Skip to main content

Geochemistry and Origin of the Red Sea Brines

  • Chapter

Abstract

A steady-state model of the brine waters in Atlantis II Deep is presented. The deuterium and oxygen-18 concentrations in the water, and the dissolved argon content suggest a relative warm near surface Red Sea water as the source of the brine. In evaluating the overall environmental situation in the Red Sea in terms of temperature and salinity, the probable source lies about 800km to the south near the Strait of Bab el Mandeb. By integrating isotope data, and the trace and major element spectra of the brine, the origin, age and history of the brine waters become apparent.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baker, W.J.: Flow in fissured formation. Proc. Fourth World Petroleum Cong., Section II/E, C. Columbo, Rome, 379-392 (1955).

    Google Scholar 

  • Bischoff, J.: Red Sea geothermal brine deposits: their mineralogy, chemistry, and genesis. In: Hot brines and recent heavy metal deposits in the Red Sea, E.T. Degens and D.A. Ross (eds.). Springer-Verlag New York Inc., 368-401 (1969).

    Google Scholar 

  • Brewer, P.G. and D.W. Spencer: A note on the chemical composition of the Red Sea brines. In: Hot brines and recent heavy metal deposits in the Red Sea. E.T. Degens and D.A. Ross (eds.). Springer-Verlag New York Inc., 174-179 (1969).

    Google Scholar 

  • Brewer, P.G., J.P. Riley, and F. Culkin: The chemical composition of the hot salty water from the bottom of the Red Sea. Deep-Sea Res., 12, 497 (1965).

    Google Scholar 

  • Craig, H.: The isotopic geochemistry of water and carbon in geothermal areas. In: Nuclear Geology on Geothermal Areas, 1963 Spoleto Conference Proceedings, E. Tongiorgi (ed.). Consiglio Nazionale delle Richerche, Pisa, 17 (1963).

    Google Scholar 

  • Craig, H.: Isotopic composition and origin of the Red Sea and Salton Sea geothermal brines. Science, 134, 1544 (1966).

    Article  Google Scholar 

  • Craig, H.: Origin of the saline lakes in Victoria Land, Antarctica. Trans. Am. Geophys. Union, 47, 112 (1966b).

    Google Scholar 

  • Craig, H. and L.I. Gordon: Deuterium and oxygen-18 variations in the ocean and the marine atmosphere. In: Stable Isotopes in Oceanographic Studies and Paleotemperatures, 1965 Spoleto Conference Proceedings, E. Tongiorgi (ed.). Consiglio Nazionale delle Richerche, Pisa, 9 (1965).

    Google Scholar 

  • Craig, H. and D. Lal: Radiocarbon age of the Red Sea Brine. Trans. Am. Geophys. Union, 49, 193 (1968).

    Google Scholar 

  • Craig, H., L.I. Gordon and Y. Horibe: Isotopic exchange effects in the evaporation of water. Jour. Geophys. Res., 68, 5079 (1963).

    Article  Google Scholar 

  • Curray, J.R.: Sediments and history of Holocene transgression, continental shelf, northwest Gulf of Mexico. In: Recent Sediments, Northwest Gulf of Mexico, 1951–1958, Amer. Assoc. Petrol. Geologists, Tulsa, 221 (1960).

    Google Scholar 

  • Delevaux, M.H., B.R. Doe, and G.F. Brown: Preliminary lead isotope investigations of brine from the Red Sea, galena from the kingdom of Saudi Arabia, and galena from United Arab Republic (Egypt). Earth and Planetary Science Letters, 3, 139 (1967).

    Article  Google Scholar 

  • Deuser, W.G. and E.T. Degens: Carbon isotope fractionation in the system CO2 (gas)-CO2 (aqueous)-HCO 3 (aqueous). Nature, 215, 1033 (1967).

    Article  Google Scholar 

  • Deuser, W.G. and E.T. Degens: O18/O16 and C13/C12 ratios of fossils from the hot brine deep area of the central Red Sea. In: Hot brines and recent heavy metal deposits in the Red Sea, E.T. Degens and D.A. Ross (eds.). Springer-Verlag New York Inc., 336-347 (1969).

    Google Scholar 

  • Drake, C.L. and R.W. Girdler: A geophysical study of the Red Sea. Geophys. Jour., Roy. Astronom. Soc., 8, 473 (1964).

    Article  Google Scholar 

  • Faure, G. and L. Jones: Anomalous strontium in the Red Sea Brines. In: Hot brines and recent heavy metal deposits in the Red Sea, E.T. Degens and D.A. Ross (eds.). Springer-Verlag New York Inc., 243-250 (1969).

    Google Scholar 

  • Girdler, R.W.: The relationship of the Red Sea to the East African rift system. Quart. Jour. Geol. Soc., London, 114, 79 (1958).

    Article  Google Scholar 

  • Hartmann, M. and H. Nielsen: Sulfur isotopes in the hot brine and sediment of Atlantis II Deep (Red Sea). Marine Geol., 4, 305 (1966).

    Article  Google Scholar 

  • Heybroek, F.: The Red Sea Miocene evaporite basin. In: Salt Basins around Africa, Inst. Petroleum, London, 17 (1965).

    Google Scholar 

  • Kaplan, I.R., R.E. Sweeney, and A. Nissenbaum: Sulfur isotope studies on Red Sea geothermal brines and sediments. In: Hot brines and recent heavy metal deposits in the Red Sea, E.T. Degens and D.A. Ross (eds.). Springer-Verlag New York Inc., 474-498 (1969).

    Google Scholar 

  • Ku, T.L., D.L. Thurber, and G.G. Mathieu: Radiocarbon chronology of Red Sea sediments. In: Hot brines and recent heavy metal deposits in the Red Sea, E.T. Degens and D.A. Ross (eds.), Springer-Verlag New York Inc., 348-359 (1969).

    Google Scholar 

  • Longinelli, A. and H. Craig: Oxygen-18 variations in sulfate ions in sea water and saline lakes. Science, 156, 56 (1967).

    Article  Google Scholar 

  • Miller, A.R., C.D. Densmore, E.T. Degens, J.C. Hathaway, F.G. Manheim, P.F. McFarlin, R. Pocklington, and A. Jokela: Hot brines and recent iron deposits in deeps of the Red Sea. Geochim. et Cosmochim. Acta, 30, 341 (1966).

    Article  Google Scholar 

  • Neumann, A.C. and D.A. McGill: Circulation of the Red Sea in early summer. Deep-Sea Res., 8, 223 (1962).

    Google Scholar 

  • Pugh, D.T.: Origin of hot brines in the Red Sea. Nature, 214, 1003 (1967).

    Article  Google Scholar 

  • Pytkowicz, R.M. and R. Gates: Magnesium sulfate interactions in seawater from solubility measurements. Science, 161, 690 (1968).

    Article  Google Scholar 

  • Rafter, T.A. and Y. Mizutani: Preliminary study of variations of oxygen and sulphur isotopes in natural sulphates. Nature, 216, 1000 (1967).

    Article  Google Scholar 

  • Stewart, F.H.: Marine Evaporites. Chapter Y, Data of Geochemistry, U.S.G.S. Prof. Paper 440-Y, Washington, 1 (1963).

    Google Scholar 

  • Thode, H.G., M. Shima, C.E. Rees, and K.V. Krishnamurty: Carbon-13 isotope effects in systems containing carbon dioxide, bicarbonate, carbonate, and metal ions. Canad. J. Chem., 43, 582 (1965).

    Article  Google Scholar 

  • Thompson, E.F.: Chemical and physical investigations. The general hydrography of the Red Sea. John Murray Expedition 1933–34, Scientific Reports, 2, 83; The exchange of water between the Red Sea and the Gulf of Aden over the “Sill.” ibid., 2, 105 (1939).

    Google Scholar 

  • Watson, S.W. and J.B. Waterbury: The sterile hot brines of the Red Sea. In: Hot brines and recent heavy metal deposits in the Red Sea, E.T. Degens and D.A. Ross (eds.). Springer-Verlag New York Inc., 272-281 (1969).

    Google Scholar 

  • Weiss, R.F.: Dissolved argon, nitrogen and total carbonate in the Red Sea Brines. In: Hot brines and recent heavy metal deposits in the Red Sea, E.T. Degens and D.A. Ross (eds.). Springer-Verlag New York Inc., 254-260 (1969).

    Google Scholar 

  • Weiss, R.F. and H. Craig: Total carbonate and dissolved gases in equatorial Pacific waters. Trans. Am. Geophys. Union, 49, 216 (1968).

    Google Scholar 

  • Wendt, I.: Fractionation of carbon isotopes and its temperature dependence in the system CO2-gas-CO2 in solution and HCO3-CO2 in solution. Earth and Planetary Science Letters, 4, 64 (1968).

    Article  Google Scholar 

  • White, D.E.: Saline waters of sedimentary rocks. Fluids in subsurface environments — a symposium. Am. Assoc. Petrol. Geol. Mem., 4, 342 (1965).

    Google Scholar 

  • White, D.E., J.D. Hem, and G.A. Waring: Chemical composition of subsurface waters. Chapter F, Data of Geochemistry, U.S.G.S. Prof. Paper 440-F, Washington, 1 (1963).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1969 Springer Science+Business Media New York

About this chapter

Cite this chapter

Craig, H. (1969). Geochemistry and Origin of the Red Sea Brines. In: Degens, E.T., Ross, D.A. (eds) Hot Brines and Recent Heavy Metal Deposits in the Red Sea. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-28603-6_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-28603-6_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-27120-9

  • Online ISBN: 978-3-662-28603-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics