Skip to main content

Tridiagonalization of a Symmetric Band Matrix

  • Chapter
Handbook for Automatic Computation

Part of the book series: Die Grundlehren der mathematischen Wissenschaften ((GL,volume 186))

Abstract

The well known method proposed by Givens [1] reduces a full symmetric matrix A = (a ik ) of order n by a sequence of appropriately chosen elementary orthogonal transformations (in the following called Jacobi rotations) to triput diagonal form. This is achieved by (n - 1)(n - 2)/2 Jacobi rotations, each of which annihilates one of the elements a ik with |i - k|>1. If this process is applied in one of its usual ways to a symmetric band matrix A = (a ik ) of order n and with the band width m>1, i.e. with

$${a_{ik}} = 0{\rm{ for all }}i{\rm{ and }}k{\rm{ with |}}i - k{\rm{| >}}m,$$
((1))

it would of course produce a tridiagonal matrix, too. But the rotations generate immediately nonvanishing elements outside the original band that show the tendency to fill out the matrix. Thus it seems that little profit with respect to computational and storage requirements may be taken from the property of the given matrix A to be of band type.

Prepublished in Numer. Math. 12, 231–241 (1968).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Givens, W.: A method for computing eigenvalues and eigenvectors suggested by classical results on symmetric matrices. Nat. Bur. Standards Appl. Math. Ser. 29, H7–122 (1953).

    MathSciNet  Google Scholar 

  2. Rutishauser, H.: On Jacobi rotation patterns. Proceedings of Symposia in Applied Mathematics, Vol. 15 Experimental Arithmetic, High Speed Computing and Mathematics, 1963, 219–239.

    Google Scholar 

  3. Schwarz, H. R.: Die Reduktion einer symmetrischen Bandmatrix auf tridiagonale Form. Z. Angew. Math. Mech. (Sonderheft) 45, T76–T77 (1965).

    Google Scholar 

  4. Schwarz, H. R.: Reduction of a symmetric bandmatrix to triple diagonal form. Comm. ACM 6, 315–316 (1963).

    Article  Google Scholar 

  5. Wilkinson, J. H.: The algebraic eigenvalue problem, 662 p. Oxford: Clarendon Press 1965.

    Google Scholar 

  6. Barth, W., R. S.Martin, and J.H.Wilkinson. Calculation of the eigenvalues of a symmetric tridiagonal matrix by the method of bisection. Numer. Math. 9, 386–393 (1967). Cf. II/5.

    Article  MathSciNet  Google Scholar 

  7. Reinsch, C, and F. L. Bauer. Rational QR transformation with Newton shift for symmetric tridiagonal matrices. Numer. Math. 11, 264 -272 (1968). Cf. II/6.

    Article  MathSciNet  MATH  Google Scholar 

  8. Rutishauser, H.: The Jacobi method for real symmetric matrices. Numer. Math. 9, 1–10 (1966). Cf. II/l.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1971 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Schwarz, H.R. (1971). Tridiagonalization of a Symmetric Band Matrix. In: Bauer, F.L., Householder, A.S., Olver, F.W.J., Rutishauser, H., Samelson, K., Stiefel, E. (eds) Handbook for Automatic Computation. Die Grundlehren der mathematischen Wissenschaften, vol 186. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-86940-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-86940-2_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-86942-6

  • Online ISBN: 978-3-642-86940-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics