat S.V., Beckman E.J. and Russell A.J. (1993) Control of enzyme enantioselectivity with pressure changes in supercritical fluoroform. J Am Chem Soc 115, 8845–8846.

    Article  CAS  Google Scholar 

  63. Rogalska E., Nury S., Douchet I. and Verger R. (1995) Lipase stereo- and regioselectivity towards three isomers of dicaprin, a kinetic study by the monomolecular film technique. Chirality accepted,

    Google Scholar 

  64. Bohm C., Mohwald M., Leiserowitz L., Als-Nielsen J. and Kjaer K. (1993) Influence of chirality on the structure of phospholipid monolayers. Biophys. J. 64, 553–559.

    Article  PubMed  CAS  Google Scholar 

  65. Andelman D. and Orland H. (1993) Chiral discrimination in solutions and in langmuir monolayers. J. Am. Chem. Soc. 115, 12322–12329.

    Article  CAS  Google Scholar 

  66. Harvey N.G., Mirajovsky D., Rose P.L., Verbiar R. and Amett E.M. (1989) Molecular recognition in chiral monolayers of stearoylserine methyl ester. J. Am. Chem. Soc. I l l, 1115–1122.

    Google Scholar 

  67. Dvolaitzky M. and Guedeau-Boudeville M.-A. (1989) Chiral discrimination in the monolayer packing of hexadecylthiophospho-2-phenylglycinol with two chiral centers in the polar head group. Langmuir 5, 1200–1205.

    Article  CAS  Google Scholar 

  68. Landau E.M., Levanon L., Leiserowitz L., Lahav M. and Sagiv J. (1985) Transfer of structural information from Langmuir monolayers of three dimensional growing crystals. Nature 318, 353–356.

    Article  CAS  Google Scholar 

  69. Scow R.O., Blanchette-Mackie E.J. and Smith L.C. (1976) Role of capilary endothelium in the clearance of chylomicrons. A model for lipid transport from blood by lateral diffusion in cell membranes. Circ. Res. 39, 149–163.

    CAS  Google Scholar 

  70. Scow R.O., Desnuelle P. and Verger R. (1979) Lipolysis and lipid movement in a membrane model. Action of lipoprotein lipase. J. Biol Chem. 254, 6456–6463.

    CAS  Google Scholar 

  71. Ransac S., Riviere C., Gancet C., Verger R. and de Haas G.H. (1990) Competitive inhibition of lipolytic enzymes. I.A kinetic model applicable to water-insoluble competitive inhibitors. Biochim. Biophys. Acta 1043, 57–66.

    CAS  Google Scholar 

  72. de Haas G., van Oort M., Dijkman R. and Verger R. (1989) Phospholipase inhibitors: Monoacyl, monoacylamino-glycero-phosphocholines. Biochemical Society Transactions 625, 274–276.

    Google Scholar 

  73. Jain M.K. and Berg O.G. (1989) The kinetics of interfacial catalysis by phospholipase A2 and regulation of interfacial activation: hopping versus scooting. Biochim. Biophys. Acta 1002, 127–156.

    PubMed  CAS  Google Scholar 

  74. Gargouri Y., Moreau H., Pieroni G. and Verger R. (1988) Human gastric lipase: A sulfhydryl enzyme. J. Biol. Chem. 263. 2159–2162.

    PubMed  CAS  Google Scholar 

  75. Moreau H., Gargouri Y., Piéroni G. and Verger R.(1988) Importance of sulfhydryl group for rabbit gastric lipase activity. FEBS Lett. 236, 383–387.

    Article  PubMed  CAS  Google Scholar 

  76. Hadv&ry P., Lengsfeld H. and Wolfer H. (1988) Inhibition of pancreatic lipase in vitro by the covalent inhibitor tetrahydrolipstatin. Biochem. J. 256, 357–361.

    Google Scholar 

  77. Borgstrom B. (1988) Mode of action of tetrahydrolipstatin: A derivative of the naturally occuring lipase inhibitor lipstatin. Biochim. Biophys. Acta 962,308–316.

    PubMed  CAS  Google Scholar 

  78. Deems R.A., Eaton B.R. and Dennis E.A. (1975) Kinetic analysis of phospholipase A2 activity toward mixed micelles and its implications for the study of lipolytic enzymes. J. Biol Chem 250, 9013–9020.

    PubMed  CAS  Google Scholar 

  79. Kurganov B.I., Tsetlin L.G., Malakhova E.A., Chebotareva N.A., Lankin V.Z., Glebova G.D., Berezovsky V.M., Levashov A.V. and Martinek K. (1985) A novel approach to study of action of water-insoluble inhibitors of enzyme reactions. J. Biochem. Biophys. Methods 11, 117–184.

    Article  Google Scholar 

  80. Ransac S., Gargouri Y., Moreau H. and Verger R. (1991) Inactivation of pancreatic and gastric lipases by tetrahydrolipstatin and alkyl-dithio-5-(2-nitrobenzoic acid). A kinetic study with 1,2-didecanoyl-sn-glycerol monolayers. Eur. J. Biochem. 202, 395–400.

    Article  PubMed  CAS  Google Scholar 

  81. Marguet F., Douchet I., Verger R. and Buono G. (1995) Molecular or interfacial chiral recognition by digestive lipases of chiral organophosphorus triglycerides analogs? J. Am. Chem. Soc. Submited,

    Google Scholar 

  82. Melo E.P., Ivanova M.G., Aires-Barros M.R., Cabral J.M.S. and Verger R. (1995) Glyceride synthesis catalyzed by cutinase using the monomolecular film technique. Biochemistry 34, 1615–1621.

    Article  PubMed  CAS  Google Scholar 

  83. Lauwereys M., de Geus P., de Meutter J., Stanssens P. and Matthyssens G. (1991) Cloning, expression and characterization of cutinase, a fungal lipolytic enzyme. GBF monogr. 16, 243–251.

    CAS  Google Scholar 

  84. Brockman H.L. (1981 ) Triglyceride lipase from porcine pancreas. Methods Enzymol. 71, 619–627.

    Article  PubMed  CAS  Google Scholar 

  85. Jensen R.G., Dejong F.A. and Clark R.M. (1983) Determination of lipase specificity. Lipids 18, 239–252.

    Article  PubMed  CAS  Google Scholar 

  86. Verger R. (1984) Pancreatic lipases In Lipases (eds. Borgstrom B. and Brockman H.L.) 83–149 (Elsevier, Amsterdam).

    Google Scholar 

  87. Dervichian D.G. (1971) Methode d’&ude des reactions enzymatiques sur une interface. Biochimie 53, 25–34.

    Article  PubMed  CAS  Google Scholar 

  88. Nary S., Pieroni G., Riviere C., Gargouri Y., Bois A. and Verger R. (1987) Lipase kinetics at the triacylglycerol-water interface using surface tension measurements. Chem. Phys. Lipids 45, 27–37.

    Article  Google Scholar 

  89. Ferguson A. (1911) Photographic measurements of pendent drops. Phil. Mag. S. 23, 417–431.

    Article  Google Scholar 

  90. Andreas J.M., Hauser E.A. and Tucker W.B. (1938) Boundary tension by pendant drop. J. Phys. Chem. 42, 1001–1019.

    Article  CAS  Google Scholar 

  91. Lin M. (1981) Transition de phase d’alcools aliphatiques a l’interface liquide/liquide sous differentes pnessions hydrostatiques. Thdse de Doctorat d’Etat, University de Provence.

    Google Scholar 

  92. Girault H.H.J., Schiffrin D.J. and Smith B.D.V. (1982) Drop Image Processing for Surface and Interfacial Tension Measurments. J. Electroanal. Chem. 137, 207–217.

    Article  CAS  Google Scholar 

  93. Girault H.H.J., Schiffrin D.J. and Smith B.D.V. (1984) The Measurment of Interfacial Tension of Pendant Drop Using a Video Image Profile Digitizer. J. Coll. Interface Sci. 101, 257–266.

    Article  CAS  Google Scholar 

  94. Anastasiadis S.H., Chen J.K., Koberstein J.T., Siegel A.F., Sohn J.E. and Emerson J.A. (1987) Determination of Interfacial Tension by Video Image Processing of Pendant Fluid Drop. J. Coll. Interface. Sci. 119, 55–66.

    Article  CAS  Google Scholar 

  95. Cheng P., Li D., Boruvka L., Rotenberg Y. and Neumann A.W. (1990) Automation of Axis symmetric drop shape analysis for measurments of interfacial tensions and contact angles. Colloids and Surfaces 43, 151–167.

    Article  CAS  Google Scholar 

  96. Pallas N.R. and Harisson Y. (1990) An automated drop shape apparatus and the surface tension of pure water. Colloids and Surfaces 43, 169–194.

    Article  CAS  Google Scholar 

  97. Satherley J., Girault H.H.J, and Schiffrin D.J. (1989) The Measurment of Ultralow Interfacial Tension by Video Image Digital Techniques. 7. Coll. Interface Sci. 136, 574–580.

    Article  Google Scholar 

  98. Nury S., Gaudry-Rolland N., Riviere C., Gargouri Y., Bois A., Lin M., Grimaldi M., Richou J. and Verger R. (1991) Lipase kinetics at the triacylglycerol-water interface. GBF Monogr. 16, 123–127.

    CAS  Google Scholar 

  99. Grimaldi M., Bois A., Nury S., Riviere C., Verger R. and Richou J. (1991) Analyse de la forme du profil d’une goutte pendante par traitement d’images num6riques. (Mesure en temps r£el de la tension interfaciale). Opto. 91, 104–110.

    Google Scholar 

  100. Cagna A., Esposito G., Riviere C., Housset S. and Verger R. (1992) 33rd International Conference on the Biochemistry of Lipids, Lyon, France.

    Google Scholar 

  101. Labourdenne S., Gaudry-Rolland N., Letellier S., Lin M., Cagna A., Esposito G., Verger R. and Rivi&re C. (1994) The oil-drop tensiometer: potential applications for studying the kinetics of (phospho)lipase action. Chem. Phys. Lipids. 71, 163–173.

    Article  CAS  Google Scholar 

  102. Verger R., Mieras M.C.E. and de Haas G.H. (1973) Action of phospholipase A at interfaces. J. Biol. Chem. 248,4023–4034.

    PubMed  CAS  Google Scholar 

  103. Ransac S. (1991) Modulation des activity (phospho)lipasiques. Mise en ceuvre de la technique des films monomol6culaire pour l’&ude d’inhibiteur sp6cifiques and la determination de la stereoselectivity des enzymes lipolytiques. Thesis, University of Aix-Marseille II.

    Google Scholar 

  104. Ransac S., Rogalska E., Gargouri Y., Deveer A.M.T.J., Paltauf F., de Haas G.H. and Verger R. (1990) Stereoselectivity of lipases. I. Hydrolysis of enantiomeric glyceride analogues by gastric and pancreatic lipases. A kinetic study using the monomolecular film technique. J. Biol. Chem. 265, 20263–20270.

    PubMed  CAS  Google Scholar 

  105. Kelvin W.T. (1904) Baltimore lectures on molecular dynamics and the wave theory of light In (eds. Clay C.J.) 618-619 London).

    Google Scholar 

  106. Alworth W.A. (1972) Stereochemistry and its application in biochemistry. (Wiley-Interscience, New York).

    Google Scholar 

  107. Dixon M. and Webb E.C. (1964) Enzymes. (Longmans, London).

    Google Scholar 

  108. Fersht A. (1985) Enzyme structure and mechanism. (Freeman W.H. and Company, New York).

    Google Scholar 

  109. Ransac S., Rogalska E., Gargouri Y., Deveer A.M.T.J., Paltauf F., Gancet C., Dijkman R., De Haas G.H. and Verger R. (1991) Stereoselectivity of lipases. Hydrolysis of enantiomeric glyceride analogs by gastric and pancreatic lipases, a kinetic study using the monomolecular film technique. GBFMonogr. 16, 117–122.

    CAS  Google Scholar 

  110. Rogalska E., Ransac S.. Douchet I. and Verger R. (1994) Lipase stereoselectivity depends on the “interfacial quality”. Closing meeting of the BRIDGE lipase T-project, International Workshop -Bendor Island, Bandol, France.

    Google Scholar 

  111. Brzozowski A.M., Derewenda U., Derewenda Z.S., Dodson G.G., Lawson D.M., Turkenburg J.P., Bjorkling F., Huge-Jensen B., Patkar S.A. and Thim L. (1991) A model for interfacial activation in lipases from the structure of a fungal lipase-inhibitor complex. Nature 351, 491–494.

    Article  PubMed  CAS  Google Scholar 

  112. Schrag J.D., Li Y., Wu S. and Cygler M. (1991) Ser-His-Glu triad forms the catalytic site of the lipase from Geotrichum candidum. Nature 351, 761–764.

    Article  PubMed  CAS  Google Scholar 

  113. Derewenda Z.S., Derewenda U. and Dodson G.G. (1992) The crystal and molecular structure of the Rhizomucor miehei triacylglyceride lipase at 1.9 A resolution. J. Mol. Biol. 227, 818–839.

    Article  PubMed  CAS  Google Scholar 

  114. Martinez C., de Geus P., Lauwereys M., Matthyssens G. and Cambillau C. (1992) Fusarium solani cutinase is a lipolytic enzyme with a catalytic serine accessible to solvent. Nature 356, 615–618.

    Article  PubMed  CAS  Google Scholar 

  115. van Tilbeurgh H., Sarda L., Verger R. and Cambillau C. (1992) Structure of the pancreatic lipaseprocolipase complex. Nature 359, 159–162.

    Article  PubMed  Google Scholar 

  116. Cygler M., Schrag J.D. and Ergan F. (1992) Advances in structural understanding of lipases. Biotechnol. Genet. Eng. Rev. 10, 143–184.

    PubMed  CAS  Google Scholar 

  117. Dodson G.G., Lawson D.M. and Winkler F.K. (1992) Structural and evolutionary relationships in lipase mechanism and activation. Faraday Discuss. 93, 95–105.

    Article  PubMed  CAS  Google Scholar 

  118. Ollis D.L., Cheah E., Cygler M., Dijkstra B., Frolow F., Franken S.M., Harel M., Remington S.J., Silman I., Schrag J., Sussman J.L., Verschueren K.H.G. and Goldman A. (1992) The a/p hydrolase fold. Protein Eng. 5, 197–211.

    Article  PubMed  CAS  Google Scholar 

  119. Cygler M., Schrag J.D., Sussman J.L., Harel M., Silman I., Gentry M.K. and Doctor B.P. (1993) Relationship between sequence conservation and three-dimensional structure in a large family of esterases, lipases, and related proteins. Protein Sci. 2, 366–382.

    Article  PubMed  CAS  Google Scholar 

  120. van Tilbeurgh H., Egloff M.-P., Martinez C., Rugani N., Verger R. and Cambillau C. (1993) Interfacial activation of the lipase-procolipase complex by mixed micelles revealed by X-Ray crystallography. Nature 362, 814–820.

    Article  PubMed  Google Scholar 

  121. Grochulski P., Bouthillier F., Kazlauskas R.J., Serreqi A.N., Schrag J.D., Ziomek E. and Cygler M. (1994) Analogs of reaction intermediates identify a unique substrate binding site in Candida rugosa lipase. Biochemistry 33, 3494–3500.

    Article  PubMed  CAS  Google Scholar 

  122. Grochulski P., Li Y., Schrag J.D. and Cygler M. (1994) Two conformational states of Candida rugosa lipase. Protein Sci. 3, 82–91.

    Article  PubMed  CAS  Google Scholar 

  123. Uppenberg J., Hansen M.T., Patkarr S. and Jones T.A. (1994) The sequence, crystal structure determination and refinement of two crystal forms of Lipase-B from Candida antarctica (Vol 2, pg 293, 1994). Structure 2, 453–454.

    Article  Google Scholar 

  124. Derewenda U., Swenson L., Wei Y.Y., Green R., Kobos P.M., Joerger R., Haas M.J. and Derewenda Z.S. (1994) Conformational lability of lipases observed in the absence of an Oil-Water interface. Crystallographic studies of enzymes from the fungi Humicola lanuginosa and Rhizopus delemar. J. Lipid Res. 35, 524–534.

    CAS  Google Scholar 

  125. Rubin B. (1994) Grease pit chemistry exposed. Nature Struct. Biology 1, 568–572.

    Article  CAS  Google Scholar 

  126. Cygler M., Grochulski P., Kazlauskas R.J., Schrag J.D., Bouthillier F., Rubin B., Serreqi A.N. and Gupta A.K. (1994) A structural basis for the chiral preferences of lipases. J. Am. Chem. Soc. 116, 3180–3186.

    Article  CAS  Google Scholar 

  127. Egloff M.-P., Marguet F., Buono G., Verger R., Cambillau C. and van Tilbeurgh H. (1995) The 2.46 A resolution structure of the pancreatic lipase-colipase complex inhibited by a Cll alkyl phosphonate. Biochemistry 34, 2751–2762.

    Article  PubMed  CAS  Google Scholar 

  128. Grochulski P., Li Y., Schrag J.D., Bouthillier F., Smith P., Harrison D., Rubin B. and Cygler M. (1993) Insights into interfacial activation from an open structure of Candida rugosa lipase. J. Biol. Chem. 268, 12843–12847.

    PubMed  CAS  Google Scholar 

  129. Carrifcre F., Barrowman J.A., Verger R. and Laugier R. (1993) Secretion and contribution to lipolysis of gastric and pancreatic lipases during a test meal in humans. Gastroenterology 105, 876–888.

    Google Scholar 

  130. Scheele G. and Kern H. (1986) The exocrine pancreas. Molecular and cellular basis of digestion. (eds. Desnuelle P.) 173–192 (Elsevier, Amsterdam).

    Google Scholar 

  131. de Caro J., Boudouard M., Bonicel J., Guidoni A., Desnuelle P. and Rovery M. (1981) Porcine pancreatic lipase. Completion of the primary structure. Biochim. Biophys. Acta 671, 129–138.

    PubMed  Google Scholar 

  132. Lowe M.E., Rosemblum J.L. and Strauss A.W. (1989) Cloning and characterization of human pancreatic lipase cDNA.. J. Biol. Chem. 264, 20042–20048.

    PubMed  CAS  Google Scholar 

  133. Borgstrom B. and Erlanson-Albertsson C. (1973) Pancreatic lipase and colipase. Interactions and effects of bile salts and other detergents. Eur. J. Biochem. 37, 60–68.

    Article  PubMed  CAS  Google Scholar 

  134. Maylie M.F., Charles M., Gache C. and Desnuelle P. (1971) Isolation and partial identification of a pancreatic colipase. Biochim. Biophys. Acta 229, 286–289.

    PubMed  CAS  Google Scholar 

  135. Borgstrom B. and Erlanson-Albertson C. (1971) Pancreatic juice colipase: Physiological importance. Biochim. Biophys. Acta 242, 509–513.

    PubMed  CAS  Google Scholar 

  136. Gargouri Y., Bensalah A., Douchet I. and Verger R. (1995) Kinetic behaviour of five pancreatic lipases using emulsion and monomolecular films of synthetic glycerides. Biochim. Biophys. Acta accepted,

    Google Scholar 

  137. Durand S., Clemente F., Thouvenot J.P., Fauvel-Marmouyet J. and Douste-Blazy L. (1978) A lipase with high phospholipase activity in guinea pig pancreatic juice. Biochimie 60, 1215–1217.

    Article  PubMed  CAS  Google Scholar 

  138. Fauvel J., Bonnefis M.J., Sarda L., Chap H., Thouvenot J.P. and Douste-Blazy L. (1981) Purification of two lipases with high phospholipase Al activity from guinea-pig pancreas. Biochim. Biophys. Acta 663, 446–456.

    PubMed  CAS  Google Scholar 

  139. Fauvel J., Bonnefis M.J., Chap H., Thouvenot J.P. and Douste-Blazy L. (1981) Evidence for the lack of classical secretory phospholipase A2 in guinea-pig pancreas. Biochim. Biophys. Acta 666, 72–79.

    PubMed  CAS  Google Scholar 

  140. Bousset-Risso M., Bonicel J. and Rovery M. (1985) Limited proteolysis of porcine pancreatic lipase. FEBS Lett. 182, 323–326.

    Article  PubMed  CAS  Google Scholar 

  141. Kirchgessner T.G., Chuat J.C., Heinzmann C., Etienne J., Guilhot S., Svenson K., Ameis D., Pilon C., d’Auriol L., Andalibi A., Schotz M.C., Galibert F. and Lusis A.J. (1989) Organization of the human lipoprotein lipase gene and evolution of the lipase gene family. Proc. Natl. Acad. Sci. USA 86, 9647–9651.

    Article  PubMed  CAS  Google Scholar 

  142. Derewenda Z.S. and Cambillau C. (1991) Effects of gene mutations in lipoprotein and hepatic lipases as inteipreted by a molecular model of the pancreatic triglyceride lipase. J. Biol. Chem. 266, 23112–23119.

    PubMed  CAS  Google Scholar 

  143. van Tilbeurgh H., Roussel A., Lalouel J.M. and Cambillau C. (1994) Lipoprotein lipase. Molecular model based on the pancreatic lipase X-Ray structure: consequences for heparin binding and catalysis. J. Biol. Chem. 269, 4626–4633.

    PubMed  Google Scholar 

  144. Hide W.A., Chan L. and Li W.H. (1992) Structure and evolution of the lipase superfamily. J. Lipid Res. 33, 167–178.

    PubMed  CAS  Google Scholar 

  145. Persson B., Bentsson-Olivecrona G., Enerbäck S. Olivecrona T. and Jörnvall H.(1989) Srtuctural features of lipoprotein lipase. Lipase family relationships, binding interactions, non-equivalence of lipase cofactors, vitellogenin similarities and functional subdivision of lipoprotein lipase. Eur. J. Biochem. 179, 39–45.

    Article  PubMed  CAS  Google Scholar 

  146. Blow D.M. (1971) The structure of chymotrypsin The enzymes (eds. Boyer P.D.) 185-212

    Google Scholar 

  147. Derewenda Z.S. and Sharp A.M. (1993) News from the interface: the molecular structures of triacylglyceride lipases. Trends Biochem. Sci. 18, 20–25.

    Article  PubMed  CAS  Google Scholar 

  148. Guidoni A., Benkouka F., de Caro J. and Rovery M. (1981) Characterization of the serine reacting with diethyl /7-nitrophenylphosphate in porcine pancreatic lipase. Biochim. Biophys. Acta 660, 148–150.

    PubMed  CAS  Google Scholar 

  149. Chapus C. and Sörömiva M. (1976) Mechanism of pancreatic lipase action. 2. Catalytic properties of modified lipases. Biochemistry 15,4988–4991.

    Article  PubMed  CAS  Google Scholar 

  150. Liithi-Peng Q. and Winkler F.K. (1992) Large spectral changes accompany the conformational transition of human pancreatic lipase induced by acylation with the inhibitor tetrahydrolipstatin. Eur. J. Biochem. 205, 383–390.

    Article  Google Scholar 

  151. Grusby M.J., Nabavi N., Wong H., Dick R.F., Bluestone J.A., Schotz M.C. and Glimcher L.H. (1990) Cloning of an interleukin-4 inducible gene from cytotoxic T lymphocytes and its identification as a lipase. Cell 60,451–459.

    Article  PubMed  CAS  Google Scholar 

  152. Wishart M.J., Andrews P.C., Nichols R., Blevins G.T. Jr., Logsdon C.D. and Williams J.A. (1993) Identification and cloning of GP-3 from rat pancreatic acinar zymogen granules as a glycosylated membrane-associated lipase. J. Biol. Chem. 268, 10303–10311.

    PubMed  CAS  Google Scholar 

  153. Camere F., Thirstrup K., Boel Ef Verger R. and Thim L. (1994) Structure-function relationships in naturally occurring mutants of pancreatic lipase. Protein Eng. 7, 563–569.

    Article  Google Scholar 

  154. Verger R., Rietsch J. and Desnuelle P. (1977) Effects of colipase on hydrolysis of monomolecular films by lipase. J. Biol. Chem. 252, 4319–4325.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ransac, S. et al. (1996). The Kinetics, Specificities and Structural Features of Lipases. In: Op den Kamp, J.A.F. (eds) Molecular Dynamics of Biomembranes. NATO ASI Series, vol 96. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-61126-1_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-61126-1_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64707-9

  • Online ISBN: 978-3-642-61126-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics