Skip to main content

Interactions of Toxic Organic Chemicals with Humic Substances

  • Conference paper
Toxic Organic Chemicals in Porous Media

Part of the book series: Ecological Studies ((ECOLSTUD,volume 73))

Abstract

Humic substances (HS) are the most widespread and ubiquitous natural nonliving organic materials occurring in all terrestrial and aquatic environments. HS occur not only as the major fraction of soil organic matter (OM), but also in marine, river and lake waters and sediments, sewage effluents of various nature, peat, coal and lignite. The amount of carbon on the earth occurring as humic substances (60×1011 tons) has been estimated to exceed about 10-fold of that occurring in living organisms (7×1011 tons).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Aizenshtat Z (1973) Perylene and its geochemical significance. Geochim Cosmochim Acta 37: 559–597

    Article  CAS  Google Scholar 

  • Alfen NK Van, Kosuge T (1976) Metabolism of the fungicide 2, 6-dichloro-4-nitroaniline in soil. J Agric Food Chem 24: 584–588

    Article  PubMed  Google Scholar 

  • Anonymous (1972) Phthalate effect on health still not clear. Chem Eng News 50: 14–15

    Google Scholar 

  • Armstrong DE, Chesters G, Harris RF (1967) Atrazine hydrolysis in soil. Soil Sci Soc Am Proc 31: 61–66

    Article  CAS  Google Scholar 

  • Ashton FM, Sheets TJ (1959) The relationship of soil adsorption of EPTC to oats injury in various soil types. Weeds 7: 88–90

    Article  CAS  Google Scholar 

  • Autian J (1973) Toxicity and health threats of phthalate esters: review of the literature. Environ Health Perspect 4: 3–26

    Article  PubMed  CAS  Google Scholar 

  • Bailey GW, White JL (1970) Factors influencing the adsorption, desorption, and movement of pesticides in soil. Residue Rev 32: 29–92

    PubMed  CAS  Google Scholar 

  • Baker R, Yohe T, Suffet IH (1987) The competitive effect of humic substances on the adsorption of volatile halogenated organics in drinking water. Am Chem Soc-Div Environ Chem 27 (1): 363–364

    Google Scholar 

  • Ballard TM (1971) Role of humic carrier substances in DDT movement through forest soil. Soil Sci Soc Am Proc 25: 145–147

    Article  Google Scholar 

  • Berry DF, Boyd SA (1984) Oxidative coupling of phenols and anilines by peroxidase: structure-activity relationships. Soil Sci Soc Am J 48: 565–569

    Article  CAS  Google Scholar 

  • Berry DF, Boyd SA (1985) Reaction rates between phenolic humus constituents and anilines during cross-coupling. Soil Biol Biochem 17: 631–636

    Article  CAS  Google Scholar 

  • Boehm PD, Quinn J (1973) Solubilization of hydrocarbons by the dissolved organic matter in seawater. Geochim Cosmochim Acta 37: 2459–2477

    Article  CAS  Google Scholar 

  • Bollag JM (1983) Cross-coupling of humus constituents and xenobiotic substances. In: Christman RF, Gjessing ET (eds) Aquatic and Terrestrial Humic Materials. Ann Arbor Sci Publ, Ann Arbor, MI, pp 127–141

    Google Scholar 

  • Bollag JM (1987) Enzymatic detoxication through binding of pollutants to humic substances. Am Chem Soc-Div Environ Chem 27 (1): 289–290

    Google Scholar 

  • Bollag JM, Loll MJ (1983) Incorporation of xenobiotics into soil humus. Experientia (Basel) 39: 1221–1231

    Article  CAS  Google Scholar 

  • Bollag JM, Liu S-Y, Minard RD (1980) Cross-coupling of phenolic humus constituents and 2,4dichlorophenol. Soil Sci Soc Am J 44: 52–56

    Article  CAS  Google Scholar 

  • Bollag JM, Minard RD, Liu S-Y (1983) Cross-linkage between anilines and phenolic humus constituents. Environ Sci Technol 17: 72–80

    Article  CAS  Google Scholar 

  • Bowman MC, Schechter MS, Carter RL (1965) Behavior of chlorinated insecticides in a broad spectrum of soil types. J Agric Food Chem 13: 360–365

    Article  Google Scholar 

  • Briggs GG (1969) Molecular structure of herbicides and their sorption by soils. Nature 223: 12–88

    Article  Google Scholar 

  • Briggs GG (1973) A simple relationship between soil sorption of organic chemicals and their octanol/water partition coefficients. Proc 7th Brit Insecticide Fungicide Conf 11: 475–478

    Google Scholar 

  • Briggs GG (1981) Adsorption of pesticides by some Australian soils. Aust J Soil Res 19: 61–68

    Article  CAS  Google Scholar 

  • Briggs GG, Dawson JE (1970) Hydrolysis of 2,6-dichlorobenzonitrile in soils. J Agric Food Chem 18: 97–99

    Article  PubMed  CAS  Google Scholar 

  • Bronsted JN, Pedersen K (1924) Die Katalytische Zersetzung des Nitramids and ihre physikalische-chemische Bedentung. Z Phys Chem 108: 185–235

    CAS  Google Scholar 

  • Burchill S, Hayes MHB, Greenland DJ (1981) Adsorption of organic molecules. In: Greenland DJ, Hayes MHB (eds) The Chemistry of Soil Processes, Chapt 6, Wiley, New York; pp 221–400

    Google Scholar 

  • Burkhard N, Guth JA (1981) Chemical hydrolysis of 2-chloro-4, 6-bis(alkylamino)-1,3,5-triazine herbicides and their breakdown in soil under the influence of adsorption. Pestic Sci 12: 45–52

    CAS  Google Scholar 

  • Burns IG, Hayes MHB, Stacey M (1973a) Spectroscopic studies on the mechanisms of adsorption of paraquat by humic acid and model compounds. Pestic Sci 4: 201–209

    Article  CAS  Google Scholar 

  • BurnsiG, Hayes MHB, Stacey M (1973b) Some physico-chemical interactions of paraquat with soil organic materials and model compounds II. Adsorption and desorption equilibria in aqueous suspensions. Weed Res 13: 79–90

    Google Scholar 

  • Calderbank A (1968) The bipyridilium herbicides. Adv Pest Control Res 8: 127–190

    PubMed  CAS  Google Scholar 

  • Carlberg GE, Martinsen K (1982) Adsorption/complexation of organic micro-pollutants and comparison of two analytical methods for analysing organic pollutants in humus waters. Sci Total Environ 25: 245–254

    Article  CAS  Google Scholar 

  • Carringer RD, Weber JB, Monaco TJ (1975) Adsorption-desorption of selected pesticides by organic matter and montmorillonite. J Agric Food Chem 23: 569–572

    Article  Google Scholar 

  • Carter CW, Suffet IH (1982) Binding of DDT to dissolved humic materials. Environ Sci Technol 16: 735–740

    Article  CAS  Google Scholar 

  • Carter MC (1975) Amitrole. In: Kearney PC, Kaufman (eds) Herbicides: Chemistry, Degradation and Mode of Action. Dekker, New York, pp 377–398

    Google Scholar 

  • Chen Y, Schnitzer M (1978) The surface tension of aqueous solutions of soil humic substances. Soil Sci 125: 7–15

    Article  CAS  Google Scholar 

  • Chiou CT, Freed VH, Schmedding DW, Kohnert RG (1977) Partition coefficients and bioaccumulation of selected organic chemicals. Environ Sci Technol 11: 475–478

    Article  CAS  Google Scholar 

  • Chiou CT, Peter LJ, Freed VH (1979) A physical concept of soil-water equilibria for nonionic organic compounds. Science 206: 831–832

    Article  PubMed  CAS  Google Scholar 

  • Chiou CT, Porter PE, Schmedding DW (1983) Partition equilibria of nonionic organic compounds between soil organic matter and water. Environ Sci Technol 17: 227–231

    Article  CAS  Google Scholar 

  • Chiou CT, Porter PE, Shoup TD (1984) Comment on “Partition equilibria of nonionic organic compounds between soil organic matter and water”. Environ Sci Technol 18: 295–297

    Article  CAS  Google Scholar 

  • Chiou CT, Shoup TD, Porter PE (1985) Mechanistic roles of soil humus and minerals in the sorption of nonionic organic compounds from aqueous and organic solutions. Org Geochem 8: 9–14

    Article  CAS  Google Scholar 

  • Chiou CT, Malcolm RL, Brinton TI, Kile DE (1986) Water solubility enhancement of some organic pollutants and pesticides by dissolved humic and fulvic acids. Environ Sci Technol 20: 502–508

    Article  PubMed  CAS  Google Scholar 

  • Choudry GG (1984) Humic substances: interactions with environmental chemicals (excluding sorptive interactions). In: Humic Substances, Vol 7. Current Topics in Environ and Toxicol Chem, Gordon and Breach, New York, pp 143–169

    Google Scholar 

  • Cifrulak CF (1969) Spectroscopic evidence of phthalates in soil organic matter. Soil Sci 107: 63–69

    Article  CAS  Google Scholar 

  • Cole JA (1975) Groundwater pollution in Europe. Water Information Center, Port Washington, New York

    Google Scholar 

  • Corcoran EF (1973) Gas chromatographic detection of phenolic acid esters. Environ Health Perspect 3: 13–15

    PubMed  CAS  Google Scholar 

  • Crosby DG (1976b) Herbicide photodecomposition. In: Kearney PC, Kaufmann DD (eds) Herbicides: Chemistry, Degradation and Mode of Action, Vol 2. Dekker, New York, Chapt 18, pp 835–890

    Google Scholar 

  • Crosby DG, Wong AS, Plimmer JR, Woolson EA (1971) Photodecomposition of chlorinated dibenzo-p-dioxins. Science 173: 748–749

    Article  PubMed  CAS  Google Scholar 

  • Dillingham EO, Autian J (1973) Teratogenity, mutagenicity, and cellular toxicity of phthalate esters. Environ Health Perspect 3: 81–89

    Article  PubMed  CAS  Google Scholar 

  • Douding RL, Freeman JF (1968) Residual phytotoxicity of fluomethuron in soils. Weed Sci 16: 226–229

    Google Scholar 

  • Draper WM, Crosby DG (1976) Measurement of photochemical oxidants in agricultural field water. ACS 172 Meet, San Francisco-CA, September 1976

    Google Scholar 

  • Dubey HD, Sigafus RE, Freeman JF (1966) Effect of soil properties on the persistence of linuron and diphenamid in soils. Agron J 58: 228–231

    Article  CAS  Google Scholar 

  • Dzombak DA, Luthy RG (1984) Estimating adsorption of polyciclic aromatic hydrocarbons on soils. Soil Sci 137: 292–308

    Article  CAS  Google Scholar 

  • Eliasson L, Hallman V, Tolf E (1969) Leaching of picloram from different soils. Sver Skogsvardsforb Tidskr 67: 491–501

    Google Scholar 

  • Fang SG, Theisen P, Freed VH (1961) Effect of water evaporation, temperature and rates of application on the retention of ethyl-N-N-di-n-propyl thiocarbamate in various soils. Weeds 9: 569–574

    Article  Google Scholar 

  • Farmer WJ, Spencer WF, Shepherd RA, Cliath MM (1974) Effect of flooding and organic matter applications on DDT residues in soil. J Environ Qual 3: 343–346

    Article  CAS  Google Scholar 

  • Felsot A, Wilson J (1980) Adsorption of carbofuran and movement on soil thin layers. Bull Environ Contam Toxicol 24: 778–782

    Article  PubMed  CAS  Google Scholar 

  • Foster R (1969) Organic Charge-Transfer Complexes. Academic Press, London, p 470

    Google Scholar 

  • Fujita T, Iwasa J, Hansch C (1964) A new substituent constant, derived from partition coefficients. Am Chem Soc J 86: 5175–5180

    Article  CAS  Google Scholar 

  • Gaillardon P, Calvet R, Tercé M (1977) Adsorption et désorption de la terbutryne par une montmorillonite-Ca et des acides humiques seul on en melanges. Weed Res 17: 41–48

    Article  CAS  Google Scholar 

  • Gaillardon P, Calvet R, Gaudry JC (1980) Adsorption de quelques phenylurées herbicides par des acides humiques. Weed Res 20: 201–204

    Article  CAS  Google Scholar 

  • Gamble DS, Khan SU (1985) Atrazine hydrolysis in soils: catalysis by the acidic functional groups of fulvic acid. Can J Soil Sci 65: 435–443

    Article  CAS  Google Scholar 

  • Gauthier TD, Shane EC, Guerin WF, Seitz WR, Grant CL (1986) Fluorescence quenching method for determining equilibrium constants for polycyclic aromatic hydrocarbons binding to dissolved humic materials. Environ Sci Technol 20: 1162–1166

    Article  CAS  Google Scholar 

  • Gauthier TD, Booth KA, Grant CL, Seitz WR (1987a) Fluorescence quenching studies of interactions between polynuclear aromatic hydrocarbons and humic materials. Am Chem Soc-Div Environ Chem 27 (1): 246–248

    Google Scholar 

  • Gauthier TD, Seitz WR, Grant CL (1987b) Effects of structural and compositional variations of dissolved humic materials on pyrene 1Ç values. Environ Sci Technol 21: 243–248

    Article  CAS  Google Scholar 

  • Gieseking JE (1975) Soil Components, Vol 1. Organic Components. Springer, Berlin Heidelberg New York, p 534

    Google Scholar 

  • Giles CH, MacEwan TH, Nakhwa SN, Smith D (1960) Studies in adsorption. Part Xl. A system of classification of solution adsorption isotherms and its use in diagnosis of adsorption mechanisms and in measurement of specific surface areas of solids. J Chem Soc 3973–3993

    Google Scholar 

  • Gjessing ET, Berglind L (1981) Adsorption of PAH to aquatic humus. Arch Hydrobiol 92: 24–30

    CAS  Google Scholar 

  • Greiner AC, Spyckerelle C, Albrecht P, Ourisson G (1977) Hydrocarbures aromatiques d’origin geologique. V. Derives mono-et diaromatiques du hopane. J Chem Res 3828–3836

    Google Scholar 

  • Grice RE, Hayes MHB, Lundie PR (1973) Adsorption of organo-phosphorus compounds by soil constituents and by soils. Proc 7th Brit Insecticide and Fungicide Conf 11: 73–81

    Google Scholar 

  • Gschwend PM, Wu S (1985) On the constancy of sediment-water partition coefficient of hydrophobic organic pollutants. Environ Sci Technol 19: 90–96

    Article  CAS  Google Scholar 

  • Gupta RK, Raman S, Raman KV (1985) Adsorption of terbutryne on humic acid. J Indian Soc Soil Sci 33: 255–259

    CAS  Google Scholar 

  • Gwo-Chen Li K, Felbeck GT Jr (1972) Atrazine hydrolysis as catalyzed by humic acids. Soil Sci 114: 201–209

    Article  Google Scholar 

  • Haag WR, Hoigné J (1985) Photosensitized oxidation in natural water via OH radicals. Chemosphere 14: 1659–1671

    Article  CAS  Google Scholar 

  • Haag WR, Hoigné J (1986) Single oxygen in surface water. 3. Photochemical formation and steady-state concentrations in various types of waters. Environ Sci Technol 20: 341–348

    Google Scholar 

  • Haas CN, Kaplan BM (1985) Toluene-humic acid association equilibria: isopiestic measurements. Environ Sci Technol 19: 643–645

    Article  CAS  Google Scholar 

  • Hague R, Lilley S (1972) Infrared spectroscopic studies of charge-transfer complexes of diquat and paraquat. J Agric Food Chem 20: 57–58

    Article  Google Scholar 

  • Hance RJ (1965) Observations on the relationship between the adsorption of diuron and the nature of the adsorbent. Weed Res 5: 108–114

    Article  CAS  Google Scholar 

  • Harris CR (1966) Influence of soil type on the activity of insecticides in soil. J Econ Entomol 59: 1221–1225

    CAS  Google Scholar 

  • Harvey GR, Boran DA (1985) Geochemistry of humic substances in seawater. In: Aiken GR, McKnight DM, Wershaw RL, MacCarthy P (eds) Humic Substances in Soil, Sediment and Water. Wiley, New York, pp 233–248

    Google Scholar 

  • Hassett JJ, Anderson MA (1979) Association of hydrophobic organic compounds with dissolved organic matter in aquatic systems. Environ Sci Technol 13: 1526–1529

    Article  CAS  Google Scholar 

  • Hassett JJ, Means JL, Banwart WL, Wood SG (1980a) Sorption properties of sediments and energy–related pollutants. EPA Report 600/3–80–041

    Google Scholar 

  • Hassett JJ, Means JC, Banwart WL, Wood SG, Ali S, Khan A (1980b) Sorption of dibenzothiophene by soils and sediments. J Environ Qual 9: 184–186

    Article  CAS  Google Scholar 

  • Hayes MHB (1970) Adsorption of triazine herbicides on soil organic matter, including a short review on soil organic matter chemistry. Res Rev 32: 131–174

    CAS  Google Scholar 

  • Hayes MHB, Swift RS (1978) The chemistry of soil organic colloids. In: Greenland DJ, Hayes MHB (eds) The Chemistry of Soil Constituents. Wiley, New York, pp 179–320

    Google Scholar 

  • Hayes MHB, Swift RS, Wardle RE, Brownn JK (1975) Humic materials from an organic soil: a comparison of extractants and of properties of extracts. Geoderma 13: 231–245

    Article  CAS  Google Scholar 

  • Hayes MHB, Thompson JM (1968) Adsorption of s-triazine herbicides by soil organic matter preparations. In FAO /IAEA (eds) Isotopes and Radiation in Soil Organic Matter Studies, Proc Symp FAO/IAEA, Vienna, pp

    Google Scholar 

  • Hites R (1973) Phthalates in the Charles and the Menimeck rivers. Environ Health Perspect 3: 17–21

    Article  PubMed  CAS  Google Scholar 

  • Hoigné J, Bader H, Nowell LH (1987b) Rate constants of OH radical scavenging by humic substances: role in ozonation and in a few photochemical processes for the elimination of micropollutants. Am Chem Soc-Div Environ Chem 27 (1): 208–211

    Google Scholar 

  • Hoigné J, Faust BC, Haag WR, Zepp RG (1987a) Aquatic humic substances as sources and sinks of photochemically produced transient reactants. Am Chem Soc-Div Environ Chem 27 (1): 221–224

    Google Scholar 

  • Hollist RL, Foy CL (1971) Trifluralin interaction with soil constituents. Weed Sci 19: 11–16

    CAS  Google Scholar 

  • Hsu TS, Bartha R (1974) Interaction of pesticides-derived chloroaniline residues with soil organic matter. Soil Sci 116: 444–452

    Article  Google Scholar 

  • Hsu TS, Bartha R (1976) Hydrolysable and nonhydrolysable 2.4-dichloroaniline-humus complexes and their respective rates of biodegradation. J Agric Food Chem 24: 118–122

    Article  PubMed  CAS  Google Scholar 

  • Ishiwatari R (1985) Geochemistry of humic substances in lake sediments. In: Aiken GR, McKnight DM, Wershaw RL, MacCarthy P (eds) Humic Substances in Soil, Sediment and Water. Wiley, New York, pp 147–180

    Google Scholar 

  • Jamet P, Piedallu MA (1975a) Mouvement du carbofuran dans differents types de sols. PhytiatriePhytopharmacie 24: 279–296

    CAS  Google Scholar 

  • Jamet P, Piedallu MA (1975b) Etude de l’adsorption et de la desorption de la pyrazone (amino-5-chloro-4-phenyl-2,2 N pyridazinone-3) par different types de sols. Weed Res 15: 113–121

    CAS  Google Scholar 

  • Jaworski EG (1975) Chloroacetamides. In: Kearney PC, Kaufman DD (eds) Herbicides: Chemistry, Degradation and Mode of Action. Dekker, New York, pp 349–376

    Google Scholar 

  • Jordan LS, Farmer WJ, Goodin JR, Day BE (1970) Nonbiological detoxication of the s-triazine herbicides. Res Rev 32: 267–285

    CAS  Google Scholar 

  • Kalouskova N (1986) Kinetics and mechanisms of interaction ofsimazine with humic acids. J Environ Sci Health B21: 251–267

    Article  Google Scholar 

  • Karickoff SW (1981) Semi-empirical estimation of sorption of hydrophobic pollutants on natural sediments and soils. Chemosphere 10: 833–846

    Article  Google Scholar 

  • Karickoff SW, Brown DS, Scott TA (1979) Sorption of hydrophobic pollutants on natural sediments. Water Res 13: 241–248

    Article  Google Scholar 

  • Katan J, Fuhreman TW, Lichtenstein EP (1976) Binding of “C-parathion in soil: a reassessment of pesticide persistence. Science 193: 891–894

    Article  PubMed  CAS  Google Scholar 

  • Keith LH, Telliard WA (1979) Priority pollutants. A perspective view. Environ Sci Technol 13: 416–423

    Google Scholar 

  • Khan SU (1973a) Equilibrium and kinetic studies of the adsorption of 2,4-D and picloram on humic acid. Can J Soil Sci 53: 429–434

    Article  CAS  Google Scholar 

  • Khan SU (1973b) Interaction of humic acid with chlorinated phenoxyacetic and benzoic acids. Environ Lett 4: 141–148

    Article  PubMed  CAS  Google Scholar 

  • Khan SU (1973c) Interaction of humic substances with bipyridilium herbicides. Can J Soil Sci 53: 199–204

    Article  CAS  Google Scholar 

  • Khan SU (1974a) Humic substances reactions involving bipyridilium herbicides in soil and aquatic environments. Res Rev 52: 1–26

    CAS  Google Scholar 

  • Khan SU (1974b) Adsorption of bipyridilium herbicides by humic acids. J Environ Qual 3:202–206

    Article  CAS  Google Scholar 

  • Khan SU (1977) Adsorption of dyfonate (o-ethyl-s-phenylethyl-phosphonodithioate) on humic acid. Can J Soil Sci 57: 9–13

    Article  CAS  Google Scholar 

  • Khan SU (1978a) Kinetics of hydrolysis of atrazine in aqueous fulvic acid solution. Pestic Sci 9: 39–43

    Article  CAS  Google Scholar 

  • Khan SU (1978b) The interaction of organic matter with pesticides. In: Schnitzer M, Khan SU (eds) Soil Organic Matter. Elsevier, Amsterdam, pp 137–170

    Chapter  Google Scholar 

  • Khan SU (1980) Determining the role of humic substances in the fate of pesticides in the environment. J Environ Sci Health B15: 1071–1090

    Article  CAS  Google Scholar 

  • Khan SU, Gamble DS (1983) Ultraviolet irradiation of an aqueous solution of prometryn in the presence of humic materials. J Agric Food Chem 31: 1099–1104

    Article  CAS  Google Scholar 

  • Khan SU, Mazurkevich R (1974) Adsorption of linuron on humic acid. Soil Sci 118: 339–343

    Article  CAS  Google Scholar 

  • Khan SU, Schnitzer M (1972) The retention of hydrophobic organic compounds by humic acid. Geochim Cosmochim Acta 36: 745–754

    Article  CAS  Google Scholar 

  • Khan SU, Schnitzer M (1978) UV irradiation of atrazine in aqueous fulvic acid solutions. J Environ Sci Health 3: 299–310

    Google Scholar 

  • Khan SU, Hamilton HA, Hague EC (1976) Fonofos residues in an organic soil and vegetable crops following treatment of the soil with the insecticide. Pestic Sci 7: 553–558

    Article  CAS  Google Scholar 

  • Kirk RE, Wilson MC (1960) The effect of soil type and moisture on germination and growth from wheat seed treated with phorate. J Econ Entomol 53: 771–774

    Google Scholar 

  • Koren E, Foy CL, Ashton FM (1968) Phytotoxicity and persistence of four thiocarbamates in five soil types. Weed Sci 16: 172–175

    CAS  Google Scholar 

  • Koren E, Foy CL, Ashton FM (1969) Adsorption, volatility and migration of the thiocarbamates herbicides in soil. Weed Sci 17: 148–153

    CAS  Google Scholar 

  • Kozak J (1983) Adsorption of prometryn and metholachlor by selected soil organic matter fractions. Soil Sci 136: 94–101

    Article  CAS  Google Scholar 

  • Lagerkrantz C, Yhland M (1962) Photo-induced electron spin resonance in solutions of some electron donor-acceptor complexes. Acta Chem Scand 16: 1043–1045

    Article  Google Scholar 

  • Lagerkrantz C, Yhland M (1963) Photo-induced free radical reactions in the solution of some tars and humic acid. Acta Chem Scand 17: 1299–1306

    Article  Google Scholar 

  • Lambert SM (1967) Functional relationship between sorption in soil and chemical structure. J Agric Food Chem 15: 572–576

    Article  CAS  Google Scholar 

  • Lambert SM, Porter PE, Schieferstein RH (1965) Movement and sorption of chemicals applied to the soil. Weeds 13: 185–190

    Article  CAS  Google Scholar 

  • Landrum PF, Giesy JP (1981) Anomalous break through of benzo (a)pyrene during concentration with Amberlite XAD-4 resin from aqueous solutions. In: Keith L.H. (ed) Advances in the Identification and Analysis of Organic Pollutants, Vol 1. Ann Arbor Sci Publ, Ann Arbor, MI, pp 345–355

    Google Scholar 

  • Landrum PF, Nihart SR, Eadie BJ, Gardner WS (1984) Reverse-phase separation method for determining pollutant binding to Aldrich humic acid and dissolved organic carbon of natural waters. Environ Sci Technol 18: 187–192

    Article  CAS  Google Scholar 

  • Landrum PF, Reinhold MD, Nihart SR, Eadie BJ (1985) Predicting the bioavailability of organic xenobiotics to Pontoporeia hoyi in the presence of humic and fulvic materials and natural dissolved organic matter. Environ Toxicol Chem 4: 459–467

    CAS  Google Scholar 

  • Landrum PF, Eadie BJ, Nihart SR, Reinhold MD (1987) Confirmation of the reverse-phase measure of xenobiotic partitioning to dissolved organic matter by toxicokinetic studies. Am Chem Soc-Div Environ Chem 27 (1): 291–295

    Google Scholar 

  • Leeneer JA, Aldrichs JL (1971) A kinetic and equilibrium study of the adsorption of carbaryl and parathion upon soil organic matter surfaces. Soil Sci Soc Am Proc 35: 700–705

    Article  Google Scholar 

  • Leversee GJ, Landrum PF, Giesy JP, Fannin T (1983) Humic acids reduce bio-accumulation of some polyciclic aromatic hydrocarbons. Can J Fish Aquat Sci 40: 63–69

    Article  Google Scholar 

  • Li GC, Felbeck GT Jr (1972) A study of the mechanism of atrazine adsorption by humic acid from muck soil. Soil Sci 113: 140–148

    Article  CAS  Google Scholar 

  • Lichtenstein EP (1959) Adsorption of some chlorinated hydrocarbon insecticides from soils into various crops. J Agric Food Chem 7: 430–433

    Article  CAS  Google Scholar 

  • Lichtenstein EP, Katan J, Anderegg BN (1977) Binding of “persistent” and “non-persistent” “C-labeled insecticides in an agricultural soil. J Agric Food Chem 25: 43–47

    Article  CAS  Google Scholar 

  • Lindqvist I (1982) Charge-transfer interaction of humic acids with donor molecules in aqueous solutions. Swed J Agric Res 12: 105–109

    CAS  Google Scholar 

  • Lindqvist I (1983) The interaction between a humic acid and a charge-transfer acceptor molecule. Swed J Agric Res 13: 201–203

    CAS  Google Scholar 

  • Liu S-Y, Bollag JM (1985) Enzymatic binding of the pollutant 2, 6-xylenol to a humus constituent. Water Air Soil Pollut 25: 97–106

    CAS  Google Scholar 

  • Lutz-Ostertag Y, Lutz H (1970) Action de l’herbicide 2,4-D sur le developpement embryonaire et la fecondite due gibier a plumes. C R Acad Sci Paris, Series D271: 2418–2421

    Google Scholar 

  • Macalady DL, Wolfe NL (1984) Abiotic hydrolysis of sorbed pesticides. In Krueger RF, Seiber JN (eds) Treatment and Disposal of Pesticides Wastes. ACS Symp Series N 259: 221–224

    Chapter  Google Scholar 

  • Macalady DL, Wolfe NL (1985) Effects of sediment sorption and abiotic hydrolysis. 1. Organo-phosphorothioate esters. J Agric Food Chem 33: 167–173

    Google Scholar 

  • Macalady DL, Wolfe NL (1987) Influences of aquatic humic substances on the abiotic hydrolysis of organic contaminants: a critical review. Am Chem Soc-Div Environ Chem 27 (1): 12–15

    Google Scholar 

  • MacKay D, Shiu WJ (1978) Determination of the solubility behavior of some polycyclic aromatic hydrocarbons in water. Anal Chem 50: 997–1000

    Article  Google Scholar 

  • Malcolm RL (1985) Geochemistry of stream fulvic and humic substances. In: Aiken GR, McKnight DM, Wershaw RL, MacCarthy P (eds) Humic Substances in Soil, Sediment and Water. Wiley, New York, pp 181–210

    Google Scholar 

  • Malini de Almeida R, Pospisil F, Vockova K, Kutacek M (1980) Effect of humic acids on the inhibition of pea choline esterase and choline acyltransferase with malathion. Biol Plant 22: 167–175

    Google Scholar 

  • Mathur SP (1974) Phthalate esters in the environment: pollutants or natural products? J Environ Qual 3: 189–197

    Article  CAS  Google Scholar 

  • Matsuda K, Schnitzer M (1971) Reactions between fulvic acid, a soil humic material, and dialkylphthalates. Bull Environ Contam Toxicol 6: 200–204

    Article  PubMed  CAS  Google Scholar 

  • Mayer LM (1985) Geochemistry of humic substances in estuarine environments. In Aiken GR, McKnight DM, Wershaw RL, MacCarthy P (eds) Humic Substances in Soils, Sediments and Water. Wiley, New York, pp 211–232

    Google Scholar 

  • McCarthy JF (1983) Role of particulate organic matter in decreasing accumulation of polynuclear aromatic hydrocarbon by Daphnia Magna. Arch Environ Contam Toxicol 12: 559–568

    Article  PubMed  CAS  Google Scholar 

  • McCarthy JF (1987) Humic substances reduce bioavailability and toxicity of contaminants. Am Chem Soc-Div Environ Chem 27 (1): 286–288

    Google Scholar 

  • McCarthy JF, Jimenez BD (1985b) Interaction between polycyclic aromatic hydrocarbons and dissolved humic materials: binding and dissociation. Environ Sci Technol 19: 1072–1076

    Article  CAS  Google Scholar 

  • McCarthy JF, Jimenez BD (1985a) Reduction in bioavailability to bluegills of aromatic polycyclic hydrocarbons bound to dissolved humic material. Environ Toxicol Chem 4: 511–521

    Article  CAS  Google Scholar 

  • McCarthy JF, Jimenez BD, Barbee T (1985) Effect of dissolved humic materials on accumulation of polycyclic aromatic hydrocarbons: structure-activity relationship. Aquatic Toxicol 7: 15–24

    Article  CAS  Google Scholar 

  • McGlamery MD, SLife FW (1966) The adsorption and desorption of atrazine as affected by pH, temperature and concentration. Weeds 14: 237–239

    Article  CAS  Google Scholar 

  • Means JC, Wood SG, Hassett JJ, Banwart WL (1980) Sorption of polynuclear aromatic hydrocarbons by sediments and soils. Environ Sci Technol 14: 1524–1528

    Article  CAS  Google Scholar 

  • Melcer MC. Zalewski MS, Hassett JP, Brisk MA (1987) Nature of the binding interactions between humic substances and hydrophobic molecules. Am Chem Soc-Div Environ Chem 27 (1): 414–416

    Google Scholar 

  • Menges RM, Hubbard JL (1970) Phytotoxicity of bensulide and trifluralin in several soils. Weed Sci 18: 244–247

    CAS  Google Scholar 

  • Metcalf RL, Booth GM, Schuth CK, Hansen DJ, Lu PY (1973) Uptake and fate of di-2-ethylhexyl phthalate in aquatic organisms and in a model ecosystem. Environ Health Perspect 4: 27–34

    Article  PubMed  CAS  Google Scholar 

  • Mill GL, Carter DJ (1987) Photochemical degradation of tetraphenylboron sensitized by dissolved organic matter in natural water. Am Chem Soc-Div Environ Chem 27 (1): 146–148

    Google Scholar 

  • Mill T, Hendry D, Richardson H (1980) Free radical oxidants in natural water. Science 207: 886–887

    Article  PubMed  CAS  Google Scholar 

  • Miller CW, Demoranville IE, Charig AJ (1966) Persistence of dichlobenil in nonberry bogs. Weeds 14: 296–298

    Article  CAS  Google Scholar 

  • Miller GC, Zisook R, Zepp R (1980) Photolysis of 3,4-dichloroaniline in natural waters. J Agric Food Chem 28: 1053–1056

    Article  CAS  Google Scholar 

  • Mingelgrin U, Gersti Z (1983) Reevaluation of partitioning as a mechanism of nonionic chemicals adsorption in soils. J Environ Qual 12: 1–11

    Article  CAS  Google Scholar 

  • Morehead NR, Eadie BJ, Lake B, Landrum PF, Berner D (1986) The sorption of PAH onto dissolved organic matter in Lake Michigan waters. Chemosphere 15: 403–412

    Article  CAS  Google Scholar 

  • Moreland DE, Hilton JL (1976) Action on photosynthesis systems. In: Audus LI (ed) Herbicides: Physiology, Biochemistry and Ecology, Vol 2, Academic Press, New York, 2nd edit, pp 493–521

    Google Scholar 

  • Mudambi AR, Hassett JP (1987) Photochemical activity of mirex associated with dissolved organic matter. Am Chem Soc-Div Environ Chem 27 (1): 201–203

    Google Scholar 

  • Müller-Wegener U (1977) Uber die Bindung von s-Triazinen an Huminsäuren. Geoderma 19: 227–235

    Article  Google Scholar 

  • Mulvaney FL, Bremner JM (1978) Use of p-benzoquinone for retardation of urea hydrolysis in soils. Soil Biol Biochem 10: 297–302

    Article  CAS  Google Scholar 

  • Narbaitz RM, Benedek A (1987) The removal of 1,1,2-trichloroethane from highly colored river water by activated carbon. Am Chem Soc-Div Environ Chem 27 (1): 359–362

    Google Scholar 

  • Narine DR, Guy RD (1982) Binding of diquat and paraquat to humic acid in aquatic environments. Soil Sci 133: 356–363

    Article  CAS  Google Scholar 

  • Nash RG (1968) Plant uptake of 14C-diuron in modified soil. Agron J 60: 177–179

    Article  CAS  Google Scholar 

  • Nearpass DC (1976) Adsorption of picloram by humic acids and humin. Soil Sci 121: 272–277

    Article  CAS  Google Scholar 

  • Nys GG, Rekker RG (1974) The concept of hydrophobic fragmental constants (f-values). 2. Extension of its applicability to the calculation of lipophylicities of aromatic and heteroaromatic structures. Eur J Med Chem Chim Ther 9: 361–375

    Google Scholar 

  • Obien SR, Suchisa RH, Younge Or (1966) The effects of soil factors on the phytotoxicity of neburon to oats. Weeds 14: 105–109

    Article  CAS  Google Scholar 

  • Ogner G, Schnitzer M (1970) Humic substances: fulvic acid-dialkylphthalate complexes and their role in pollution. Science 170: 317–318

    Article  PubMed  CAS  Google Scholar 

  • Parris GE (1980) Covalent binding of aromatic amines to humates. 1. Reactions with carbonyls and quinones. Environ Sci Technol 14: 1099–1106

    Article  CAS  Google Scholar 

  • Perdue EM (1983) Association of organic pollutants with humic substances: partitioning equilibria and hydrolysis kinetics. In: Christman RF, Gjessing ET (eds) Aquatic and Terrestrial Humic Materials. Ann Arbor Sci Publ, Ann Arbor-MI, pp 441–460

    Google Scholar 

  • Perdue EM (1987) Overview of the effects of humic substances on pollutant transformations. Am Chem Soc-Div Environ Chem 27 (1): 448–451

    Google Scholar 

  • Perdue EM, Wolfe NL (1982) Modification of pollutant hydrolysis kinetics in the presence of humic substances. Environ Sci Technol 16: 847–852

    Article  CAS  Google Scholar 

  • Peterson JR, Adams RS Jr, Cutkamp LK (1971) Soil properties influencing DDT bioactivity. Soil Sci Soc Am Proc 35: 72–78

    Article  CAS  Google Scholar 

  • Peyton GR, Gee CS, Bandy J, Maloney SW (1987) Catalytic/competition effects of humic substances

    Google Scholar 

  • on photolytic ozonation of organic compounds, Am Chem Soc-Div Environ Chem 27(1):212–214

    Google Scholar 

  • Pierce RH, Olney CE, Felbeck GT (1971) Pesticide adsorption in soils and sediments. Environ Lett 1: 157–172

    Article  PubMed  CAS  Google Scholar 

  • Pirbazari M, Stevens M, Ravindran V (1987) Effect of complexation of micro-pollutants with humic substances on activated carbon adsorption. Am Chem Soc-Div Environ Chem 27 (1): 434–435

    Google Scholar 

  • Pitts JN Jr, Grosjean D, Mischke TM (1977) Mutagenic activity of airborne particulate organic pollutants. Toxicol Lett 1: 65–70

    Article  CAS  Google Scholar 

  • Plimmer JR, Kearney PC, Rowlands JR (1968) Free radical oxidation of s-triazines mechanism of N-dealkylation. Am Chem Soc Annual Meeting, Atlantic City

    Google Scholar 

  • Ross RD, Crosby DG (1973) Photolysis of ethylenethiourea. J Agric Food Chem 21: 335–337

    Article  PubMed  CAS  Google Scholar 

  • Ross RD, Crosby DG (1975) The photooxidation of aldrin in water. Chemosphere 4: 277–282

    Article  CAS  Google Scholar 

  • Scott DC, Weber JB (1967) Herbicide phytotoxicity as influenced by adsorption. Soil Sci 104: 151–158

    Article  CAS  Google Scholar 

  • Schnitzer M (1978) Humic substances chemistry and reactions. In: Schnitzer M, Khan SU (eds) Soil Organic Matter, Elsevier, Amsterdam, pp 1–64

    Chapter  Google Scholar 

  • Schnitzer M, Khan SU (1972) Humic Substances in the Environment, Dekker, New York, p 327

    Google Scholar 

  • Schwarzenbach RD, Westall J (1981) Transport of non-polar organic compounds from surface water to groundwater. Laboratory sorption studies. Environ Sci Technol 15: 1360–1367

    Google Scholar 

  • Senesi N (1981) Free radicals in electron donor-acceptor reactions between a soil humic acid and photosynthesis inhibitor herbicides. Z Pflanzen Bodenkd 144: 580–586

    Article  CAS  Google Scholar 

  • Senesi N, Schnitzer M (1977) Effects of pH, reaction time, chemical reduction and irradiation on ESR spectra of fulvic acid. Soil Sci 123: 224–234

    Article  CAS  Google Scholar 

  • Senesi N, Schnitzer M (1978) Free radicals in humic substances. In: Krumbein WE (ed) Environmental Biogeochemistry and Geomicrobiology, Vol II, The Terrestrial Environment. Ann Arbor Sci Publ, Ann Arbor, MI, pp 467–481

    Google Scholar 

  • Senesi N, Steelink C (1989) Application of ESR spectroscopy to the study of humic substances and their interactions with organic xenobiotics and metal ions. In: Hayes MHB, MacCarthy P, Malcolm RL, Swift RS (eds) Humic Substances: In Search of Structure. W iley, New York (in press)

    Google Scholar 

  • Senesi N, Testini C (1980) Adsorption of some nitrogenated herbicides by soil humic acids. Soil Sci 10: 314–320

    Article  Google Scholar 

  • Senesi N, Testini C (1982) Physico-chemical investigations of interaction mechanisms between s-triazine herbicides and soil humic acids. Geoderma 28: 129–146

    Article  CAS  Google Scholar 

  • Senesi N, Testini C (1983a) The environmental fate of herbicides: the role of humic substances. Ecological Bull Stockolm 35: 477–490

    CAS  Google Scholar 

  • Senesi N, Testini C (1983b) Spectroscopic investigations of electron donor-acceptor processes involving organic free radicals in the adsorption of substituted urea herbicides by humic acids. Pestic Sci 14: 79–89

    Article  CAS  Google Scholar 

  • Senesi N, Testini C (1984) Theoretical aspects and experimental evidence of the capacity of humic substances to bind herbicides by charge-transfer mechanisms (electron donor-acceptor processes). Chemosphere 13: 461–468

    Article  CAS  Google Scholar 

  • Senesi N, Chen Y, Schnitzer M (1977a) The role of free radicals in the oxidation and reduction offulvic acid. Soil Biol Biochem 9: 397–403

    Article  CAS  Google Scholar 

  • Senesi N, Chen Y, Schnitzer M (1977b) Aggregation-dispersion phenomena in humic substances. In IAEA (ed) Soil Organic Matter Studies, IAEA, Vienna, Vol II, pp 143–155

    Google Scholar 

  • Senesi N, Testini C, Metta D (1984) Binding of chlorophenoxyalkanoic herbicides from aqueous solution by soil humic acids. Proc Int Conf Environmental Contamination, London 1984, CEP Cons Ltd, Edinburgh, pp 96–101

    Google Scholar 

  • Senesi N, Miano TM, Testini C (1986a) Role of humic substances in the environmental chemistry of chlorinated phenoxyalkanoic acids and çsters. In: Pawlowski L, Alaerts G, Lacy WJ (eds) Chemistry for Protection of the Environment 1985, Studies in Environmental Science 29. Elsevier, Amsterdam, pp 183–196

    Chapter  Google Scholar 

  • Senesi N, Padovano G, Loffredo E, Testini (1986b) Interactions of amitrole, alachlor and cycloate with humic acids. Proc 2nd Int Conf Environmental Contamination, Amsterdam 1986, pp 169–171

    Google Scholar 

  • Senesi N, Miano TM, Testini C (1987a) Incorporation of water dissolved chlorophenoxyalkanoic herbicides by humic acids of various origin and nature. In: Giovannozzi-Sermanni G, Nannipieri P (eds) Current Perspectives in Environmental Biogeochemistry, CNR-IPRA, Rome, pp 295–308

    Google Scholar 

  • Senesi N, Testini C, Miano TM (1987b) Interaction mechanisms between humic acids of different origin and nature and electron donor herbicides: a comparative IR and ESR study. Org Geochem 11: 25–30

    Article  CAS  Google Scholar 

  • Sjoblad RD, Bollag JM (1981) Oxidative coupling of aromatic compounds by enzymes from soil microorganism. Soil Biochem 5: 113–152

    CAS  Google Scholar 

  • Slawinska D, Slawinski J, Sarna T (1975) The effect of light on the ESR spectra of humic acids. J Soil Sci 26: 93–99

    Article  CAS  Google Scholar 

  • Slawinski J, Puzyna W, Slawinska D (1978a) Chemiluminescence in the photooxidation of humic acids. Photochem Photobiol 28: 75–81

    Article  CAS  Google Scholar 

  • Spacie A, Landrum PF, Leversee GJ (1984) Uptake, depuration and biotransformation of anthracene and benzo(a)pyrene in Bluegill sunfish. Ecotoxicol Environ Safety 5: 330–341

    Google Scholar 

  • Steinberg C, Muenster U (1985) Geochemistry and ecological role of humic substances in lake water. In: Aiken GR, McKnight DM, Wershaw RL, MacCarthy P (eds) Humic Substances in Soil, Sediment and Water. Wiley, New York, pp 105–146

    Google Scholar 

  • Stevenson FJ (1972) Organic matter reactions involving herbicides in soil. J Environ Qual 1: 333–343

    Article  CAS  Google Scholar 

  • Stevenson FJ (1982) Humus Chemistry: Genesis, Composition, Reactions. Wiley, New York, p 443

    Google Scholar 

  • Stott DE. Martin JP. Focht DD. Haider K (1983) Biodearadation, stabilization in humus.

    Google Scholar 

  • Strek HJ, Weber JB (1982) Behavior of polychlorinated biphenyls ( PCBs) in soils and plants. Environ Pollut A 28: 291–312

    Google Scholar 

  • Suflita JM, Bollag JM (1980) Oxidative coupling activity in soil extracts. Soil Biol Biochem 12: 177–183

    Article  CAS  Google Scholar 

  • Suflita JM, Bollag JM (1981) Polymerization of phenolic compounds by a soil-enzyme complex. Soil Sci Soc Am J 45: 297–302

    Article  CAS  Google Scholar 

  • Sullivan JD, Felbeck GT (1968) A study of the interaction of s-triazine herbicides with humic acids from three different soils. Soil Sci 106: 42–50

    Article  CAS  Google Scholar 

  • Swoboda AR, Thomas GT (1968) Movement of parathion in soil columns. J Agric Food Chem 16: 923–927

    Article  CAS  Google Scholar 

  • Thurman EM (1985) Humic substances in groundwater. In: Aiken GR, McKnight DM, Wershaw RL, MacCarthy P (eds) Humic Substances in Soil, Sediment and Water. Wiley, New York, pp 87–103

    Google Scholar 

  • Thurman EM (1986) Aquatic Humic Substances. In Organic Geochemistry of Natural Waters, Chapt 10. Nijhoff-Junk, Dordrecht, pp 273–361

    Google Scholar 

  • Thurman EM (1987) Linear alkylbenzene sulfonates in groundwater. Potential for co-isolation with humic substances. Am Chem Soc Div-Environ Chem 27 (1): 195–197

    Google Scholar 

  • TRW Systems and Energy, Inc (1976) Carcinogens Relating to Coal Conversion Processes. US Energy Research and Development Administration, Oak Ridge, TN

    Google Scholar 

  • Tschapek M, Wasowski C (1976) The surface activity of humic acid. Geochim Cosmochim Acta 40: 1343–1345

    Article  CAS  Google Scholar 

  • Tucker BV, Pack DE, Ospenson JN (1967) Adsorption ofbipyridylium herbicides in soil. J Agric Food Chem 15: 1005–1008

    Article  CAS  Google Scholar 

  • Tucker BV, Pack DE, Ospenson JN, Omid A, Thomas WD Jr (1969) Paraquat soil bonding and plant response. Weed Sci 17: 448–451

    CAS  Google Scholar 

  • Turski R, Steinbrich A (1971) Studies on the possibilities of binding herbicides of triazine derivates by humic acids. Polish J Soil Sci 4: 120–124

    Google Scholar 

  • Vandenbrouke M, Pelet R, Debyser Y (1985) Geochemistry of humic substances in marine sediments. In Aiken GR, McKnight DM, Wershaw RL, MacCarthy P (eds) Humic Substances in Soil, Sediment and Water. Wiley, New York, pp 249–274

    Google Scholar 

  • Vettorazzi G (1977) State of the art of the toxicological evaluation carried out by the joint FAO/WHO Expert Committee on Pesticide Residues 3. Miscellaneous pesticides used in agriculture and public health. Res Rev 66: 138–184

    Google Scholar 

  • Visser SA (1982) Surface active phenomena by humic substances of aquatic origin. Rev Franc Sci Eau 1: 285–296

    CAS  Google Scholar 

  • Wakeham SG, Schaffner C, Giger W (1980) Polycyclic aromatic hydrocarbons in recent lake sediments. II. Compounds derived from biogenic precursors during early diagenesis. Geochim Cosmochim Acta 44: 415–429

    Google Scholar 

  • Wang CH, Broadbent FE (1973) Effect of soil treatments on losses of two chloronitrobenzene fungicides. J Environ Qual 2: 511–515

    Article  CAS  Google Scholar 

  • Weber JB (1967) Spectrophotometrically determined ionisation constants of 1,3-alkylamino-striazines and the relationships of molecular structure and basicity. Spectrochim Acta 23A: 458–461

    Article  Google Scholar 

  • Weber JB (1970) Mechanism of adsorption of s-triazines by clay colloids and factors affecting plant availability. Res Rev 32: 93–130

    CAS  Google Scholar 

  • Weber JB (1971) Behavior of organic pesticides in soils. Proc Soil Sci North Carolina 14: 74–118

    Google Scholar 

  • Weber JB (1972) Interaction of organic pesticides with particulate matter in aquatic and soil systems. Adv Chem Series 111: 55–120

    CAS  Google Scholar 

  • Weber JB (1978) Fate of organics in sludges applied to the land. Abs 5th Nat ConfAcceptable Sludges Disposal Techniques, Orlando-Fla, Inform Transfer Inc 31: 117–124

    Google Scholar 

  • Weber JB, Weed SB (1974) Effect of soil on the biological activity of pesticides. J Series North Carolina State Univ Agric Experim Station, Raleigh-NC 4087: 223–256

    Google Scholar 

  • Weber JB, Weed SB, Best JA (1969a) Displacement of diquat from clay and its phytotoxicity. J Agric Food Chem 17: 1075–1076

    Article  PubMed  CAS  Google Scholar 

  • Weber JB. Weed SB. Ward TM (1969b) Adsorption of s-triazines by soil organic matter. Weed Sci

    Google Scholar 

  • Weber JB, Weed SB, Waldrup TW (1974) Effect of soil constituents on herbicide activity in modified-soil field plots. Weed Sci 22: 454–459

    CAS  Google Scholar 

  • Weber WJ Jr, Smith EH (1987) The effects of background dissolved organic matter on adsorption processes. Am Chem Soc-Div Environ Chem 27 (1): 342–345

    Google Scholar 

  • Weed SB, Weber JB (1974) Pesticide-organic matter interactions. J Series North Carolina State Univ Agric Experim Station, Raleigh-NC 3840: 39–66

    Google Scholar 

  • Wershaw RL, Burcar PJ, Goldberg MC (1969) Interaction of pesticides with natural organic matter. Environ Sci Technol 3: 271–273

    Article  CAS  Google Scholar 

  • Wolff CJM, Halmans MTH, Van der Heijde HB (1981) The formation of singlet oxygen in surface waters. Chemosphere 10: 59–62

    Article  CAS  Google Scholar 

  • Wolf DC, Martin JP (1976) Decomposition of fungal mycelia and humic-type polymers containing Carbon-14 from ring and side-chain labeled 2,4-D and chlorpropham. Soil Sci Soc Am Proc 40: 700–704

    Article  CAS  Google Scholar 

  • Wolfhart D (1980) Controls needed on killer herbicide. Pac Island 51: 7–10

    Google Scholar 

  • Woolson EA, Thomas RF, Ensor PDJ (1972) Survey of polychlorodibenzo-p-dioxin content in selected pesticides. J Agric Food Chem 20: 351–354

    Article  PubMed  CAS  Google Scholar 

  • World Health Organization (1971) International Standards for Drinking Water 3rd edn, Geneve, Switzerland

    Google Scholar 

  • Yalkowski SH, Valvani SC (1979) Solubilities and partitioning. 2. Relationships between aqueous solubilities, partition coefficients, and molecular surface areas of rigid aromatic hydrocarbons. J Chem Eng Data 24: 127–129

    Google Scholar 

  • Youngblood WW, Blumer M (1975) Polycyclic aromatic hydrocarbons in the environment: homologous series in soils and recent marine sediments. Geochim Cosmochim Acta 39: 1303–1314

    Article  CAS  Google Scholar 

  • Zepp RG, Wolfe NL, Gordon JA, Fincher RG (1976) Light-induced transformations of methoxychlor in aquatic systems. J Agric Food Chem 24: 727–733

    Article  PubMed  CAS  Google Scholar 

  • Zepp RG, Wolfe NL, Baughman GL, Hollis RC (1977) Singlet oxygen in natural waters. Nature 267: 421–423

    Article  CAS  Google Scholar 

  • Zepp RG, Baughman GL, Schlotzhauer PF (1981) Comparison of photochemical behavior of various humic substances in water: sunlight-induced reactions of aquatic pollutants photosensitized by humic substances. Chemosphere 10: 109–117

    Article  CAS  Google Scholar 

  • Zepp RG, Schlotzhauer PF, Sink RM (1985) Photosensitized transformations involving electronic energy transfer in natural waters: role of humic substances. Environ Sci Technol 19: 74–81

    Article  Google Scholar 

  • Zimmer G, Sontheimer H (1987) Activated carbon adsorption of organic pollutants in the presence of humic substances. Am Chem Soc-Div Environ Chem 27 (1): 346–348

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Senesi, N., Chen, Y. (1989). Interactions of Toxic Organic Chemicals with Humic Substances. In: Gerstl, Z., Chen, Y., Mingelgrin, U., Yaron, B. (eds) Toxic Organic Chemicals in Porous Media. Ecological Studies, vol 73. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74468-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74468-6_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74470-9

  • Online ISBN: 978-3-642-74468-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics