Skip to main content

The Spatial Dimension in the Ecology of Insect Pests and Its Relevance to Pest Management

  • Chapter
Insect Pest Management

Abstract

The forecast of insect population trends in the temporal dimension and the economic impact of population loads upon agricultural production was one of the central aspects of integrated pest management (IPM) during the second half of the previous century (Berryman and Pienaar 1974; Ruesink 1976; Welch et al. 1978; Getz and Gutierrez 1982; Pruess 1983; Egger 1991; Morgan and Solomon 1993). Phenological models were constructed for a vast variety of insects and crops, and used to make decisions regarding the application of control measures (Welch et al. 1981). Most of these models, however, did not take into consideration the spatial and geographic heterogeneity of the environment, a situation which may have resulted in a reduced ability of the models to forecast population trends and a lower adoption rate of the system approach for pest management (Pruess 1983; Baumgartner and Severini 1987).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baumgartner J, Severini M (1987) Microclimate and arthropod phonologies: the leaf miner Phyllonorycter blancardella F. (Lep.) as an example. In: Prodi F, Rossi F, Cristoferi G (eds) Proceedings of the International Conference on Agrometeorology, Cesena 1987. Fondazione Cesena Agricultura Publ, Cesena, pp 225–243

    Google Scholar 

  • Berryman AA, Pienaar LV (1974) Simulation: a powerful method of investigating the dynamics and management of insect populations. Environ Entomol 3: 199–207

    Google Scholar 

  • Binns MR, Nyrop JP (1992) Sampling insect populations for the purpose of IPM decision making. Annu Rev Entomol 37: 427–453

    Article  Google Scholar 

  • Brenner RJ, Focks DA, Arbogast RT, Weaver DK, Shuman D (1998) Practical use of spatial analysis in precision targeting for integrated pest management. Am Entomol 44: 79–101

    Google Scholar 

  • Brewster CC, Allen JC, Schuster DJ, Stansly PA (1997) Simulating the dynamics of Bemisia argentifolii (Homoptera: Aleyrodidae) in an organic cropping system with a spatiotemporal model. Environ Entomol 26: 603–616

    Google Scholar 

  • Brewster CC, Allen JC, Kopp DD (1999) IPM from space: using satellite imagery to construct regional crop maps for studying crop-insect interactions. Am Entomol 45: 105–117

    Google Scholar 

  • Broumas TG, Haniotakis G, Liaropoulos C, Tomazou T, Ragousis N (2002) The efficacy of an improved form of the mass-trapping method for the control of the olive fly, Bactrocera oleae (Gmelin) (Dipt: Tephritidae): pilot scale feasibility study. J Appl Entomol 126: 217–223

    Article  Google Scholar 

  • Burrough PA (1986) Principles of geographic information systems for land resource assessment. Claredon Press, Oxford Conroy MJ, Cohen Y, James FC, Matsinos YG, Maurer BA (1995) Parameter estimation, reliability, and model improvement for spatially explicit models of animal populations. Ecol Appl 5: 17–19

    Google Scholar 

  • Darnell SJ, Meinke LJ, Young LJ, Gotway CA (1999) Geostatistical investigation of the small-scale spatial variation of Western corn rootworm ( Coleoptera: Chrysomelidae) adults. Environ Entomol 28: 266–274

    Google Scholar 

  • Davis PM (1994) Statistics for describing populations. In: Pedigo LP, Buntin GD (eds) Hand-book of sampling methods for arthropods in agriculture. CRC Press, Boca Raton, pp 33–54

    Google Scholar 

  • Dowell RV, Siddiqui IA, Meyer F, Spaugy EL (2000) Mediterranean fruit fly preventive release programme in Southern California. In: Keng-Hong T (ed) Area-wide control of fruit flies and other insect pests. Penerbit University Sains Malaysia, Pulau Pinang, pp 369–375

    Google Scholar 

  • Dunning JB, Stewart DJ, Danielson BJ, Noon BR, Root TL, Lamberson RH, Stevens EE (1995) Spatially explicit population models: current forms and future uses. Ecol Appl 5: 3–11

    Article  Google Scholar 

  • Efron D, Nestel D, Glazer I (2001) Spatial analysis of entomopathogenic nematodes and insect hosts in a citrus grove in a semi-arid region in Israel. Environ Entomol 30: 254–261

    Article  Google Scholar 

  • Egger E (1991) Agrometeorology, modeling and forecasting within IPM in horticultural crops and vineyards. EPPO Bull 21: 385–392

    Article  Google Scholar 

  • Getis A, Ord JK (1996) Local spatial statistics: an overview. In: LongleyP, Batty M (eds) Spatial analy-sis: modeling in a GIS environment. Geolnformation International, Cambridge, pp 261–277

    Google Scholar 

  • Getz WM, Gutierrez AP (1982) A perspective on system analysis in crop production and insect pest management. Annu Rev Entomol 27: 447–466

    Article  Google Scholar 

  • Hohn ME, Liebhold AM, Gribko LS (1993) Geostatistical model for forecasting spatial dynamics of defoliation caused by the gypsy moth ( Lepidoptera: Lymantriidae). Environ Entomol 22: 1066–1075

    Google Scholar 

  • Hollingsworth RG, Tabashnik BE, Ullman DE, Johnson MW, Messing R (1994) Resistance of Aphis gossypii (Homoptera: Aphididae) to insecticides in Hawaii: Spatial patterns and relation to insecticide use. J Econ Entomol 87: 293–300

    Google Scholar 

  • Holmstrom KE, Hughes MG, Walker SD, Kline WL, Ingerson-Mahar J (2001) Spatial mapping of adult corn earworm and European corn borer populations in New Jersey. HorTechnology 11: 103–109

    Google Scholar 

  • Isaaks EH, Srivastava RM (1989) An introduction to applied geostatistics. Oxford University Press, New York

    Google Scholar 

  • Israely N, Yuval B, Kitron U, Nestel D (1997) Population fluctuations of adult Mediterranean fruit flies ( Diptera: Tephritidae) in a Mediterranean heterogeneous agricultural region. Environ Entomol 26: 1263–1269

    Google Scholar 

  • Kemp WP, Kalaris TM, Quimby WF (1989) Rangeland grasshopper (Orthoptera: Acrididae) spatial variability: Macroscale population assessment. J Econ Entomol 82: 1270–1276

    Google Scholar 

  • Kitron U, Pener H, Costin C, Orshan L, Greenberg Z, Shalom U (1994) Geographic information system in malaria surveillance: mosquito breeding and imported cases in Israel, 1992. Am J Trop Med Hyg 50: 550–556

    PubMed  CAS  Google Scholar 

  • Kitron U, Otieno LH, Hungerford LL, Odulaja A, Brigham WU, Okello 00, Joselyn M, Mohamed-Ahmed MM, Cook E (1996) Spatial analysis of the distribution of tsetse flies in the Lmabwe Valley, Kenya, using Landsat TM satellite imagery and GIS. J Anim Ecol 65: 371–380

    Google Scholar 

  • Kitron U, Michael J, Swanson J, Haramis L (1997) Spatial analysis of the distribution of Lacrosse encephalitis in Illinois, using geographic information systems and local and global spatial statistics. Am J Trop Med Hyg 57: 469–475

    PubMed  CAS  Google Scholar 

  • Knudsen GR, Schotzko DJ (1991) Simulation of Russian wheat aphid movement and population dynamics on preferred and non-preferred host plants. Ecol Model 57: 117–131

    Article  Google Scholar 

  • Legaspi BC Jr, Allen JC, Brewster CC, Morales-Ramos JA, King EG (1998) Area-wide management of the cotton boll weevil: use of a spatio-temporal model in augmentative biological control. Ecol Model 110: 151–164

    Article  Google Scholar 

  • Levin SA (1992) The problem of pattern and scale in ecology. Ecology 73: 1943–1967

    Article  Google Scholar 

  • Liebhold AM, Zhang X, Hohn ME, Elkinton JS, Ticehurst M, Benzon GL, Campbell RW (1991)Geostatistical analysis of gypsy moth (Lepidoptera: Lymantriidae) egg mass populations.Environ Entomol 25: 1407–1417

    Google Scholar 

  • Liebhold AM, Rossi RE, Kemp WP (1993) Geostatistics and geographic information systems in applied insect ecology. Annu Rev Entomol 38: 303–327

    Article  Google Scholar 

  • Ludwig JA, Reynolds JF (1988) Statistical ecology. Wiley, New York

    Google Scholar 

  • Martinson TE, Dennehy TJ, Hoffman CJ (1994). Phenology, within vineyard distribution, and seasonal movement of eastern grape leafhopper ( Homoptera: Cicadellidae) in New York vineyards. Environ Entomol 23: 236–243

    Google Scholar 

  • Midgarden DG, Youngman RR, Fleischer SJ (1993) Spatial analysis of counts of Western corn rootworm (Coleoptera: Chrysomelidae) adults on yellow sticky traps in corn: geostatistics and dispersion indices. Environ Entomol 22: 1124–1133

    Google Scholar 

  • Morgan D, Solomon MG (1993) PEST-MAN: a forecasting system for apple and pear pests. EPPO Bull 23: 601–605

    Article  Google Scholar 

  • Nelson MR, Felix-Gastelum R, Orum TV, Stowell LJ, Myers DE (1994) Geographic information systems and geostatistics in the design and validation of regional plant virus management programs. Phytopathology 84: 898–905

    Article  Google Scholar 

  • Nestel D, Klein M (1995) Geostatistical analysis of leafhopper ( Homoptera: Cicadellidae) colonization and spread in deciduous orchards. Environ Entomol 24: 1032–1039

    Google Scholar 

  • Nestel D, Dickschen F, Altieri MA (1994) Seasonal and spatial population loads of a tropical insect: the case of the coffee leaf-miner in Mexico. Ecol Entomol 19: 159–167

    Article  Google Scholar 

  • Nestel D, Pinhassi N, Reuveny H, Oppenheim D, Rosen D (1995) Development of a predictive phenological model for the spring generation of the olive scale, Parlatoria oleae (Colvée), in Israel: preliminary results. Isr J Entomol 24: 227–235

    Google Scholar 

  • Nestel D, Carvalho J, Zaidan S, Ben-Yehuda S, Nemni-Lavy E (2002) Three years of trials on mass-trapping of the olive fly (Bactrocera oleae) in Israel. Alon Hanotea 56: 460–469

    Google Scholar 

  • Papadopoulos NT, Katsoyannos BI, Nestel D (2003) Spatial autocorrelation analysis of a Ceratitis capitata ( Diptera: Tephritidae) adult population in a mixed deciduous fruit orchard in northern Greece. Environ Entomol 32: 319–326

    Google Scholar 

  • Pinhassi N, Nestel D, Rosen D (1996) Oviposition and emergence of olive scale (Homoptera:Diaspididae) crawlers: regional degree-day forecasting model. Environ Entomol 25: 1–6

    Google Scholar 

  • Pruess KP (1983) Day-Degree methods for pest management. Environ Entomol 12: 613–619

    Google Scholar 

  • Radin AM, Drummond FA (1994) Patterns of initial colonization of cucurbits, reproductive activity, and dispersion of striped cucumber beetle, Acalymma vittata (F.) ( Coleoptera: Chry-somelidae). J Agric Entomol 11: 115–123

    Google Scholar 

  • Randall MGM (1982) The dynamics of an insect population throughout it’s altitudinal distribu- tion: Coleophora alticolella (Lepidoptera) in northern England. J Anim Ecol 51: 993–1016

    Article  Google Scholar 

  • Ribes M, Bacunana M, Avilla J (1998) Estudio de la distribuci6n espacial de Cydia pomonella (L.) y Pandemis heparana (Denis and Schiffermüller) en Torregrossa ( Lleida) mediante métodos geostadisticos. Bol San Veg Plagas 24: 935–948

    Google Scholar 

  • Roberts EA, Ravlin FW, Fleischer SJ (1993) Spatial data representation for integrated pest management programs. Am Entomol 39: 92–107

    Google Scholar 

  • Rossi RE, Mulla DJ, Journel AG, Franz EH (1992) Geostatistical tools for modeling and interpreting ecological spatial dependence. Ecol Monogr 62: 227–314

    Article  Google Scholar 

  • Ruesink WG (1976) Status of the system approach to pest management. Annu Rev Entomol 21: 27–44

    Article  Google Scholar 

  • Russo JM, Liebhold AM, Kelley JG (1993) Mesoscale weather data input to a gypsy moth ( Lepidoptera: Lymantriidae) phenology model. J Econ Entomol 86: 838–844

    Google Scholar 

  • Schaub LP, Ravlin FW, Gray DR, Logan JA (1995) Landscape framework to predict phenological events for gypsy moth ( Lepidoptera: Lymantriidae) management programs. Environ Entomol 24: 10–18

    Google Scholar 

  • Schotzko DJ, Smith CM (1991) Effects of host plant on the between-plant spatial distribution of the Russian wheat aphid ( Homoptera: Aphididae). J Econ Entomol 84: 1725–1734

    Google Scholar 

  • Schotzko DJ, Knudsen GR (1992) Use of geostatistics to evaluate a spatial simulation of Russian wheat aphid ( Homoptera: Aphididae) movement behavior on preferred and non-preferred hosts. Environ Entomol 21: 1271–1282

    Google Scholar 

  • Schotzko DJ, Quisenberry SS (1999) Pea leaf weevil ( Coleoptera: Curculionidae) spatial distribution in peas. Environ Entomol 28: 477–484

    Google Scholar 

  • Slagell KD (2000) Awareness, flight guidance and reliability: impact of technology upon the sterile insect technique. In: Keng-Hong T (ed) Area-wide control of fruit flies and other insect pests. Penerbit University Sains Malaysia, Pulau Pinang, pp 345–348

    Google Scholar 

  • Sokal RR, Oden NL (1978a) Spatial autocorrelation in biology. 1. Methodology. J Linn Soc 10: 199–228

    Google Scholar 

  • Sokal RR, Oden NL (1978b) Spatial autocorrelation in biology. 2. Some biological implications and four applications of evolutionary and ecological interest. J Linn Soc 10: 229–249

    Google Scholar 

  • Sokal RR, Oden NL (1991) Spatial autocorrelation analysis as an inferential tool in population genetics. Am Nat 138: 518–521

    Article  Google Scholar 

  • Stinner RE, Barfield CS, Simac JL, Dohse L (1983) Dispersal and movement of insect pests. Annu Rev Entomol 28: 319–335

    Article  Google Scholar 

  • Taylor LR (1984) Assessing and interpreting the spatial distribution of insect populations. Annu Rev Entomol 29: 321–357

    Article  Google Scholar 

  • Welch SM, Croft BA, Brunner JF, Michels MF (1978) PETE: an extension phenology modeling system for management of multi-species pest complex. Environ Entomol 7: 487–494

    Google Scholar 

  • Welch SM, Croft BA, Michels MF (1981) Validation of pest management models. Environ Entomol 10: 425–432

    Google Scholar 

  • Williams III L, Schotzko DJ, McCaffrey JP (1992) Geostatistical description of the spatial distribution of Limonius californicus ( Coleoptera: Elateridae) wireworms in the Northwestern United States, with comments on sampling. Environ Entomol 21: 983–995

    Google Scholar 

  • Winder L, Perry JN, Holland JM (1999) The spatial and temporal distribution of the grain aphid Sitobion avenae in winter wheat. Entomol Exp Appl 93: 277–290

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nestel, D., Carvalho, J., Nemny-Lavy, E. (2004). The Spatial Dimension in the Ecology of Insect Pests and Its Relevance to Pest Management . In: Horowitz, A.R., Ishaaya, I. (eds) Insect Pest Management. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-07913-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-07913-3_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05859-2

  • Online ISBN: 978-3-662-07913-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics