Skip to main content

Use of Mycorrhiza in Sustainable Agriculture and Land Restoration

  • Chapter
  • First Online:
Mycorrhizal Fungi: Use in Sustainable Agriculture and Land Restoration

Part of the book series: Soil Biology ((SOILBIOL,volume 41))

Abstract

Arbuscular mycorrhizal (AM) fungi belong to the phylum Glomeromycota and form symbioses with more than 80 % of terrestrial plants. They have a range of roles related to soil functions. AM fungi and ectomycorrhizal (ECM) fungi are the most abundant and common symbionts in agricultural and forest ecosystems, respectively. The functions of mycorrhizas in sustainable agriculture and forestry ecosystems are well demonstrated. In this review, we highlight functions of AM and ECM fungi in native forest ecosystems and the function of AM fungi in agricultural ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott LK, Gazey C (1994) An ecological view of the formation of VA mycorrhizas. Plant Soil 159:69–78

    Google Scholar 

  • Abbott LK, Robson AD, Gazey C (1987) Selection of inoculant VA mycorrhizal fungi. In: Sylvia DM, Hung LL, Graham JH (eds) Mycorrhizas in the next decade, practical applications and research priorities. Abstract. Proceedings of the 7th North American Conference on Mycorrhizas, pp 10–12. Institute of Food and Agricultural Sciences, University of Florida

    Google Scholar 

  • Agnew C, Warren A (1996) A framework for tackling drought and land degradation. J Arid Environ 33:309–320

    Article  Google Scholar 

  • Akema T, Futai K (2005) Ectomycorrhizal development in a Pinus thunbergii stand in relation to location on a slope and effect on tree mortality from pine wilt disease. J For Res 10:93–99

    Article  Google Scholar 

  • Allen MF (1991) The ecology of mycorrhiza. Cambridge University Press, Cambridge, p 184. Chapman and Hall, New York, NY, p 534

    Google Scholar 

  • Asai E, Futai K (2001) Retardation of pine wilt disease symptom development in Japanese black pine seedlings exposed to simulated acid rain and inoculated with Bursaphelenchus xylophilus. J For Res 6:297–302

    Article  CAS  Google Scholar 

  • Augé RM (2004) Arbuscular mycorrhizae and soil/plant water relations. Can J Soil Sci 84:373–381

    Article  Google Scholar 

  • Azćon-Aguilar C, Barea JM (1996) Arbuscular mycorrhizas and biological control of soil-borne plant pathogens – an overview of the mechanisms involved. Mycorrhiza 6:457–464

    Article  Google Scholar 

  • Azćon-Aguilar C, Palenzuela J, Roldan A, Bautista S, Vallejo R, Barea JM (2003) Analysis of the mycorrhizal potential in the rhizosphere of representative plant species from desertification-threatened Mediterranean shrublands. Appl Soil Ecol 22:29–37

    Article  Google Scholar 

  • Balestrini R, Bonfante P (2005) The interface compartment in arbuscular mycorrhizae: a special type of plant cell wall? Plant Biosyst 139:8–15

    Article  Google Scholar 

  • Balzergue C, Chabaud M, Barker DG, Becard G, Rochange SF (2013) High phosphate reduces host ability to develop arbuscular mycorrhizal symbiosis without affecting root calcium spiking responses to the fungus. Front Plant Sci 4, article no 426. doi: 10.3389/fpls.2013.00426

  • Bedini S, Avio L, Sbrana C, Turrini A, Migliorini P, Vazzana C, Giovannetti M (2013) Mycorrhizal activity and diversity in a long-term organic Mediterranean agroecosystem. Biol Fertil Soils 49:781–790

    Article  Google Scholar 

  • Benhamou N, Fortin JA, Hamel C, St-Arnaud M, Shatilla A (1994) Resistance responses of mycorrhizal Ri T-DNA-transformed carrot roots to infection by Fusarium oxysporum f. sp. chrysanthemi. Phytopathology 84:958–968

    Article  CAS  Google Scholar 

  • Brito I, Carvalho M, Goss MJ (2013) Soil and weed management for enhancing arbuscular mycorrhiza colonization of wheat. Soil Use Manage 29:540–546

    Article  Google Scholar 

  • Brundrett MC (2002) Coevolution of roots and mycorrhizas of land plants. New Phytol 154:275–304

    Article  Google Scholar 

  • Brundrett MC, Nanjappa A (2013) Glomeromycotan mycorrhizal fungi from tropical Australia III. Measuring diversity in natural and disturbed habitats. Plant Soil 370:419–433

    Article  CAS  Google Scholar 

  • Bucher M (2007) Functional biology of plant phosphate uptake at root and mycorrhiza interfaces. New Phytol 173:11–26

    Article  CAS  PubMed  Google Scholar 

  • Cameron DD, Neal AL, van Wees SCM, Ton J (2013) Mycorrhiza-induced resistance: more than the sum of its parts? Trends Plant Sci 18:539–545

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Carrillo-García A, Leon de la Luz JL, Bashan Y, Bethlenfalvay GJ (1999) Nurse plants, mycorrhizae, and plant establishment in a disturbed area of the Sonoran Desert. Restor Ecol 7:321–335

    Article  Google Scholar 

  • Chalot M, Blaudez D, Brun A (2006) Ammonia: a candidate for nitrogen transfer at the mycorrhizal interface. Trend Plant Sci 11:263–266

    Article  CAS  Google Scholar 

  • Cooper KM, Tinker PB (1981) Translocation and transfer of nutrients in vesicular arbuscular mycorrhizas. IV. Effect of environmental variables on movement of phosphorus. New Phytol 88:327–339

    Article  CAS  Google Scholar 

  • Cox G, Sanders FE, Tinker PB, Wild JA (1975) Ultrastructure evidence relating to host/endophyte transfer in a vesicular–arbuscular mycorrhizae. In: Sanders FE, Mosse B, Tinker PB (eds) Endomycorrhizae. Academic Press, London, pp 297–312

    Google Scholar 

  • Daniell TJ, Husband R, Fitter AH, Young JPW (2001) Molecular diversity of arbuscular mycorrhizal fungi colonising arable crops. FEMS Microbiol Ecol 36:203–209

    Article  CAS  PubMed  Google Scholar 

  • Djuuna IAF, Abbott LK, Solaiman MZ (2009) Use of mycorrhiza bioassays in ecological studies. In: Varma A, Kharkwal AC (eds) Symbiotic fungi, vol 18, Soil Biology. Springer, Berlin

    Chapter  Google Scholar 

  • Duchesne LC (2000) Role of ectomycorrhizal fungi in biocontrol. In: Pfleger FL, Linderman RG (eds) Mycorrhiza and plant health. APS Press, St Paul, MN, pp 27–46

    Google Scholar 

  • Ellerbeck M, Schüßler A, Brucker D, Dafinger C, Loos F, Brachmann A (2013) Characterization of three ammonium transporters of the Glomeromycotan fungus Geosiphon pyriformis. Eukaryot Cell 12:1554–1562

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gamper HA, Young JPW, Jones DL, Hodge A (2008) Real-time PCR and microscopy: are the two methods measuring the same unit of arbuscular mycorrhizal fungal abundance? Fungal Genet Biol 45:581–596

    Article  CAS  PubMed  Google Scholar 

  • Gianinazzi-Pearson V, Dumas-Gaudot E, Gollotte A, Tahiri-Alaoui A, Gianinazzi S (1996) Cellular and molecular defence related root responses to invasion by arbuscular mycorrhizal fungi. New Phytol 133:45–57

    Article  Google Scholar 

  • Gollotte A, van Tuinen D, Atkinson D (2004) Diversity of arbuscular mycorrhizal fungi colonising roots of the grass species Agrostis capillaris and Lolium perenne in a field experiment. Mycorrhiza 14:111–117

    Article  PubMed  Google Scholar 

  • Govindarajulu M, Pfeffer P, Jin H, Abubaker J, Douds DD, Allen JW, Bücking H, Lammers PJ, Shachar-Hill Y (2005) Nitrogen transfer in the arbuscular mycorrhizal symbiosis. Nature 435:819–823

    Article  CAS  PubMed  Google Scholar 

  • Guerin-Laguette A, Shindo K, Matsushita N, Suzuki K, Lapeyrie F (2004) The mycorrhizal fungus Tricoloma matsutake stimulates Pinus densiflora seedling growth in vitro. Mycorrhiza 14:397–400

    Article  PubMed  Google Scholar 

  • Hacskaylo E (1972) Mycorrhiza: the ultimate in reciprocal parasitism? BioSci 22:577–582

    Article  Google Scholar 

  • Hamel C, Strullu D-G (2006) Arbuscular mycorrhizal fungi in field crop production: potential and new direction. Can J Plant Sci 86:941–950

    Article  Google Scholar 

  • Harrier LA, Watson CA (2004) The potential role of arbuscular mycorrhizal (AM) fungi in the bioprotection of plants against soil-borne pathogens in organic and/or other sustainable farming systems. Pest Manag Sci 60:149–157

    Article  CAS  PubMed  Google Scholar 

  • Harrison MJ (1996) A sugar transporter from Medicago truncatula: altered expression pattern in roots during vesicular-arbuscular (VA) mycorrhizal associations. Plant J 9:491–503

    Article  CAS  PubMed  Google Scholar 

  • Harrison M (1999) Biotrophic interfaces and nutrient transport in plant/fungal interfaces. J Exp Bot 50:1013–1022

    Article  CAS  Google Scholar 

  • Harrison MJ, van Buuren ML (1995) A phosphate transporter from the mycorrhizal fungus Glomus versiforme. Nature 378:626–629

    Article  CAS  PubMed  Google Scholar 

  • Harrison MJ, Dewbre GR, Liu J (2002) A phosphate transporter from Medicago truncatula involved in the acquisition of phosphate released by arbuscular mycorrhizal fungi. Plant Cell 14:2413–2429

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Herrera MA, Salamanca CP, Barea JM (1993) Inoculation of woody legumes with selected arbuscular mycorrhizal fungi and rhizobia to recover desertified Mediterranean ecosystems. Appl Environ Microbiol 59:129–133

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hibbett DS, Gilbert LB, Donoghue MJ (2000) Evolutionary instability of ectomycorrhizal symbioses in basidiomycetes. Nature 407:506–508

    Article  CAS  PubMed  Google Scholar 

  • Hodge A, Storer K (2014) Arbuscular mycorrhiza and nitrogen: implications for individual plants through to ecosystems. Plant Soil. doi:10.1007/s11104-014-2162-1

  • Hodge A, Campbell CD, Fitter AH (2001) An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material. Nature 413:297–299

    Article  CAS  PubMed  Google Scholar 

  • Janos DP (2007) Plant responsiveness to mycorrhizas differs from dependence upon mycorrhizas. Mycorrhiza 17:75–91

    Article  PubMed  Google Scholar 

  • Jansa J, Mozafar A, Kuhn G, Anken T, Ruh R, Sanders IR, Frossard E (2003) Soil tillage affects the community structure of mycorrhizal fungi in maize roots. Ecol Appl 13:1164–1176

    Article  Google Scholar 

  • Javot H, Penmetsa RV, Terzaghi N, Cook DR, Harrison MJ (2007a) A Medicago truncatula phosphate transporter indispensable for the arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci U S A 104:1720–1725

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Javot H, Pumplin N, Harrison MJ (2007b) Phosphate in the arbuscular mycorrhizal symbiosis: transport properties and regulatory roles. Plant Cell Environ 30:310–322

    Article  CAS  PubMed  Google Scholar 

  • Javot H, Penmetsa RV, Breuillin F, Bhattarai KK, Noar RD, Gomez SK, Zhang Q, Cook DR, Harrison MJ (2011) Medicago truncatula mtpt4 mutants reveal a role for nitrogen in the regulation of arbuscule degeneration in arbuscular mycorrhizal symbiosis. Plant J 68:954–965

    Article  CAS  PubMed  Google Scholar 

  • Jawson MD, Franzlubbers AJ, Galusha DK, Aiken RM (1993) Soil fumigation within monoculture and rotations—response of corn and mycorrhizae. Agron J 85:1174–1180

    Article  Google Scholar 

  • Jeffries P, Barea JM (2000) Arbuscular mycorrhiza—a key component of sustainable plant-soil ecosystems. In: Hock B (ed) The mycota. IX. Fungal associations. Springer KG, Berlin, pp 95–113

    Google Scholar 

  • Kjøller R, Rosendah S (2001) Molecular diversity of glomalean (arbuscular mycorrhizal) fungi determined as distinct Glomus specific DNA sequences from roots of field grown peas. Mycol Res 105:127–132

    Article  Google Scholar 

  • Knudsen IMB, Debosz K, Hockenhull J, Jensen DF, Elmholt S (1995) Suppressiveness of organically and conventionally managed soils towards brown foot rot of barley. Appl Soil Ecol 12:61–72

    Article  Google Scholar 

  • Kohout P, Sudová R, Janousková M, Ctvrtlíková M, Hejda M, Pánková H, Slavíková R, Stajerová K, Vosátka M, Sýkorová Z (2014) Comparison of commonly used primer sets for evaluating arbuscular mycorrhizal fungal communities: is there a universal solution? Soil Biol Biochem 68:482–493

    Article  CAS  Google Scholar 

  • Lakhanpal TN (2000) Ectomycorrhiza – an overview. In: Mukerji KG, Chamola BP, Singh J (eds) Mycorrhizal biology. Kluwer Academic/Plenum, New York, NY, pp 101–118

    Chapter  Google Scholar 

  • Leigh EG, Davidar P, Dick CW, Puyravaud J, Terborgh J, ter Steege H, Wright SJ (2004) Why do some tropical forests have so many species of trees? Biotropica 36:445–473

    Google Scholar 

  • Li YJ, Liu ZL, He XY, Tian CJ (2013) Nitrogen metabolism and translocation in arbuscular mycorrhizal symbiote and its ecological implications. J Appl Ecol 24:861–868

    CAS  Google Scholar 

  • Liu RJ, Jiao H, Li Y, Li M, Zhu X-C (2009) Research advances in species diversity of arbuscular mycorrhizal fungi. J Appl Ecol 20:2301–2307

    CAS  Google Scholar 

  • Lopez-Pedrosa A, Gonzalez-Guerrero M, Valderas A, Azcon-Aguilar C, Ferrol N (2006) GintAMT1 encodes a functional high-affinity ammonium transporter that is expressed in the extraradical mycelium of Glomus intraradices. Fungal Genet Biol 43:102–110

    Article  CAS  PubMed  Google Scholar 

  • Machόn P, Santamaria O, Pajares JA, Alves-Santos FM, Diez JJ (2006) Influence of the mycorrhizal fungus Laccaria laccaria on pre-emergence, post-emergence and the late damping-off by Fusarium moniliforme and F. oxysporum on Scots pine seedlings. Symbiosis 42:153–160

    Google Scholar 

  • Manoharachary C, Kunwar IK, Tilak KVBR, Adholeya A (2010) Arbuscular mycorrhizal fungi – taxonomy, diversity, conservation and multiplication. Proc Natl Acad Sci Ind Sect B Biol Sci 80:1–13

    Article  Google Scholar 

  • McNear DH Jr (2013) The rhizosphere – roots, soil and everything in between. Nat Educ Knowl 4(3):1

    Google Scholar 

  • Menkis A, Lygis V, Burokiene D, Vasaitis R (2012) Establishment of ecto-mycorrhiza inoculated Pinus sylvestris seedlings on coastal dunes following a forest fire. Baltic Forestry 18:33–40

    Google Scholar 

  • Minchin RF, Ridgway HJ, Condron L, Jones EE (2012) Influence of inoculation with a Trichoderma bio-inoculant on ectomycorrhizal colonisation of Pinus radiata seedlings. Ann Appl Biol 161:57–67

    Article  Google Scholar 

  • Morin C, Samson J, Dessureault M (1999) Protection of black spruce seedlings against Cylindrocladium root rot with ectomycorrhizal fungi. Can J Bot 77:169–174

    Google Scholar 

  • Morton JB, Redecker D (2001) Two new families of Glomales, Archaeosporaceae and Paraglomaceae, with two new genera Archaeospora and Paraglomus, based on concordant molecular and morphological characters. Mycologia 93:181–195

    Article  Google Scholar 

  • Oehl F, Sieverding E, Javier P, Kurt I, da Silva GA (2011) Advances in Glomeromycota taxonomy and classification. IMA Fungus 2:191–199

    Article  PubMed Central  PubMed  Google Scholar 

  • Olsson PA, Rahm J, Aliasgharzad N (2010) Carbon dynamics in mycorrhizal symbioses is linked to carbon costs and phosphorus benefits. FEMS Microbiol Ecol 72:125–131

    Article  PubMed  Google Scholar 

  • Opik M, Vanatoa A, Vanatoa E, Moora M, Davison J, Kalwij JM, Reier U, Zobel M (2010) The online database MaarjAM reveals global and ecosystemic distribution patterns in arbuscular mycorrhizal fungi (Glomeromycota). New Phytol 188:223–241

    Article  CAS  PubMed  Google Scholar 

  • Pellegrino E, Bedini S (2014) Enhancing ecosystem services in sustainable agriculture: biofertilization and biofortification of chickpea (Cicer arietinum L.) by arbuscular mycorrhizal fungi. Soil Biol Biochem 68:429–439

    Article  CAS  Google Scholar 

  • Phillips RP, Brzostek E, Midgley M (2013) The mycorrhizal-associated nutrient economy: a new framework for predicting carbon-nutrient couplings in temperate forests. New Phytol 199:41–51

    Article  CAS  PubMed  Google Scholar 

  • Redecker D (2002) Molecular identification and phylogeny of arbuscular mycorrhizal fungi. Plant Soil 244:67–73

    Article  CAS  Google Scholar 

  • Redecker D, Morton JB, Bruns TD (2000) Ancestral lineages of arbuscular mycorrhizal fungi (Glomales). Mol Phylogen Evol 14:276–284

    Article  CAS  Google Scholar 

  • Renker C, Heinrichs J, Kaldorf M, Buscot F (2003) Combining nested PCR and restriction digest of the internal transcribed spacer region to characterize arbuscular mycorrhizal fungi on roots from the field. Mycorrhiza 13:191–198

    Article  CAS  PubMed  Google Scholar 

  • Requena N, Jeffries P, Barea JM (1996) Assessment of natural mycorrhizal potential in a desertified semiarid ecosystem. Appl Environ Microbiol 62:842–847

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rillig MC (2004) Arbuscular mycorrhizae, glomalin, and soil aggregation. Can J Soil Sci 84:355–363

    Article  Google Scholar 

  • Rillig MC, Caldwell BA, Wosten HAB, Sollins P (2007) Role of protein in soil carbon and nitrogen storage: controls on persistence. Biogeochemistry 85:25–44

    Article  CAS  Google Scholar 

  • Rosendahl S (2008) Communities, populations and individuals of arbuscular mycorrhizal fungi. New Phytol 178:253–266

    Article  PubMed  Google Scholar 

  • Saito M (2000) Symbiotic exchange of nutrients in arbuscular mycorrhizas: transport and transfer of phosphorus. In: Douds DD, Kapunik Y (eds) Arbuscular mycorrhizas: physiology and function. Kluwer, Dordrecht, The Netherlands, pp 85–106

    Chapter  Google Scholar 

  • Saks Ü, Davison J, Öpik M, Vasar M, Moora M, Zobel M (2013) Root-colonizing and soil-borne communities of arbuscular mycorrhizal fungi in a temperate forest understorey. Botany 92:277–285

    Article  Google Scholar 

  • Sanders IR, Alt M, Groppe K, Boller T, Wiemken A (1995) Identification of ribosomal DNA polymorphisms among and within spores of the Glomales – application to studies on the genetic diversity of arbuscular mycorrhizal fungal communities. New Phytol 130:419–427

    Article  CAS  Google Scholar 

  • Schreiner RP, Milhara KL, McDaniel H, Bethlenfalvay GJ (1997) Mycorrhizal fungi influence plant and soil functions and interactions. Plant Soil 188:199–209

    Article  CAS  Google Scholar 

  • Schüßler A, Schwarzott D, Walker C (2001) A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycol Res 105:1413–1421

    Article  Google Scholar 

  • Schussler A, Martin H, Cohen D, Fitz M, Wipf D (2006) Characterization of a carbohydrate transporter from symbiotic glomeromycotan fungi. Nature 444:933–936

    Article  PubMed  Google Scholar 

  • Schwarzott D, Walker C, Schussler A (2001) Glomus, the largest genus of the arbuscular mycorrhizal fungi (Glomales), is nonmonophyletic. Mol Phylogenet Evol 21:190–197

    Article  CAS  PubMed  Google Scholar 

  • Siddiqui ZA, Akhter MS, Futai K (eds) (2008) Mycorrhizae: sustainable agriculture and forestry. Springer Science + Business Media B.V., 365 pp

    Google Scholar 

  • Skujins J, Allen MF (1986) Use of mycorrhizae for land rehabilitation. MIRCEN J 2:161–176

    Article  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis. Academic Press, London, 800 pp

    Google Scholar 

  • Smith SE, Smith FA (2012) Fresh perspectives on the roles of arbuscular mycorrhizal fungi in plant nutrition and growth. Mycologia 104:1–13

    Article  PubMed  Google Scholar 

  • Smith SE, Robson AD, Abbott LK (1992) The involvement of mycorrhizas of genetically-dependent efficiency of nutrient uptake and use. Plant Soil 146:169–179

    Article  CAS  Google Scholar 

  • Solaiman ZM, Abbott LK (2003) Phosphorus uptake by a community of arbuscular mycorrhizal fungi in jarrah forest. Plant Soil 248:313–320

    Article  CAS  Google Scholar 

  • Solaiman ZM, Abbott LK (2008) Influence of arbuscular mycorrhizal fungi, inoculum level and phosphorus placement on growth and phosphorus uptake of Phyllanthus calycinus in jarrah forest soil. Biol Fertil Soils 44:815–821

    Article  Google Scholar 

  • Solaiman ZM, Hirata H (1997) Effect of arbuscular mycorrhizal fungi inoculation of rice seedlings at the nursery stage upon performance in the paddy field and greenhouse. Plant Soil 191:1–12

    Article  CAS  Google Scholar 

  • Solaiman ZM, Saito M (2001) Phosphate efflux from intraradical hyphae of Gigaspora margarita in vitro and its implication for phosphorus. New Phytol 151:525–533

    Article  CAS  Google Scholar 

  • Solaiman ZM, Saito M (1997) Use of sugars by intraradical hyphae of arbuscular mycorrhizal fungi revealed by radiorespirometry. New Phytol 136:533–538

    Article  CAS  Google Scholar 

  • Solaiman ZM, Ezawa T, Kojima T, Saito M (1999) Polyphosphates in intraradical and extraradical hyphae of arbuscular mycorrhizal fungi. Appl Environ Microbiol 65:5604–5606

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stürmer SL (2012) A history of the taxonomy and systematics of arbuscular mycorrhizal fungi belonging to the phylum Glomeromycota. Mycorrhiza 22:247–258

    Article  PubMed  Google Scholar 

  • Tinker PB (1975) Effects of vesicular–arbuscular mycorrhizas on higher plants. Symp Soc Exp Biol 29:325–350

    CAS  PubMed  Google Scholar 

  • Uehlein N, Fileschi K, Eckert M, Bienert GP, Bertl A, Kaldenhoff R (2007) Arbuscular mycorrhizal symbiosis and plant aquaporin expression. Phytochemistry 68:122–129

    Article  CAS  PubMed  Google Scholar 

  • Valencia RH, Balslev H, Paz H, Mino CG (1994) High tree alpha-diversity in Amazonian Ecuador. Biodiv Conserv 3:21–28

    Article  Google Scholar 

  • Vandenkoornhuyse P, Ridgway KP, Watson IJ, Fitter AH, Young JPW (2003) Co-existing grass species have distinctive arbuscular mycorrhizal communities. Mol Ecol 12:3085–3095

    Article  CAS  PubMed  Google Scholar 

  • Vierheilig H, Alt M, Gut-Rella M, Lange J, Boller T, Wiemken A (1996) Colonization of tobacco constitutively expressing pathogenesis-related proteins by arbuscular mycorrhizal fungi. In: Azcón-Aguilar C, Barea JM (eds) Mycorrhizas in integrated systems: from genes to plant development. European Commission, EUR 16728, Luxembourg, pp 270–273

    Google Scholar 

  • Warren A, Sud YC, Rozanov B (1996) The future of deserts. J Arid Environ 32:75–89

    Article  Google Scholar 

  • Willis A, Rodrigues BF, Harris PJC (2013) The ecology of arbuscular mycorrhizal fungi. Crit Rev Plant Sci 32:1–20

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zakaria M. Solaiman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Solaiman, Z.M., Mickan, B. (2014). Use of Mycorrhiza in Sustainable Agriculture and Land Restoration. In: Solaiman, Z., Abbott, L., Varma, A. (eds) Mycorrhizal Fungi: Use in Sustainable Agriculture and Land Restoration. Soil Biology, vol 41. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45370-4_1

Download citation

Publish with us

Policies and ethics