Skip to main content

Importance and Role of Sterols in Fungal Membranes

  • Conference paper
Biochemistry of Cell Walls and Membranes in Fungi

Abstract

The basic role of biomembranes is to provide a barrier between a cell or organelle and its environment and at the same time to serve as a matrix for the association of proteins with lipids (Gibbons et al. 1982) or, as pointed out by Lewis Thomas (1974), “it takes a membrane to make sense out of disorder”. In these membranes, sterols play a major role both architecturally and functionally. The most common membrane sterol in animals is cholesterol (Fig. 1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams AEM, Pringle JR (1984) Relationship of aetin and tubulin distribution to bud growth in wildtype and morphogenetic-mutant Saccharomyces cerevisiae. J Cell Biol 98: 934–945

    Article  PubMed  CAS  Google Scholar 

  • Anderson JM, Soll DR (1986) Differences in actin localization during bud and hypha formation in the yeast Candida albicans. J Gen Microbiol 132: 2035–2047

    PubMed  CAS  Google Scholar 

  • Anding C, Rohmer M, Ourison G (1976) Nonspecific biosynthesis of hopane triterpenes in a cell-free system from Acetobacter rancens. J Am Chem Soc 98: 1274–1275

    Article  PubMed  CAS  Google Scholar 

  • Andreason AA, Stier SJB (1953) Anaerobic nutrition of Saccharomyces cerevisiae. I. Ergosterol requirement for growth in defined medium. J Cell Comp Physiol 41: 23–26

    Article  Google Scholar 

  • Barton DHR, Corrie JET, Widdowson DA, Bard M, Woods RA (1974) Biosynthetic implications of the sterol content of ergosterol-deficient mutants of yeast. JCS Chem Commun 30–31

    Google Scholar 

  • Barton DHR, Jarman TR, Watson KC, Widdowson DA, Boar RB, Damps K (1975) Investigations on the biosynthesis of steroids and terpenoids. XII. Biosynthesis of β-hydroxy-triterpenoids and β-hydroxy-steroids from 3S-2,3-epoxide-2,3-dihydrosqualene. J Chem Soc Perkin Trans (I):1134–1138

    Article  Google Scholar 

  • Barug D, Samson RA, Kerkenaar A (1983) Microscopic studies of Candida albicans and Torulopsis glabrata after in vitro treatment with bifonazole. Arzneim Forsch 33: 528–537

    CAS  Google Scholar 

  • Berman JD, Goad LJ, Black DH, Holz Jr GG (1986) Effects of ketoconazole on sterol synthesis by Leishmania mexicana mexicana amastigotes in murine macrophage tumor cells. Mol Biochem Parasit 20: 85–92

    Article  CAS  Google Scholar 

  • Bloch KE (1983) Sterol structure and membrane function. Crit Rev Biochem 14: 47–92

    Article  CAS  Google Scholar 

  • Borgers M (1988) Ultrastructural correlates of antimycotic treatment. In: McGinnis MR (ed) Current topics in medical mycology, vol 2. Springer, Berlin Heidelberg New York Tokyo, pp 1–39

    Google Scholar 

  • Borelli D (1987) A clinical trial of itraconazole in the treatment of deep mycoses and leishmaniasis. Rev Inf Dis 9:(Suppl 1):S 57–S 63

    Article  Google Scholar 

  • Bouvier P, Rohmer M, Benveniste P, Ourisson G (1976) Δ 8(14)-steroids in the bacterium Methylococcus capsulatus. Biochem J 159: 267–271

    PubMed  CAS  Google Scholar 

  • Buttke TM, Bloch K (1980) Comparative responses of the yeast mutant strain GL 7 to lanosterol, cycloartenol, and cyclolaudenol. Biochem Biophys Res Commun 92: 229–236

    Article  PubMed  CAS  Google Scholar 

  • Cabib E, Kang MS, Bowers B, Elango N, Mattia E, Slater MI, Au-Young J (1984) Chitin synthesis in yeast, a vectorial process in the plasma membrane. In: Nombela C (ed) Microbial cell wall synthesis and autolysis. Elsevier, Amsterdam, pp 91–100

    Google Scholar 

  • Chanderbhan R, Noland BJ, Scallen TJ, Vahouny GV (1982) Sterol carrier protein2. Delivery of cholesterol from adrenal lipid droplets to mitochondria for pregnenolone synthesis. J Biol Chem 257: 8928–8934

    PubMed  CAS  Google Scholar 

  • Chen HW, Heiniger H-J, Kandutsch AA (1975) Relationship between sterol synthesis and DNA synthesis in phytohemagglutinin-stimulated mouse lymphocytes. Proc Natl Acad Sci USA 72: 1950–1954

    Article  PubMed  CAS  Google Scholar 

  • Chen HW, Heiniger H-J, Kandutsch AA (1978) Alteration of 86Rb+ influx and efflux following depletion of membrane sterol in L-cells. J Biol Chem 253: 3180–3185

    PubMed  CAS  Google Scholar 

  • Chen HW, Leonard DA, Fischer RT, Trzaskos JM (1988) A mammalian mutant cell lacking detectable lanosterol 14α-methyldemethylase activity. J Biol Chem 263: 1248–1254

    PubMed  CAS  Google Scholar 

  • Chiew YY, Sullivan PA, Shepherd MG (1982) The effects of ergosterol and alcohols on germ-tube formation and chitin synthase in Candida albicans. Can J Biochem 60: 15–20

    Article  PubMed  CAS  Google Scholar 

  • Cooper RA, Strauss JF III (1984) Regulation of cell membrane cholesterol. In: Shinitzky M (ed) Physiology of membrane fluidity, vol 1. CRC Press, Boca Raton, pp 73–97

    Google Scholar 

  • Cornell R, Grove GL, Rothblat GH, Horwitz AF (1977) Lipid requirement for cell cycling. The effect of selective inhibition of lipid synthesis. Exp Cell Res 109: 299–307

    Article  PubMed  CAS  Google Scholar 

  • Cuthbert JA, Lipsky PE (1980) Sterol metabolism and lymphocyte function: Inhibition of endogenous sterol biosynthesis does not prevent mitogen-induced human T-lymphocyte activation. J Immunol 124: 2240–2246

    PubMed  CAS  Google Scholar 

  • Dahl JS, Dahl CE (1985) Stimulation of cell proliferation and polyphosphoinositide metabolism in Saccharomyces cerevisiae GL7 by ergosterol. Biochem Biophys Res Commun 133: 844–850

    Article  PubMed  CAS  Google Scholar 

  • Dawidowicz EA (1987) Dynamics of membrane lipid metabolism and turnover. Annu Rev Biochem 56: 43–61

    Article  PubMed  CAS  Google Scholar 

  • Demel RA (1987) Structural and dynamic aspects of membrane lipids. In: Stumpf PK, Mudd JB, Nes WD (eds) The metabolism, structure, and function of plant lipids. Plenum, New York London, pp 145–152

    Google Scholar 

  • Demel RA, De Kruyff B (1976) The function of sterols in membranes. Biochim Biophys Acta 457: 109–132

    PubMed  CAS  Google Scholar 

  • De Nollin S, Borgers M (1975) Scanning electron microscopy of Candida albicans after in vitro treatment with miconazole. Antimicrob Agents Chemother 7: 704–711

    PubMed  Google Scholar 

  • De Nollin S, Van Belle H, Goosens F, Thoné F, Borgers M (1977) Cytochemical and biochemical studies of yeasts after in vitro exposure to miconazole. Antimicrob Agents Chemother 11: 500–513

    PubMed  Google Scholar 

  • Ferguson KA, Davis FM, Conner RL, Landrey JR, Mallory FB (1975) Effect of sterol replacement in vivo on the fatty acid composition of Tetrahymena. J Biol Chem 250: 6998–7005

    PubMed  CAS  Google Scholar 

  • Freter CE, Landenson RC, Silbert DF (1979) Membrane phospholipids alterations in response to sterol depletion of LM cells. J Biol Chem 254: 6909–6916

    PubMed  CAS  Google Scholar 

  • Georgopapadakou NH, Dix BA, Smith SA, Freudenberger J, !Funke PT (1987) Effect of antifungal agents on lipid biosynthesis and membrane integrity in Candida albicans. Antimicrob Agents Chemother 31: 46–51

    PubMed  CAS  Google Scholar 

  • Gibbons GF, Mitropoulos KA, Myant NB (1982) Biochemistry of cholesterol. Elsevier Biomed Press, Amsterdam

    Google Scholar 

  • Hall PF (1985) The role of the cytoskeleton in the supply of cholesterol for steroidogenesis. In: Strauss JF, Menon KMJ (eds) Lipoprotein and cholesterol metabolism in steroidogenic tissues. Stickley, Washington, pp 207–217

    Google Scholar 

  • Harold RL, Harold FM (1986) Ionophores and cytochalasin modulate branching in Achlya bisexualis. J Gen Microbiol 132: 213–219

    PubMed  CAS  Google Scholar 

  • Hart DT, Lauwers WJ, Willemsens G, Vanden Bossche H, Opperdoes FR (1989) Perturbation of sterol biosynthesis by itraconazole and retoconazole in Leishmania mexicana mexicana infected macrophages. Mol Biochem Parasit 33:123–134

    Article  CAS  Google Scholar 

  • Heath IB (1987) Preservation of a labile cortical array of actin filaments in growing hyphal tips of the fungus Saprolegnia ferax. Eur J Cell Biol 44: 10–16

    Google Scholar 

  • Heiniger H-J, Kandutsch AA, Chen HW (1976) Depletion of L-cell sterol depresses endocytosis. Nature (London) 263:515–517

    Article  CAS  Google Scholar 

  • Henry SA (1982) Membrane lipids of yeast: Biochemical and genetic studies. In: Strathern JN, Jones EW, Broach JR (eds) The molecular biology of the yeast Saccharomyces. Metabolism and gene expression. Cold Spring Harbor Laboratory, Cold Spring Harbor, pp 101–158

    Google Scholar 

  • Höfer M, Huh H, Ktinemund A (1983) Membrane potential and cation permeability. A study with a nystatin-resistant mutant of Rhodotorula gracilis (Rhodosporidum toruloides). Biochim Biophys Acta 735: 211–214

    Article  PubMed  Google Scholar 

  • Holz GG (1985) Lipids of leishmanias. In: Chang K-P, Bray RS (eds) Leishmaniasis. Elsevier, Amsterdam, pp 79–92

    Google Scholar 

  • Kandutsch AA, Chen HW, Heiniger H-J (1978) Biological activity of some oxygenated sterols. Science 201: 498–501

    Article  PubMed  CAS  Google Scholar 

  • Kawasaki S, Ramgopal M, Chin J, Bloch K (1985) Sterol control of the phosphatidylethanolamine-phosphatidylcholine conversion in yeast mutant GL7. Proc Natl Acad Sci USA 82: 5715–5719

    Article  PubMed  CAS  Google Scholar 

  • Kerkenaar A, Barug D (1984) Fluorescence microscope studies of Ustilago maydis and Penicilliun italicum after treatment with imazalil or fenpropimorph. Pestic Sci 16: 199–205

    Article  Google Scholar 

  • Kilmartin JM, Adams AEM (1984) Structural rearrangements of tubulin and actin during the cell cycle of the yeast Saccharomyces. J Cell Biol 98: 922–933

    Article  PubMed  CAS  Google Scholar 

  • Künemund A, Höfer M (1983) Passive fluxes of K+ and H+ in wild strain and nystatin-resistant mutant of Rhodotorula gracilis (ATCC 26194). Biochim Biophys Acta 735: 203–210

    Article  PubMed  Google Scholar 

  • Lees ND, Kemple MD, Barbuch RJ, Smith MA, Bard M (1984) Differences in membrane order parameter and antibiotic sensitivity in ergosterol-producing strains of Saccharomyces cerevisiae. Biochim Biophys Acta 776: 105–112

    Article  CAS  Google Scholar 

  • Le Marchand Y, Singh A, Patzelt C, Orci L, Jeanrenaud B (1975) In vivo and in vitro evidences for a role of microtubules in the secretory processes of liver. In: Borgers M, De Brabander M (eds) Microtubules and microtubule inhibitors. North-Holland Publishing Company, Amsterdam, pp 153–164

    Google Scholar 

  • Lewis TA, Rodriguez RJ, Parks LW (1987) Relationship between intracellular sterol content and sterol esterification and hydrolysis in Saccharomyces cerevisiae. Biochim Biophys Acta 921: 205–212

    PubMed  CAS  Google Scholar 

  • Lopez-Romero E, Monzon E, Ruiz-Herrera J (1985) Sterol composition of chitosomes from yeast cells of Mucor rouxii: comparison with whole cells. FEMS Microbiol Lett 30: 369–372

    Article  CAS  Google Scholar 

  • Lorenz RT, Rodriguez RJ, Lewis TA, Parks LW (1986) Characteristics of sterol uptake in Saccharomyces cerevisiae. J Bacteriol 167: 981–985

    PubMed  CAS  Google Scholar 

  • Low C, Rodriguez RJ, Parks LW (1985) Modulation of yeast plasma membrane composition of a yeast sterol auxotroph as a function of exogenous sterol. Arch Biochem Biophys 240: 530–538

    Article  PubMed  CAS  Google Scholar 

  • Lynch DV, Steponkus PL (1987) Plasma membrane alterations following cold acclimation: Possible relevance to freeze tolerance. In: Stumpf PK, Mudd JB, Nes WD (eds) The metabolism, structure, and function of plant lipids. Plenum, New York London, pp 213–215

    Google Scholar 

  • Marichal P, Gorrens J, Vanden Bossche H (1985) The action of itraconazole and ketoconazole on growth and sterol synthesis in Aspergillus fumigatus and Aspergillus niger. Sabouraudia: J Med Vet Mycol 23: 13–21

    Article  CAS  Google Scholar 

  • Mercer EI (1984) The biosynthesis of ergosterol. Pestic Sci 15: 133–155

    Article  CAS  Google Scholar 

  • Morpurgo G, Serlupi-Crescenzi G, Tecce G, Valente F, Venettacci D (1964) Influence of ergosterol on the physiology and the ultra-structure of Saccharomyces cerevisiae. Nature (London) 201: 897–899

    Article  CAS  Google Scholar 

  • Nes WR (1984) Uniformity vs. diversity in the structure, biosynthesis, and function of sterols. In: Nes WR, Fuller G, Tsai L-S (eds) Isopentenoids in plants biochemistry and function. Dekker, New York Basel, pp 325–347

    Google Scholar 

  • Nes WR, Hanners PK, Parish EJ (1986) Control of fungal sterol C-24 transalkylation: Importance to developmental regulation. Biochem Biophys Res Commun 139: 410–415

    Article  PubMed  CAS  Google Scholar 

  • Novick P (1985) Intracellular transport mutants of yeast. TIBS (November): 432–434

    Google Scholar 

  • Novick P, Botstein D (1985) Phenotypic analysis of temperature-sensitive yeast actin mutants. Cell 40: 405–416

    Article  PubMed  CAS  Google Scholar 

  • Nozawa Y, Morita T (1986) Molecular mechanisms of antifungal agents associated with membrane ergosterol. Dysfunction of membrane ergosterol and inhibition of ergosterol biosynthesis. In: Iwata K, Vanden Bossche H (eds) In vitro and in vivo evaluation of antifungal agents. Elsevier, Amsterdam, pp 111–122

    Google Scholar 

  • Oldfield E, Chapman D (1972) Dynamics of lipids in membranes: Heterogeneity and the role of cholesterol. FEBS Lett 23: 285–297

    Article  PubMed  CAS  Google Scholar 

  • Osawa S, Betz G, Hall PF (1984) Role of actin in the responses of adrenal cells to ACTH and cyclic AMP: inhibition by DNase. J Cell Biol 99: 1335–1342

    Article  PubMed  CAS  Google Scholar 

  • Ourisson G, Albrecht P, Rohmer M (1982) Predictive microbial biochemistry — from molecular fossils to procaryotic membranes. TIBS (July): 236–239

    Google Scholar 

  • Parks LW (1978) Metabolism of sterols in yeast. CRC Crit Rev Microb 6: 301–341

    Article  CAS  Google Scholar 

  • Parks LW, Bottema DK, Rodriguez RJ (1984) Physical and enzymatic function of ergosterol in fungal membranes. In: Nes WD, Fuller G, Tsai K-S (eds) Isopentenoids in plants. Biochemistry and function. Dekker, New York Basel, pp 433–452

    Google Scholar 

  • Parks LW, Bottema DK, Rodriguez RJ, Lewis TA (1985) Yeast mutants as tools for the study of sterol metabolism. Methods Enzymol 111: 333–345

    Article  PubMed  CAS  Google Scholar 

  • Parks LW, Rodriguez RJ, Low C (1986) An essential fungal growth factor derived from ergosterol: a new end product of sterol biosynthesis in fungi? Lipids 21: 89–91

    Article  PubMed  CAS  Google Scholar 

  • Pesti M, Campbell JM, Peberdy JF (1981) Alteration of ergosterol content and chitin synthase activity in Candida albicans. Curr Microbiol 5: 187–190

    Article  CAS  Google Scholar 

  • Pinto WJ, Lozano R, Sekula BC, Nes WR (1983) Stereochemically distinct roles for sterol in Saccharomyces cerevisiae. Biochem Biophys Res Commun 122: 47–54

    Article  Google Scholar 

  • Pratt HP, Fitzgerald PA, Saxon A (1977) Synthesis of sterol and phospholipid induced by the interaction of phytohemagglutinin and other mitogens with human lymphocytes and their relation to blastogenesis and DNA synthesis. Cell Immun 32: 160–170

    Article  CAS  Google Scholar 

  • Prince RC (1987) Hopanoids: the world’s most abundant biomolecules? TIBS (December): 455–456

    Google Scholar 

  • Ragsdale NN (1975) Specific effects of triarimol on sterol biosynthesis in Ustilago maydis. Biochim Biophys Acta 380: 81–96

    PubMed  CAS  Google Scholar 

  • Ragsdale NN, Sisler HD (1972) Mode of action of triarimol on sterol biosynthesis in Ustilago maydis. Biochim Biophys Acta 380: 81–96

    Google Scholar 

  • Rajan VP, Menon KMJ (1985) Role of microtubules in lipoprotein transport in cultured rat luteal cells. In: Strauss JF, Menon KMJ (eds) Lipoprotein and cholesterol metabolism in steroidogenic tissues. Stickley, Washington, pp 197–200

    Google Scholar 

  • Rodriguez RJ, Parks LW (1983) Structural and physiological features of sterols necessary to satisfy bulk membrane and sparking requirements in yeast auxotrophs. Arch Biochem Biophys 225: 861–871

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez RJ, Taylor FR, Parks LW (1982) A requirement for ergosterol to permit growth of yeast sterol auxotrophs on cholestanol. Biochem Biophys Res Commun 106: 435–441

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez RJ, Low C, Bottema CDK, Parks LW (1985) Multiple functions for sterols in Saccharomyces cerevisiae. Biochim Biophys Acta 837: 336–343

    PubMed  CAS  Google Scholar 

  • Rohmer M, Bouvier P, Ourisson G (1979) Molecular evolution of biomembranes: structural equivalents and phylogenic precursors of sterols. Proc Natl Acad Sci USA 76: 847–851

    Article  PubMed  CAS  Google Scholar 

  • Rohmer M, Bouvier P, Ourisson G (1980) Non-specific lanosterol and hopanoid biosynthesis from the bacterium Methylococcus capsulatus. Eur J Biochem 112: 557–560

    Article  PubMed  CAS  Google Scholar 

  • Ruiz-Herrera J (1985) Dimorphism in Mucor species with emphasis on M. rouxii and M. bacilliformis. In: Szaniszlo PJ, Harris JL (eds) Fungal dimorphism. Plenum, New York London, pp 361–384

    Google Scholar 

  • Sancholle M, Weete JD, Montant C (1984) Effects of triazoles on fungi: I. Growth and cellular permeability. Pestic Biochem Physiol 21: 31–44

    Article  CAS  Google Scholar 

  • Scallen TJ, Vahouny GV (1985) The participation of sterol carrier proteins in cholesterol biosynthesis, utilization and intracellular transfer. In: Strauss JF, Menon KMJ (eds) Lipoprotein and cholesterol metabolism in steroidogenic tissues. Stickley, Washington, pp 219–236

    Google Scholar 

  • Scallen TJ, Schuster MW, Dhar AK (1971) Evidence for a noncatalytic carrier protein in cholesterol biosynthesis. J Biol Chem 246: 224–230

    PubMed  CAS  Google Scholar 

  • Scallen TJ, Noland BJ, Gavey KL, Bass NM, Ockner RK, Chandebhan R, Vahouny GV (1985) Sterol carrier protein 2 and fatty acid-binding protein. J Biol Chem 260: 4733–4739

    PubMed  CAS  Google Scholar 

  • Servouse M, Karst F (1986) Regulation of early enzymes of ergosterol biosynthesis in Saccharomyces cerevisiae. Biochem J 240: 541–547

    PubMed  CAS  Google Scholar 

  • Sisler HD, Ragsdale NN (1984) Biochemical and cellular aspects of the antifungal action of ergosterol biosynthesis inhibitors. In: Trinci APJ, Ryley JF (eds) Mode of action of antifungal agents. Cambridge Univ Press, Cambridge, pp 257–282

    Google Scholar 

  • Sisler HD, Walsh R (1981) Mutant of Ustilago maydis genetically blocked in sterol C-14 demethylation. Neth J Plant Pathol 87: 235–236

    Google Scholar 

  • Sisler HD, Walsh RC, Ziogas BN (1983) Ergosterol biosynthesis: a target of fungitoxic action. In: Matsunaka S, Hutson DH, Murphy SD (eds) Pesticide chemistry: Human welfare and the environment, vol 3. Mode of action, metabolism and toxicology. Pergamon, New York, pp 129–134

    Google Scholar 

  • Smedley-MacLean I, Thomas EM (1920) XL. The nature of yeast fat. Biochem J 14: 483–493

    Google Scholar 

  • Soll DR (1985) Candida albicans. In: Szaniszlo PJ, Harris JL (eds) Fungal dimorphism. Plenum, New York London, pp 167–195

    Google Scholar 

  • Stokes JL (1971) Influence of temperature on the growth and metabolism of yeasts. In: Rose AH, Harrison JS (eds) The yeasts, vol 2. Academic Press, London New York, pp 119–134

    Google Scholar 

  • Strittmatter P, Spatz L, Corcoran D, Rogers M J, Setlow B, Redline R (1974) Purification and properties of rat liver microsomal coenzyme A desaturase. Proc Natl Acad Sci USA 71: 4565–4569

    Article  PubMed  CAS  Google Scholar 

  • Tamura Y, Yoshida Y, Sato R, Kumaoka H (1976) Fatty acid desaturase system of yeast microsomes. Involvement of cytochrome b5-containing electron-transport chain. Arch Biochem Biophys 175: 284–294

    Article  PubMed  CAS  Google Scholar 

  • Tanret C (1889) Sur un nouveau principe immédiat de l’ergot de seigle, l’ergostérine. CR Acad Sci 108: 98–100

    Google Scholar 

  • Taylor FR, Parks LW (1980) Adaptation of Saccharomyces cerevisiae to growth on cholesterol: selection of mutants defective in the formation of lanosterol. Biochem Biophys Res Commun 95: 1437–1445

    Article  PubMed  CAS  Google Scholar 

  • Taylor RF (1984) Bacterial triterpenoids. Microbiol Rev 48: 181–198

    PubMed  CAS  Google Scholar 

  • Thomas L (1974) The lives of a cell — Notes of a biology watcher. Viking Press, New York, p 170

    Google Scholar 

  • Thompson ED, Bailey RB, Parks LW (1974) Subcellular location of S-adenosylmethionine: Δ24-sterol methyltransferase in Saccharomyces cerevisiae. Biochim Biophys Acta 334: 116–126

    CAS  Google Scholar 

  • Vahouny GV, Dennis P, Chanderbhan R, Fiskum G, Noland BJ, Scallen TJ (1984) Sterol carrier protein2 (SCP2)-mediated transfer of cholesterol to mitochondrial inner membranes. Biochem Biophys Res Commun 122: 509–515

    Article  PubMed  CAS  Google Scholar 

  • Vanden Bossche H (1974) Biochemical effects of miconazole on fungi: I. Effects on the uptake and/or utilization of purines, pyrimidines, nucleosides, amino acids and glucose by Candida albicans. Biochem Pharmacol 23: 887–899

    Article  PubMed  Google Scholar 

  • Vanden Bossche H (1985) Biochemical targets for antifungal azole derivatives: Hypothesis on the mode of action. In: McGinnis MR (ed) Current topics in medical mycology, vol 1. Springer, Berlin Heidelberg New York Tokyo, pp 313–351

    Google Scholar 

  • Vanden Bossche H, Willemsens G, Cools W, Cornelissen F, Lauwers WF, Van Cutsem JM (1980) In vitro and in vivo effects of the antimycotic drug ketoconazole on sterol synthesis. Antimicrob Agents Chemother 17: 922–928

    PubMed  Google Scholar 

  • Vanden Bossche H, Willemsens G, Cools W, Lauwers WF (1981) Effects of miconazole on the fatty-acid pattern in Candida albicans. Archiv Int Physiol Biochem 89: B134

    Google Scholar 

  • Vanden Bossche H, Ruysschaert JM, Defriese-Quertain F, Willemsens G, Cornelissen F, Marichal P, Cools W, Van Cutsem J (1982) The interaction of miconazole and ketoconazole with lipids. Biochem Pharmacol 31: 2609–2617

    Article  PubMed  Google Scholar 

  • Vanden Bossche H, Willemsens G, Cools W, Marichal P, Lauwers W (1983) Hypothesis on the molecular basis of the antifungal activity of N-substituted imidazoles and triazoles. Biochem Soc Trans 11: 665–667

    PubMed  Google Scholar 

  • Vanden Bossche H, Lauwers W, Willemsens G, Marichal P, Cornelissen F, Cools W (1984 a) Molecular basis for the antimycotic and antibacterial activity of N-substituted imidazoles and triazoles: the inhibition of isoprenoid biosynthesis. Pestic Sci 15: 188–198

    Article  Google Scholar 

  • Vanden Bossche H, Willemsens G, Marichal P (1984 b) Cytochrome P-450 inhibitors at the origin of deteriorated fungal membranes. A summary. In: Nombela C (ed) Microbial cell wall synthesis and autolysis. Elsevier, Amsterdam, pp 307–312

    Google Scholar 

  • Vanden Bossche H, Willemsens G, Marichal P (1987 a) Anti-Candida drugs — The biochemical basis for their activity. CRC Crit Rev Microb 15: 57–72

    Article  Google Scholar 

  • Vanden Bossche H, Marichal P, Gorrens J, Bellens D, Verhoeven H, Coene M-C, Lauwers W, Janssen PAJ ( 1987 b) Interaction of azole derivatives with cytochrome P-450 isozymes in yeast, fungi, plant and mammalian cells. Pestic Sci 21:289–306

    Article  Google Scholar 

  • Vanden Bossche H, Marichal P, Geerts H, Janssen PAJ (1988) The molecular basis for itraconazole’s activity against Aspergillus fumigatus. In: Vanden Bossche H, Mackenzie DWR, Cauwenbergh G (eds) Aspergillus and aspergillosis. Plenum, New York London, pp 171–197

    Google Scholar 

  • Van Gestel J (1986) The vapour phase activity of antifungal compounds: a neglected or a negligible phenomenon? In: Iwata K, Vanden Bossche H (eds) In vitro and in vivo evaluation of antifungal agents. Elsevier, Amsterdam, pp 207–218

    Google Scholar 

  • Weete JD (1980) Lipid biochemistry. Plenum, New York London, pp 49–95

    Google Scholar 

  • Weete JD, Sancholle MS, Montant C (1983) Effects of triazoles on fungi: II. Lipid composition of Taphrina deformans. Biochim Biophys Acta 752: 19–29

    CAS  Google Scholar 

  • Weinrauch I, Livshin R, El-On J (1987) Ketoconazole in cutaneous leishmaniasis. Br J Med 117 (5): 666–668

    CAS  Google Scholar 

  • Woods RA (1971) Nystatin-resistant mutants of yeast: Alterations in sterol content. J Bacteriol 108: 69–73

    PubMed  CAS  Google Scholar 

  • Yamaguchi H (1977) Antagonistic action of lipid components of membranes from C. albicans and various other lipids on two imidazole antimycotics. Antimicrob Agents Chemother 12: 16–25

    PubMed  CAS  Google Scholar 

  • Yoshida Y (1988) Cytochrome P450 of fungi: Primary target for azole antifungals. In: McGinnis MR (ed) Current topics in medical mycology, vol 2. Springer, Berlin Heidelberg New York Tokyo, pp 389–418

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Vanden Bossche, H. (1990). Importance and Role of Sterols in Fungal Membranes. In: Kuhn, P.J., Trinci, A.P.J., Jung, M.J., Goosey, M.W., Copping, L.G. (eds) Biochemistry of Cell Walls and Membranes in Fungi. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74215-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74215-6_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74217-0

  • Online ISBN: 978-3-642-74215-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics