Skip to main content

Free Radicals and Reactive Oxygen Species as Mediators of Heavy Metal Toxicity in Plants

  • Chapter
Heavy Metal Stress in Plants

Abstract

In most plants, exposure to elevated concentrations of heavy metals results in growth inhibition (see Chap. 8). After prolonged metal exposure, sensitive plants develop visible symptoms of toxicity such as chlorosis and necrotic lesions. During the past two and half decades, symptoms of metal toxicity and deficiency have been described extensively (Marschner 1995). However, our knowledge of the biochemical basis of metal toxicity symptoms in plants is still sketchy. It is known that heavy metals can bind to functionally important domains of biomolecules and thereby inactivate them. The result is, for instance, the inhibition of an enzymatic reaction and a disturbance of metabolism (Van Assche and Clijsters 1986). Furthermore, heavy metals have been demonstrated to stimulate formation of free radicals (FR) and reactive oxygen species (ROS), either by direct electron transfer involving metal cations, or as a consequence of metal-mediated inhibition of metabolic reactions (Halliwell and Gutteridge 1984; Elstner 1990). If the plant cell cannot match the increased rate of FR and ROS formation with an increased activity of the antioxidative machinery, uncontrolled oxidation and radical chain reactions will result in oxidative stress. Therefore, the degree of cell damage under heavy-metal stress depends on the rate of FR and ROS formation, and on the efficiency and capacity of detoxification and repair mechanisms. A comparison of closely related metal-sensitive and -tolerant species or ecotypes suggested that an enhanced oxidative defence is not a particular trait conferring heavy-metal tolerance to plants (De Vos et al. 1991). Metal-tolerant plants are usually efficient in avoiding the occurrence of toxic concentrations of of free heavy metal cations in plasmatic compartments, and thereby avoid the development of oxidative stress (Woolhouse 1983).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aggarwal M, Luthra YP, Arora SK (1995) The effect of Cd2+ on lipid components of sunflower (Helianthus annuus L.) seeds. Plant Foods Hum Nutr 47: 149–155

    PubMed  CAS  Google Scholar 

  • Allan AC, Fluhr R (1997) Two distinct sources of elicited reactive oxygen species in tobacco epidermal cells. Plant Cell 9: 1559–1572

    PubMed  CAS  Google Scholar 

  • Anderson B, Satter A, Virgin I, Styring S (1992) Photodamage of photosystem II: Primary and secondary events. J Photochem Photobiol B 15: 15–31

    Google Scholar 

  • Anderson JW, Foyer CH, Walker DA (1983) Light dependent reduction of hydrogen peroxide by intact spinach chloroplasts. Biochim Biophys Acta 724: 69–74

    CAS  Google Scholar 

  • Asada K (1994) Mechanisms for scavenging reactive molecules generated in chloroplasts under light stress. In: Baker NR (ed) Photoinhibition of Photosynthesis. BIOS, Oxford, pp 129–142

    Google Scholar 

  • Athar M, Sharma SD, Iqbal M, Sultana S, Pandeya KB, Tripathi IP (1996) Coordination of copper polyamine complex with imidazoles potentiates its superoxide dismutase mimicking activity and abolishes its interaction with albumin. Biochem Mol Biol Int 39: 813–821

    PubMed  CAS  Google Scholar 

  • Baier M, Dietz K-J (1996) Primary structure and expression of plant homologues of animal and fungal thioredoxin-dependent peroxide reductases and bacterial alkyl hydroperoxide reductases. Plant Mol Biol 31: 553–564

    PubMed  CAS  Google Scholar 

  • Baier M, Dietz K-J (1997) The plant 2-Cys peroxiredoxin BAS 1 is a nuclear encoded chloroplast protein. Its expressional regulation, phylogenetic origin, and implications for its specific physiological function in plants. Plant J 12: 179–190

    Google Scholar 

  • Becana M, Moran JF, Iturbe-Ormaetxe I (1998) Iron-dependent oxygen free radical generation in plants subjected to environmental stress: toxicity and antioxidant protection. Plant Soil 201: 137–147

    CAS  Google Scholar 

  • Benes I, Schreiber K, Ripperber H, Kircheiss A (1983) Metal complex formation by nicotianamine, a possible phytosiderophore. Experientia 39: 261–262

    CAS  Google Scholar 

  • Blée E, Joyard J (1996) Envelope membranes from spinach chloroplasts are a site of metabolism of fatty acid hydroperoxides. Plant Physiol 110: 445–454

    PubMed  Google Scholar 

  • Blinda A, Koch B, Ramanjulu S, Dietz K-J (1997) De novo synthesis and accumulation of apoplastic proteins in leaves of heavy metal-exposed barley seedlings. Plant Cell Environ 20: 969–981

    CAS  Google Scholar 

  • Bors W, Langebartels C, Michels C, Sandermann H Jr (1989) Polyamines as radical scavengers and protectants against ozone damage. Phytochemistry 28: 1589–1595

    CAS  Google Scholar 

  • Briat J-F, Lobréaux S (1998) Regulation of ferritin synthesis and degradation in plants. In: Silver S, Walden W (eds) Metal-ions in gene regulation. Chapman and Hall, New York, pp. 431 449

    Google Scholar 

  • Brune A, Dietz K-J (1995) A comparative analysis of element composition of roots and leaves of barley seedlings grown in the presence of toxic cadmium, molybdenum, nickel, and zinc concentrations. J Plant Nutr 18: 853–868

    CAS  Google Scholar 

  • Brune A, Urbach W, Dietz K-J (1994a) Zinc stress induces changes in apoplasmic protein con- tent and polypeptide composition of barley primary leaves. J Exp Bot 45: 1189–1196

    CAS  Google Scholar 

  • Brune A, Urbach W, Dietz K-J (1994b) Compartmentation and transport of zinc in barley primary leaves as basic mechanisms involved in zinc tolerance. Plant Cell Environ 17: 153–162

    CAS  Google Scholar 

  • Brune A, Urbach W, Dietz K-J (1995) Differential toxicity of heavy metals is partly related to a loss of preferential extraplasmic compartmentation. A comparison of Cd-, Mo-, Ni-and Zn-stress. New Phytol 129: 404–409

    Google Scholar 

  • Cardinaels C, Put C, Van Assche F, Clijsters H (1984) The superoxide dismutase as a biochemical indicator, discriminating between zinc and cadmium toxicity. Arch Int Physiol Biochim 92: 27–28

    Google Scholar 

  • Casano LM, Gómez LD, Lascano HR, Gonzalez CA, Trippi VS (1997) Inactivation and degradation of CuZn-SOD by active oxygen species in wheat chloroplasts exposed to photo-oxidative stress. Plant Cell Physiol 38: 433–440

    PubMed  CAS  Google Scholar 

  • Chaoui A, Mazhoudi S, Ghorbal MH, El Ferjani E (1997) Cadmium and zinc induction of lipid peroxidation and effects on antioxidant enzyme activities in bean (Phaseolus vulgaris L.). Plant Sci 127: 139–147

    CAS  Google Scholar 

  • Chubatsu LS, Meneghini R (1993) Metallothionein protects DNA from oxidative damage. Biochem J 291: 193–198

    PubMed  CAS  Google Scholar 

  • Coleman JE, Vallee BL (1961) Metallocarboxypeptidase: stability constants and enzymatic characteristics. J Biol Chem 236: 2244–2249

    PubMed  CAS  Google Scholar 

  • Costa M, Salnikow K, Cosentino S, Klein CB, Huang X, Zhuang Z (1994) Molecular mechanisms of nickel carcinogenesis. Environ Health Perspect 102: 127–130

    PubMed  CAS  Google Scholar 

  • Datta AK, Misra M, North SL, Kasprzak KS (1992) Enhancement by nickel(II) and L-histidine of 2’deoxyguanosine oxidation with hydrogen peroxide. Carcinogenesis 13: 283–287

    CAS  Google Scholar 

  • Datta AK, Shi X, Kasprzak KS (1993) Effect of carnosine, homocarnosine and anserine on hydroxylation of the guanine moiety in 2’-deoxyguanosine, DNA and nucleohistone and hydrogen peroxide in the presence of nickel(II). Carcinogenesis 14: 417–422

    Google Scholar 

  • De Vos CHR, Schat H, De Waal MAM, Vooijs R, Ernst WHO (1991) Increased resistance to copper-induced damage of the root cell plasmalemma in copper tolerant Silene cucubalus. Physiol Plant 82: 523–528

    Google Scholar 

  • De Vos CHR, Vonk MJ, Vooijs R, Schat H (1992) Glutathione depletion due to copper-induced phytochelatin synthesis causes oxidative stress in Silene cucubalus. Plant Physiol 98: 853–858

    PubMed  Google Scholar 

  • De Vos CHR, Ten Bookum W, Vooijs R, Schat H, De Kok LJ (1993) Effect of copper on fatty acid composition and peroxidation of lipids in the roots of copper-tolerant and sensitive Silene cucubalus. Plant Physiol Biochem 31: 151–158

    Google Scholar 

  • Delledonne M, Xia Y, Dixon RA, Lamb C (1998) Nitric oxide functions as a signal in plant disease resistance. Nature 394: 585–588

    PubMed  CAS  Google Scholar 

  • Dietz KJ, Hartung W (1996) The leaf epidermis: its ecophysiological significance. Prog Bot 57: 3253

    Google Scholar 

  • Dubey RS (1997) Photosynthesis in plants under stressful conditions. In: Pessarakli M, (ed) Handbook of Photosynthesis. Dekker, New York, pp 859–876

    Google Scholar 

  • Eide D, Broderius M, Fett J, Guerinot ML (1996) A novel iron-regulated metal transporter from plants identified by functional expression in yeast. Proc Natl Acad Sci USA 93: 5624–5628

    PubMed  CAS  Google Scholar 

  • El Sheekh MM (1993) Inhibition of photosystem II in the green alga Scenedesmus obliquus by nickel. Biochem Physiol Pflanz 188: 363–372

    Google Scholar 

  • Elstner EF (1990) Der Sauerstoff: Biochemie, Biologie, Medizin. Wissenschaftsverlag.

    Google Scholar 

  • Mannheim Ernst D, Schraudner M, Langebartels C, Sandermann H Jr (1992) Ozone-induced changes of mRNA levels of beta-1,3-glucanase, chitinase and “pathogenesis-related” protein lb in tobacco plants. Plant Mol Biol 20: 673–682

    Google Scholar 

  • Foyer CH, Halliwell B (1976) The presence of glutathione and glutathione reductase in chloroplasts: a proposed role of ascorbic acid metabolism. Planta 133: 21–25

    Google Scholar 

  • Foyer CH, Lelandais M, Kunert KJ (1994) Photo-oxidative stress in plants. Physiol Plant 92,696–717 FratIstro da Silva JJR, Williams RJP (1991) The biological chemistry of the elements. Clarendon Press, Oxford, pp 114

    Google Scholar 

  • Gallego SM, Benavides MP, Tomaro ML (1996) Effect of heavy metal ion excess on sunflower leaves: evidence for involvement of oxidative stress. Plant Sci 121: 151–159

    CAS  Google Scholar 

  • Geuns JMC, Cuypers AJF, Michiels T, Colpaert JV, Van Laere A, Van den Broeck KAO, Vandecasteele CHA (1997) Mung bean seedlings as bioindicators for soil and water contamination by cadmium. Sci Total Environ 203: 183–197

    CAS  Google Scholar 

  • Grill E, Winnacker E-L, Zenk MH (1985) Phytochelatins: the principal heavy-metal complexing peptides of higher plants. Science 230: 674–676

    PubMed  CAS  Google Scholar 

  • Grill E, Winnacker E-L, Zenk MH (1987) Phytochelatins, a class of heavy-metal-binding peptides from plants are functionally analogous to metallothionines. Proc Natl Acad Sci USA 84: 439–443

    PubMed  CAS  Google Scholar 

  • Gross GG, Jansen C, Elstner EF (1977) Involvement of malate, monophenols, and the superoxide radical in hydrogen peroxide formation by isolated cell walls from horseradish (Armoracia lapathifolia Gilib.). Planta 136: 271–276

    CAS  Google Scholar 

  • Halliwell B, Gutteridge MC (1984) Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem J 219: 1–14

    PubMed  CAS  Google Scholar 

  • Hideg E, Spetea C, Vass I (1994) Singlet oxygen and free radical production during acceptor and donor side induced photoinhibition: studies with spin trapping EPR spectroscopy. Biochim Biophys Acta 1186: 143–152

    CAS  Google Scholar 

  • Hyde BB, Hosge AJ, Kahn A, Birnstiel ML (1963) Studies of phytoferritin. I. Identification and localization. J Ultrastruct Res 9: 248–258

    Google Scholar 

  • Jacob C, Maret W, Vallee BL (1998) Control of zinc transfer between thionein, metallothionein, and zinc proteins. Proc Natl Acad Sci USA 95: 3489–3494

    PubMed  CAS  Google Scholar 

  • Jiang L-J, Maret W, Vallee BL (1998) The glutathione redox couple modulates zinc transfer from metallothionein to zinc-depleted sorbitol dehydrogenase. Proc Natl Acad Sci USA 95: 3483–3488

    PubMed  CAS  Google Scholar 

  • Kadiiska MB, Hanna PM, Hernandez L, Mason RP (1992) In vivo evidence of hydroxyl radical formation after acute copper and ascorbate intake. Electron spin resonance spin-trapping investigation. Mol Pharmacol 42: 723–729

    Google Scholar 

  • Kalyanaram B (1996) Thiol radicals in biological systems: significant or trivial? Biochem Soc Symp 61: 55–63

    Google Scholar 

  • Kampfenkel K, Van Montagu M, Inné D (1995) Effects of iron excess on Nicotiana plumbaginifolia plants. Plant Physiol 107: 725–735

    PubMed  CAS  Google Scholar 

  • Krämer U, Cotter-Howells JD, Charnock JM, Baker MM, Smith JAC (1996) Free histidine as a metal chelator in plants that accumulate nickel. Nature 379: 635–638

    Google Scholar 

  • Krämer U, Grime GW, Smith JAC, Hawes CR, Baker MM (1997) Micro-PIRE as a technique for studying nickel localization in leaves of the hyperaccumulator plant Alyssum lesbiacum. Nucl Instrum Methods Phys Res B 130: 346–350

    Google Scholar 

  • Krupa Z, Baszynski T (1995) Some aspects of heavy metal toxicity towards photosynthetic apparatusdirect and indirect effects on light and dark reactions. Acta Physiol Plant 17: 177–190

    CAS  Google Scholar 

  • Krupa Z, Siedlecka A, Maksymiec W, Baszynski T (1993) In vivo response of photosynthetic apparatus of Phaseolus vulgaris L. to nickel toxicity. J Plant Physiol 142: 664–668

    CAS  Google Scholar 

  • Larson RA (1988) The antioxidants of higher plants. Phytochemistry 27: 969–978

    CAS  Google Scholar 

  • Lichtenberger O, Neumann D (1997) Analytical electron microscopy as a powerful tool in plant cell biology: examples using electron energy loss spectroscopy and X-ray microanalysis. Eur J Cell Biol 73: 378–386

    PubMed  CAS  Google Scholar 

  • Lim Y-S, Cha M-K, Yun C-H, Kim H-K, Kim K, Kim I-H (1993) Purification and characterization of thiol-specific antioxidant protein from human red blood cells: a new type of antioxidant protein. Biochem Biophys Res Commun 199: 199–206

    Google Scholar 

  • Lloyd DR, Philips DH, Carmichael PL (1997) Generation of putative intrastrand cross-links and strand breaks in DNA by transition metal ion-mediated oxygen radical attack. Chem Res Toxicol 10: 393–400

    PubMed  CAS  Google Scholar 

  • Lucero HA, Andreo CS, Vallejos RH (1976) Sulphydryl groups in photosynthetic energy conservation. II. Inhibition of photophosphorylation in spinach chloroplasts by Cd C12. Plant Sci Lett 6: 309

    CAS  Google Scholar 

  • Luna CM, Gonzalez CA, Trippi VS (1994) Oxidative damage caused by excess of copper in oat leaves. Plant Cell Physiol 35: 11–15

    CAS  Google Scholar 

  • Luwe M (1996) Antioxidants in the apoplast and symplast of beech (Fagus sylvatica L.) leaves: seasonal variations and responses to changing ozone concentrations in air. Plant Cell Environ 19: 321–328

    CAS  Google Scholar 

  • Maksymiec W, Russa R, Urbanik-Sypniewska T, Baszynski T (1994) Effect of excess Cu on the photosynthetic apparatus of runner bean leaves treated at two different growth stages. Plant Physiol 91: 715–721

    CAS  Google Scholar 

  • Malik D, Sheoran IS, Singh R (1992) Lipid composition of thylakoid membranes of cadmium treated wheat seedlings. Indian J Biochem Biophys 29: 350–354

    PubMed  CAS  Google Scholar 

  • Maret W, Vallee BL (1998) Thiolate ligands in metallothionein confer redox activity on zinc clusters. Proc Natl Acad Sci USA 95: 3478–3482

    PubMed  CAS  Google Scholar 

  • Marschner H (ed) (1995) Mineral nutrition of higher plants, 2nd edn. Academic Press, San Diego, CA

    Google Scholar 

  • May MJ, Vernoux T, Leaver C, Van Montagu M, Inzé D (1998) Glutathione homoeostasis in plants: implications for environmental sensing and plant development. J Exp Bot 49: 649–667

    CAS  Google Scholar 

  • Miller DM, Aust SD (1989) Studies of ascorbate-dependent, iron-catalyzed lipid peroxidation. Arch Biochem Biophys 271: 113–119

    PubMed  CAS  Google Scholar 

  • Mishra A, Choudhuri MA (1996) Possible implications of heavy metals ( Pb’ and Hg’) in the free radical -mediated membrane damage in two rice cultivars. Indian J Plant Physiol 1: 40–43

    Google Scholar 

  • Misra M, Olinski R, Dizdaroglu M, Kasprzak KS (1993) Enhancement by L-histidine of nickel(II)induced DNA-protein cross-linking and oxidative DNA base damage in the rat kidney. Chem Res Toxicol 6: 33–37

    PubMed  CAS  Google Scholar 

  • Mittler R, Feng X, Cohen M (1998) Post-transcriptional suppression of cytosolic ascorbate peroxidase expression during pathogen-induced programmed cell death in tobacco. Plant Cell 10: 461–473

    PubMed  CAS  Google Scholar 

  • Moran JF, Klucas RV, Grayer RJ, Abian J, Becana M (1997) Complexes of iron with phenolic compounds from soybean nodules and other legume tissues: pro-oxidant and antioxidant properties. Free Rad Biol Med 22: 861–870

    PubMed  CAS  Google Scholar 

  • Mostowska A (1997) Environmental factors affecting chloroplasts. In: Pessarakli M (ed) Handbook of photosynthesis, Dekker, New York, pp 407–426

    Google Scholar 

  • Moustakas M, Lanaras T, Symeonidis L, Karataglis S (1997) Growth and some photosynthetic characteristics of field grown Avena sativa under copper and lead stress. Photosynthetica 30: 389–396

    Google Scholar 

  • Murphy A, Taiz L (1995) Comparison of metallothionein gene expression and nonprotein thiols in ten Arabidopsis ecotypes. Correlation with copper tolerance. Plant Physiol 109: 945–954

    Google Scholar 

  • Murphy A, Taiz L (1997) Correlation between potassium efflux and copper sensitivity in 10 Arabidopsis ecotypes. New Phytol 136:211–222

    Google Scholar 

  • Murphy A, Zhou J, Goldsbrough PB, Taiz L (1997) Purification and immunological identification of metallothioneins 1 and 2 from Arabidopsis thaliana. Plant Physiol 113: 1293–1301

    PubMed  CAS  Google Scholar 

  • Neumann D, zur Nieden U, Lichtenberger O, Leopold I (1995) How does Armeria maritima tolerate high heavy metal concentrations? J Plant Physiol 146: 704–717

    CAS  Google Scholar 

  • Nieboer E, Richardson DES (1980) The replacement of the nondescriptive term ‘heavy metals’ by a biologically and chemically significant classification of metal ions. Environ Pollut Ser B 1: 3–26

    CAS  Google Scholar 

  • Noctor G, Arisi A-C, Jouanin L, Kunert KJ, Rennenberg H, Foyer CH (1998) Glutathione: biosynthesis, metabolism and relationship to stress tolerance explored in transformed plants. J Exp Bot 49: 623–647

    CAS  Google Scholar 

  • Okamoto OK, Asano CS, Aidar E, Colepicolo P (1996) Effects of cadmium on growth and superoxide dismutase activity of the marine microalga Tetraselmis gracilis ( Prasinophyceae ). J Phycol 32: 7479

    Google Scholar 

  • Ouariti O, Boussama N, Zarrouk M, Cherif A, Ghorbal MH (1997) Cadmium and copper-induced changes in tomato membrane lipids. Phytochemistry 47: 1343–1350

    Google Scholar 

  • Ouzounidou G (1996) The use of photoacoustic spectroscopy in assessing leaf photosynthesis under copper stress: correlation of energy storage to photosystem II fluorescence parameters and redox change of P700. Plant Sci 111: 229–237

    Google Scholar 

  • Pandolfini T, Gabbrielli R, Comparini C (1992) Nickel toxicity and peroxidase activity in seedlings of Triticum aestivum L.. Plant Cell Environ 15: 719–725

    CAS  Google Scholar 

  • Pich A, Manteuffel R, Scholz G (1998) Nicotianamine-regulator in plant iron homoeostasis. Search for the nicotianamine receptor in plants. Poster presented at the Botanikertagung, Deutsche Botanische Gesellschaft, 30 Aug - 6 Sept, Bremen

    Google Scholar 

  • Prakash P, Kumar PG, Laloraya M, Javeri T, Parihar MS (1997) Superoxide anion radical production as a cadmium-mediated mechanism of toxicity in avian thyroid: an electron spin resonance study by spin trapping. Comp Biochem Physiol 118: 89–95

    Google Scholar 

  • Pryor WA (1976) The role of free radical reactions in biological systems. In: Pryor WA (ed) Free radicals in biology. Vol. 1. Academic Press, New York, pp 1–49

    Google Scholar 

  • Przymusinski R, Rucinska R, Gwozdz EA (1995) The stress-stimulated 16 kDa polypeptide from lupin roots has properties of cytosolic Cu:Zn superoxide dismutase. Environ Exp Bot 35: 485–495

    CAS  Google Scholar 

  • Rauser WE (1995) Phytochelatins and related peptides. Plant Physiol 109: 1141–1149

    PubMed  CAS  Google Scholar 

  • Robinson NJ, Tommey AM, Kuske C, Jackson P (1993) Plant metallothioneins. Biochem J 295, 1–10 Robinson NJ, Wilson JR, Turner JS (1996) Expression of the type 2 metallothionein-like gene MT2

    Google Scholar 

  • from Arabidopsis thaliana in Zn“-metallothionein-deficient Synechococcus PCC 7942: putative

    Google Scholar 

  • role for MT2 in Zn“ metabolism. Plant Mol Biol 30:1169–1179

    Google Scholar 

  • Robinson PD, Martin MN, Tabita FR (1978) Differential effects of metal ions on Rhodospirillum rubrum ribulose bisphosphate carboxylase/oxygenase and stochiometric incorporation of HCO, in a cobalt ( III) enzyme complex. Biochemistry 18: 4453–4458

    Google Scholar 

  • Rüegsegger A, Schmutz D, Brunold C (1990) Regulation of glutathione synthesis by cadmium in Pisum sativum L. Plant Physiol 93: 1579–1584

    PubMed  Google Scholar 

  • Sabeh F, Wright T, Norton SJ (1993) Purification and characterization of a glutathione peroxidase from Aloe vera plants. Enzyme Protein 47: 92–98

    PubMed  CAS  Google Scholar 

  • Salt DE, Rauser WE (1995) Mg ATP-dependent transport of phytochelatins across the tonoplast of oat roots. Plant Physiol 107: 1293–1301

    PubMed  CAS  Google Scholar 

  • Santoro N, Thile DJ (1997) Oxidative stress responses in the yeast Saccharomyces cerevisiae. In: Hohmann S, Mager WH. (eds) Yeast stress responses. Springer, New York, pp 171–211

    Google Scholar 

  • Schulte-Frohlinde D, von Sonntag C (1985) Radiolysis of DNA and model systems in the presence of oxygen. In: Sies H (ed) Oxidative stress. Academic Press, London, pp 11–40

    Google Scholar 

  • Shannon LM, Kay E, Lew JY (1966) Peroxidase isozymes from horseradish roots. I. Isolation and physical properties. J Biol Chem 241: 2166–2172

    Google Scholar 

  • Siedlecka A, Krupa Z (1996) Interaction between cadmium and iron and its effects on photosynthetic capacity of primary leaves of Phaseolus vulgaris. Plant Physiol Biochem 34: 833–841

    CAS  Google Scholar 

  • Singh RP, Dabas S, Choudhary A (1996) Recovery of Pb“ caused inhibition of chlorophyll biosynthesis in leaves of Vigna radiata ( L.) Wilczek by inorganic salts. Indian J Exp Biol. 34: 1129–1132

    Google Scholar 

  • Srivastava A, Tel OE (1992) Antioxidative enzymatic response of Lemna to environmental pollutants. J Environ Sci Health A 27: 261–272

    Google Scholar 

  • Stadler RH, Markovic J, Tursky RJ (1995) In vitro anti-and pro-oxidant effects of natural polyphenols. Biol Trace Elem Res 47: 299–305

    PubMed  CAS  Google Scholar 

  • Stephan UW, Scholz G (1993) Nicotianamine: mediator of transport of iron and heavy metals in the phloem? Physiol Plant 88: 522–529

    CAS  Google Scholar 

  • Stohs Si, Bagchi D (1995) Oxidative mechanisms in the toxicity of metal ions. Free Radic Biol Med 18: 321–336

    PubMed  CAS  Google Scholar 

  • Sugimoto M, Sakamoto W (1997) Putative phospholipid hydroperoxide glutathione peroxidase gene from Arabidopsis thaliana induced by oxidative stress. Genes Genet Syst 72: 311–316

    PubMed  CAS  Google Scholar 

  • Thumann J, Grill E, Winnaker E-L, Zenk MH (1991) Reactivation of metal-requiring apoenzymes by phytochelatin-metal complexes. FEBS Lett 284: 66–69

    PubMed  CAS  Google Scholar 

  • Tripathy BC, Bhatia B, Mohanty P (1981) Inactivation of chloroplast photosynthetic electron transport activity by Ni“. Biochim Biophys Acta 638: 217–224

    CAS  Google Scholar 

  • Van Assche F, Clijsters H (1986) Inhibition of photosynthesis in Phaseolus vulgaris by treatment with toxic concentrations of zinc: effect on ribulose-1,5-bisphosphate carboxylase/oxygenase. J Plant Physiol 125: 355–360

    Google Scholar 

  • Van Assche F, Clijsters H (1990) Effects of metals on enzyme activity in plants. Plant Cell Environm 13: 195–206

    Google Scholar 

  • Van Assche F, Cardinaelis C, Clijsters H (1988) Induction of enzyme capacity in plants as a result of heavy metal toxicity; dose-response relations in Phaseolus vulgaris L., treated with zinc and cadmium. Environ Pollut 52: 103–115

    PubMed  Google Scholar 

  • Vance CK, Miller A-F (1998) Spectroscopic comparison of the pH dependencies of Fe-substituted ( Mn) superoxide dismutase and Fe-superoxide dismutase. Biochemistry 37: 5518–5527

    Google Scholar 

  • Vaughan D, De Kock PC, Ord BG (1982) The nature and localization of superoxide dismutase in fronds of Lemna gibba L. and effect of copper and zinc deficiency on its activity. Physiol Plant 54: 253–257

    CAS  Google Scholar 

  • Vazquez MD, Poschenrieder C, Barceló J, Baker AJM, Hatton P Cope GH (1994) Compartmentation of zinc in roots and leaves of the zinc hyperaccumulator Thlaspi caerulescens J & C Presl Bot Acta 107: 243–250

    CAS  Google Scholar 

  • Vögeli-Lange, R, Wagner GJ (1990) Subcellular localization of cadmium and cadmium-binding peptides in tobacco leaves. Implication of a transport function for cadmium-binding peptides. Plant Physiol 92: 1086–1093

    Google Scholar 

  • Weckx JEJ, Clijsters HMM (1997) Zn phytotoxicity induces oxidative stress in primary leaves of Phaseolus vulgaris. Plant Physiol Biochem 35: 405–440

    CAS  Google Scholar 

  • Wojtaszek P (1997) Oxidative burst: an early plant response to pathogen infection. Biochem J 322: 681–692

    PubMed  CAS  Google Scholar 

  • Woo ES, Lazo JS (1997) Nucloplasmic functionality of metallothionein. Cancer Res 57: 4236–4241

    PubMed  CAS  Google Scholar 

  • Woolhouse HW (1983) Toxicity and tolerance in the responses of plants to metals. In: Lange OL, Nobel OS, Osmond CB and Ziegler H (eds) Encyclopedia of plant physiology, new series, vol 12C Springer, Berlin, Heidelberg, New York, pp 245–300

    Google Scholar 

  • Wrydrzynski T, Angström J, Vänngard T (1989) H2O2 formation by photosystem II. Biochim Biophys Acta 973: 23–28

    Google Scholar 

  • Zenk MH (1996) Heavy metal detoxification in higher plants — a review. Gene 179: 21–30

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dietz, KJ., Baier, M., Krämer, U. (1999). Free Radicals and Reactive Oxygen Species as Mediators of Heavy Metal Toxicity in Plants. In: Heavy Metal Stress in Plants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-07745-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-07745-0_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-07747-4

  • Online ISBN: 978-3-662-07745-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics