Skip to main content

A Ray-Optical Channel Model for Vehicle-to-Vehicle Communication

  • Conference paper

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 97))

Summary

A comprehensive new model of the transmission channel between moving vehicles is presented in this paper. The approach consists of tree major parts: the modelling of the road traffic, the modelling of the environment adjacent to the road and the actual modelling of the wave propagation between the vehicles. A ray-optical approach is used for the wave propagation, which allows for wide-band as well as narrow-band analyses of the channel. Characteristic time series of impulse responses of the inter-vehicle transmission channel can therefore be calculated for system simulations. Simulation results are compared to wide-band channel measurements at 5.2 GHz, yielding a good agreement.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Enkelmann W (2003) Fleetnet–Applications for Inter-Vehicle Communication. In: Proceedings of the IEEE Intelligent Vehicles Symposium 162–167

    Google Scholar 

  2. Reichardt D, Miglietta M, Moretti L, Morsink P, Schulz W (2002) Cartalk 2000 Safe and Comfortable Driving Based upon Inter-Vehicle-Communication. In: Proceedings of the IEEE Intelligent Vehicle Symposium 2: 545–550

    Google Scholar 

  3. Zhu J, Roy S (2003) MAC for Dedicated Short Range Communications in Intelligent Transport System. In: IEEE Communications Magazine 41 (12): 60–67

    Google Scholar 

  4. Helbing D (2001) Traffic and Related Self-Driven Many-Particle Systems. In: Reviews of Modern Physics 73 (4): 1067–1141

    Google Scholar 

  5. Wiedemann R (1974) Simulation des Straßenverkehrsflusses (in German). Tech. Rep., Institut für Verkehrswesen, University of Karlsruhe, Germany

    Google Scholar 

  6. Maurer J, Schäfer TM, Wiesbeck W (2001) A Realistic Description of the Environment for Inter-Vehicle Wave Propagation Modelling. In: Proceedings of the 54th IEEE Vehicular Technology Conference 1437–1441

    Google Scholar 

  7. Schneider R, Didascalou D, Wiesbeck W (2000) Impact of Road Surfaces on Millimeter-Wave Propagation. In: IEEE Transactions on Vehicular Technology 49 (4): 1314–1320

    Google Scholar 

  8. Döttling M (2000) Strahlenoptisches Wellenausbreitungsmodell und Systemstudien für den Satellitenmobilfunk (in German). Ph.D. Thesis, University of Karlsruhe, Germany

    Google Scholar 

  9. McNamara DA, Pistorius CWI, Malherbe JAG (1990) Introduction to the Uniform Geometrical Theory of Diffraction. Artech House, Boston

    Google Scholar 

  10. Balanis CA (1989) Advanced Engineering Electromagnetics. John Wiley & Sons, New York

    Google Scholar 

  11. Ruck GT, Barrick DE, Stuart WD, Krichbaum CK (1970) Radar Cross Section Handbook. Plenum Press, New York

    Google Scholar 

  12. Degli-Esposti V, Bertoni HL (1999) Evaluation of the Role of Diffuse Scattering in Urban Microcellular Propagation. In: Proceedings of the 50st IEEE Vehicular Technology Conference 1: 1392–1396

    Google Scholar 

  13. Ulaby FT, Dobson MC (1989) Handbook of Radar Scattering Statistics for Terrain. Artech House, Norwood

    Google Scholar 

  14. Maurer J, Drumm O, Didascalou D, Wiesbeck W (2000) A Novel Approach in the Determination of Visible Surfaces in 3D Vector Geometries for Ray-Optical Wave Propagation Modelling. In: Proceedings of the 51st IEEE Vehicular Technology Conference 1651–1655

    Google Scholar 

  15. Thomä RS, Hampicke D, Richter A, Sommerkorn G, Trautwein U (2001) MIMO Vector Channel Sounder Measurement for Smart Antenna System Evaluation. In: European Transactions on Telecommunications, Special Issue on Smart Antennas 12 (5): 427–438

    Google Scholar 

  16. Lee WCY (1982) Mobile Communications Engineering. McGraw-Hill, New York

    Google Scholar 

  17. Harris FJ (1978) On the Use of Windows for Harmonic Analysis with the Discrete Fourier Transform. In: Proceedings of the IEEE 66 (1): 51–83

    Google Scholar 

  18. Pätzold M (2002) Mobile Fading Channels. John Wiley & Sons, Chichester

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Maurer, J., Fügen, T., Wiesbeck, W. (2004). A Ray-Optical Channel Model for Vehicle-to-Vehicle Communication. In: Russer, P., Mongiardo, M. (eds) Fields, Networks, Computational Methods, and Systems in Modern Electrodynamics. Springer Proceedings in Physics, vol 97. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-07221-9_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-07221-9_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-06296-4

  • Online ISBN: 978-3-662-07221-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics