Skip to main content

Simulation-Supported Development of Rollover Behavior According to Systems Engineering

  • Conference paper
  • First Online:
21. Internationales Stuttgarter Symposium

Part of the book series: Proceedings ((PROCEE))

Zusammenfassung

To prevent rollover is one main goal in the development of passenger cars. The early consideration and simulation of those vehicle properties show high potential to support the serial development. The advantages lie in the reduction of efforts through systematical deduction of countermeasures and thus a reduction of risks due to changes in late phases of the development. Further, the use of systems engineering methods supports the traceable and structured deduction of technical solutions. The presented paper shows a generic process to develop technical solutions in order to reach the defined vehicle rollover properties using systems-engineering and a simulation based approach. In this context a simulation environment is built up and validated. The process is exemplified with the development of a specific vehicle project.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  1. Braunholz, C., Krantz, W., Wiedemann, J., Scharfenbaum, I., Schaaf, U., Ohletz, A.: Vehicle simulation environment enabling model-based systems engineering of chassis control systems. In: Bargende, M., Reuss, H.-C., Wiedemann, J. (Hrsg.) 18. Internationales Stuttgarter Symposium. Springer Vieweg, Wiesbaden (2018). https://doi.org/10.1007/978-3-658-21194-3

  2. Chang, F., Birnbaum, F., van Putten, S., Kubenz, J., Prokop, G.: Influence of rolling-resistance-optimized tires on the rollover stability of battery electric SUVs. In: 10th International Munich Chassis Symposium. Springer Fachmedien, Wiesbaden (2019). https://doi.org/10.1007/978-3-658-26435-2

  3. Chang, F., Krauter, K., van Putten, S., Kubenz, J., Ohletz, A., Prokop, G.: Cause and effect chains analysis of rollover behavior with respect to chassis design. In: Bargende, M., Reuss, H.-C., Wagner, A., Wiedemann, J. (Hrsg.) 19. Internationales Stuttgarter Symposium. Springer Vieweg, Wiesbaden (2019). https://doi.org/10.1007/978-3-658-25939-6_98

  4. Chang, F., Krauter, K., van Putten, S., Prokop, G.: Analyzing the rollover stability of SUVs. ATZ Worldw. 121, 44–47 (2019). https://doi.org/10.1007/s38311-019-0008-4

    Article  Google Scholar 

  5. Chang, F., van Putten, S., Prokop, G.: Analysis of rollover behavior of SUVs in the early phase of chassis development. In: Bargende, M., Reuss, H.C., Wiedemann, J. (Hrsg.) 18. Internationales Stuttgarter Symposium. Springer Vieweg, Wiesbaden (2018). https://doi.org/10.1007/978-3-658-21194-3_4

  6. Chang, F.,van Putten, S., Prokop, G.: Chassis design of electric SUVs in consideration of rollover. In: 27th Aachen Colloquium Automobile and Engine Technology (2018)

    Google Scholar 

  7. Chouinard, A., Lécuyer, J.-F.: A study of the effectiveness of electronic stability control in Canada. Accid. Anal. Prev. 43, 451–460 (2011). https://doi.org/10.1016/j.aap.2010.10.001

    Article  Google Scholar 

  8. Erke, Alena: Effects of electronic stability control (ESC) on accidents: a review of empirical evidence. Accid. Anal. Prev. 40, 167–173 (2008). https://doi.org/10.1016/j.aap.2007.05.002

    Article  Google Scholar 

  9. Ersoy, M., Gies, S. (Hrsg.): Fahrwerkhandbuch. Springer Vieweg, Wiesbaden (2017). https://doi.org/10.1007/978-3-658-15468-4

  10. Farmer, Charles M.: Effect of electronic stability control on automobile crash risk. Traffic Inj. Prev. 5, 317–325 (2004). https://doi.org/10.1080/15389580490896951

    Article  Google Scholar 

  11. Fontana, F., Neubeck, J., Wiedemann, J., Scharfenbaum, I., Stegmann, P., Ohletz, A.: Integrated approach for the virtual development of vehicles equipped with brake control systems. In: Bargende, M., Reuss, H.-C., Wagner, A., Wiedemann, J. (Hrsg.) 19. Internationales Stuttgarter Symposium, S. 513–529. Springer Vieweg, Wiesbaden (2019). https://doi.org/10.1007/978-3-658-25939-6

  12. Internationale Organisation für Normung: ISO 19365:2016(E), Passenger cars—validation of vehicle dynamic simulation—sine with dwell stability control testing (2016)

    Google Scholar 

  13. Internationale Organisation für Normung: ISO 26262-1:2018(E), Road vehicles—functional safety (2018)

    Google Scholar 

  14. Internationale Organisation für Normung: ISO/IEC 15504-4:2004(E), Information technology—process assessment (2018)

    Google Scholar 

  15. Jablonowski, C., Schmitt, J., Obermüller, A.: Das Fahrwerk des neuen Audi A8. ATZ Extra 23, 14–19 (2018). https://doi.org/10.1007/s35778-017-0079-z

    Article  Google Scholar 

  16. Lie, A., Tingvall, C., Krafft, M., Kullgren, A.: The effectiveness of electronic stability control (ESC) in reducing real life crashes and injuries. Traffic Inj. Prev. 7, 38–43 (2006). https://doi.org/10.1080/15389580500346838

    Article  Google Scholar 

  17. National Highway Traffic Safety Administration: Consumer Information; New Car Assessment Program; Rollover Resistance; Final Rule. Federal Register (2003)

    Google Scholar 

  18. National Highway Traffic Safety Administration: FMVSS No. 126 Electronic Stability Control Systems (2007)

    Google Scholar 

  19. Pohl, K., Broy, M., Daembkes, H., Hoenninger, H.: Advanced Model-Based Engineering of Embedded Systems Extensions of the SPES 2020 Methodology. Springer (2016). https://doi.org/10.1007/978-3-319-48003-9

  20. United Nations Economic Commission for Europe: Regulation No. 13-H (2014)

    Google Scholar 

  21. Winner, H., Hakuli, S., Lotz, F., Singer, C. (Hrsg.): Handbuch Fahrerassistenzsysteme: Grundlagen, Komponenten und Systeme für aktive Sicherheit und Komfort. Springer Fachmedien, Wiesbaden (2015). https://doi.org/10.1007/978-3-658-05734-3

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Stegmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Stegmann, P., Fontana, F., Chang, F., Schimmel, C. (2021). Simulation-Supported Development of Rollover Behavior According to Systems Engineering. In: Bargende, M., Reuss, HC., Wagner, A. (eds) 21. Internationales Stuttgarter Symposium. Proceedings. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-33466-6_40

Download citation

Publish with us

Policies and ethics