Skip to main content

2018 | OriginalPaper | Buchkapitel

3. Wide-Field Surface Plasmon Resonance Microscopy for In-Situ Characterization of Nanoparticle Suspensions

verfasst von : Shavkat Nizamov, Vladimir M. Mirsky

Erschienen in: In-situ Characterization Techniques for Nanomaterials

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

During the past two decades, nanomaterials have had an enormous diversity of applications in different industrial fields and fundamental research. Some of these nanomaterials are specifically engineered to exhibit unique optical, electrical, or other physical or chemical characteristics. Owing to these attributes, the products containing various engineered nanoparticles (NP) cover large segments of the market from clothing to electronics and healthcare products [1]. The rapid development of nanotechnologies, their industrial applications, and related nanosafety concerns demand sensitive analytical methods for the identification and analysis of nanoparticles (NPs) in very different media [2]. In the same time, there are serious concerns on possible toxicity of nanoparticles for humans and environment [3]. Engineered NPs (ENPs) have to be analyzed not only during their production, in pure and concentrated form, but also at trace concentrations in environment, drinking water and food, healthcare and pharmacological products, biological fluids, etc. Ideally, such a technique should provide a possibility to detect NPs at the level of single particles and deliver information on their concentration, core and surface chemical composition, size, and shape [2–4].

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Stark WJ, Stoessel PR, Wohlleben W, Hafner A (2015) Industrial applications of nanoparticles. Chem Soc Rev 44:5793–5805CrossRef Stark WJ, Stoessel PR, Wohlleben W, Hafner A (2015) Industrial applications of nanoparticles. Chem Soc Rev 44:5793–5805CrossRef
2.
Zurück zum Zitat Babick F, Mielke J, Wohlleben W, Weigel S, Hodoroaba V-D (2016) How reliably can a material be classified as a nanomaterial? Available particle-sizing techniques at work. J Nanopart Res 18:158CrossRef Babick F, Mielke J, Wohlleben W, Weigel S, Hodoroaba V-D (2016) How reliably can a material be classified as a nanomaterial? Available particle-sizing techniques at work. J Nanopart Res 18:158CrossRef
3.
Zurück zum Zitat Love SA, Maurer-Jones MA, Thompson JW, Lin YS, Haynes CL (2012) Assessing nanoparticle toxicity. Annu Rev Anal Chem 5:181–205CrossRef Love SA, Maurer-Jones MA, Thompson JW, Lin YS, Haynes CL (2012) Assessing nanoparticle toxicity. Annu Rev Anal Chem 5:181–205CrossRef
4.
Zurück zum Zitat Bleeker EAJ, de Jong WH, Geertsma RE, Groenewold M, Heugens EHW, Koers-Jacquemijns M et al (2013) Considerations on the EU definition of a nanomaterial: science to support policy making. Regul Toxicol Pharmacol 65:119–125CrossRef Bleeker EAJ, de Jong WH, Geertsma RE, Groenewold M, Heugens EHW, Koers-Jacquemijns M et al (2013) Considerations on the EU definition of a nanomaterial: science to support policy making. Regul Toxicol Pharmacol 65:119–125CrossRef
5.
Zurück zum Zitat Nič M, Jirát J, Košata B, Jenkins A, McNaught A (eds) (2009) IUPAC compendium of chemical terminology: gold book. 2.1.0. IUPAC, Research Triagle Park Nič M, Jirát J, Košata B, Jenkins A, McNaught A (eds) (2009) IUPAC compendium of chemical terminology: gold book. 2.1.0. IUPAC, Research Triagle Park
6.
Zurück zum Zitat Berne BJ, Pecora R (2000) Dynamic light scattering: with applications to chemistry, biology, and physics. Dover Publications, Mineola Berne BJ, Pecora R (2000) Dynamic light scattering: with applications to chemistry, biology, and physics. Dover Publications, Mineola
7.
Zurück zum Zitat Jiang J, Oberdörster G, Biswas P (2008) Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. J Nanopart Res 11:77–89CrossRef Jiang J, Oberdörster G, Biswas P (2008) Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. J Nanopart Res 11:77–89CrossRef
8.
Zurück zum Zitat Murdock RC, Braydich-Stolle L, Schrand AM, Schlager JJ, Hussain SM (2008) Characterization of nanomaterial dispersion in solution prior to in vitro exposure using dynamic light scattering technique. Toxicol Sci 101:239–253CrossRef Murdock RC, Braydich-Stolle L, Schrand AM, Schlager JJ, Hussain SM (2008) Characterization of nanomaterial dispersion in solution prior to in vitro exposure using dynamic light scattering technique. Toxicol Sci 101:239–253CrossRef
9.
Zurück zum Zitat Medebach M, Moitzi C, Freiberger N, Glatter O (2007) Dynamic light scattering in turbid colloidal dispersions: a comparison between the modified flat-cell light-scattering instrument and 3D dynamic light-scattering instrument. J Colloid Interface Sci 305:88–93CrossRef Medebach M, Moitzi C, Freiberger N, Glatter O (2007) Dynamic light scattering in turbid colloidal dispersions: a comparison between the modified flat-cell light-scattering instrument and 3D dynamic light-scattering instrument. J Colloid Interface Sci 305:88–93CrossRef
10.
Zurück zum Zitat Urban C, Schurtenberger P (1998) Characterization of turbid colloidal suspensions using light scattering techniques combined with cross-correlation methods. J Colloid Interface Sci 207:150–158CrossRef Urban C, Schurtenberger P (1998) Characterization of turbid colloidal suspensions using light scattering techniques combined with cross-correlation methods. J Colloid Interface Sci 207:150–158CrossRef
11.
Zurück zum Zitat Pusey PN (1999) Suppression of multiple scattering by photon cross-correlation techniques. Curr Opin Colloid Interface Sci 4:177–185CrossRef Pusey PN (1999) Suppression of multiple scattering by photon cross-correlation techniques. Curr Opin Colloid Interface Sci 4:177–185CrossRef
12.
Zurück zum Zitat Pine DJ, Weitz DA, Chaikin PM, Herbolzheimer E (1988) Diffusing wave spectroscopy. Phys Rev Lett 60:1134CrossRef Pine DJ, Weitz DA, Chaikin PM, Herbolzheimer E (1988) Diffusing wave spectroscopy. Phys Rev Lett 60:1134CrossRef
13.
Zurück zum Zitat Bressel L, Hass R, Reich O (2013) Particle sizing in highly turbid dispersions by photon density wave spectroscopy. J Quant Spectrosc Radiat Transf 126:122–129CrossRef Bressel L, Hass R, Reich O (2013) Particle sizing in highly turbid dispersions by photon density wave spectroscopy. J Quant Spectrosc Radiat Transf 126:122–129CrossRef
14.
Zurück zum Zitat Makra I, Terejánszky P, Gyurcsányi RE (2015) A method based on light scattering to estimate the concentration of virus particles without the need for virus particle standards. MethodsX 2:91–99CrossRef Makra I, Terejánszky P, Gyurcsányi RE (2015) A method based on light scattering to estimate the concentration of virus particles without the need for virus particle standards. MethodsX 2:91–99CrossRef
15.
Zurück zum Zitat Quinten M (2011) Optical properties of nanoparticle systems: Mie and beyond. Wiley-VCH, WeinheimCrossRef Quinten M (2011) Optical properties of nanoparticle systems: Mie and beyond. Wiley-VCH, WeinheimCrossRef
16.
Zurück zum Zitat Mappes T, Jahr N, Csaki A, Vogler N, Popp J, Fritzsche W (2012) The invention of immersion ultramicroscopy in 1912-the birth of nanotechnology? Angew Chem Int Ed 51:11208–11212CrossRef Mappes T, Jahr N, Csaki A, Vogler N, Popp J, Fritzsche W (2012) The invention of immersion ultramicroscopy in 1912-the birth of nanotechnology? Angew Chem Int Ed 51:11208–11212CrossRef
17.
Zurück zum Zitat Xiao L, Qiao Y, He Y, Yeung ES (2010) Three dimensional orientational imaging of nanoparticles with darkfield microscopy. Anal Chem 82:5268–5274CrossRef Xiao L, Qiao Y, He Y, Yeung ES (2010) Three dimensional orientational imaging of nanoparticles with darkfield microscopy. Anal Chem 82:5268–5274CrossRef
18.
Zurück zum Zitat Hole P, Sillence K, Hannell C, Maguire CM, Roesslein M, Suarez G et al (2013) Interlaboratory comparison of size measurements on nanoparticles using nanoparticle tracking analysis (NTA). J Nanopart Res 15:2101CrossRef Hole P, Sillence K, Hannell C, Maguire CM, Roesslein M, Suarez G et al (2013) Interlaboratory comparison of size measurements on nanoparticles using nanoparticle tracking analysis (NTA). J Nanopart Res 15:2101CrossRef
19.
Zurück zum Zitat Filipe V, Hawe A, Jiskoot W (2010) Critical evaluation of nanoparticle tracking analysis (NTA) by nanosight for the measurement of nanoparticles and protein aggregates. Pharm Res 27:796–810CrossRef Filipe V, Hawe A, Jiskoot W (2010) Critical evaluation of nanoparticle tracking analysis (NTA) by nanosight for the measurement of nanoparticles and protein aggregates. Pharm Res 27:796–810CrossRef
20.
Zurück zum Zitat Gardiner C, Ferreira YJ, Dragovic RA, Redman CWG, Sargent IL (2013) Extracellular vesicle sizing and enumeration by nanoparticle tracking analysis. J Extracell Vesicles 2:19671CrossRef Gardiner C, Ferreira YJ, Dragovic RA, Redman CWG, Sargent IL (2013) Extracellular vesicle sizing and enumeration by nanoparticle tracking analysis. J Extracell Vesicles 2:19671CrossRef
21.
Zurück zum Zitat Kramberger P, Ciringer M, Štrancar A, Peterka M (2012) Evaluation of nanoparticle tracking analysis for total virus particle determination. Virol J 9:265CrossRef Kramberger P, Ciringer M, Štrancar A, Peterka M (2012) Evaluation of nanoparticle tracking analysis for total virus particle determination. Virol J 9:265CrossRef
22.
Zurück zum Zitat Tian X, Nejadnik MR, Baunsgaard D, Henriksen A, Rischel C, Jiskoot W (2016) A comprehensive evaluation of nanoparticle tracking analysis (nanosight) for characterization of proteinaceous submicron particles. J Pharm Sci 105:3366–3375CrossRef Tian X, Nejadnik MR, Baunsgaard D, Henriksen A, Rischel C, Jiskoot W (2016) A comprehensive evaluation of nanoparticle tracking analysis (nanosight) for characterization of proteinaceous submicron particles. J Pharm Sci 105:3366–3375CrossRef
23.
Zurück zum Zitat Gallego-Urrea JA, Tuoriniemi J, Hassellöv M (2011) Applications of particle-tracking analysis to the determination of size distributions and concentrations of nanoparticles in environmental, biological and food samples. TrAC Trends Anal Chem 30:473–483CrossRef Gallego-Urrea JA, Tuoriniemi J, Hassellöv M (2011) Applications of particle-tracking analysis to the determination of size distributions and concentrations of nanoparticles in environmental, biological and food samples. TrAC Trends Anal Chem 30:473–483CrossRef
24.
Zurück zum Zitat Giavazzi F, Brogioli D, Trappe V, Bellini T, Cerbino R (2009) Scattering information obtained by optical microscopy: differential dynamic microscopy and beyond. Phys Rev E 80:031403CrossRef Giavazzi F, Brogioli D, Trappe V, Bellini T, Cerbino R (2009) Scattering information obtained by optical microscopy: differential dynamic microscopy and beyond. Phys Rev E 80:031403CrossRef
25.
Zurück zum Zitat Cerbino R, Trappe V (2008) Differential dynamic microscopy: probing wave vector dependent dynamics with a microscope. Phys Rev Lett 100:188102CrossRef Cerbino R, Trappe V (2008) Differential dynamic microscopy: probing wave vector dependent dynamics with a microscope. Phys Rev Lett 100:188102CrossRef
26.
Zurück zum Zitat Martinez VA, Besseling R, Croze OA, Tailleur J, Reufer M, Schwarz-Linek J et al (2012) Differential dynamic microscopy: a high-throughput method for characterizing the motility of microorganisms. Biophys J 103:1637–1647CrossRef Martinez VA, Besseling R, Croze OA, Tailleur J, Reufer M, Schwarz-Linek J et al (2012) Differential dynamic microscopy: a high-throughput method for characterizing the motility of microorganisms. Biophys J 103:1637–1647CrossRef
27.
Zurück zum Zitat Wilson LG, Martinez VA, Schwarz-Linek J, Tailleur J, Bryant G, Pusey PN et al (2011) Differential dynamic microscopy of bacterial motility. Phys Rev Lett 106:018101CrossRef Wilson LG, Martinez VA, Schwarz-Linek J, Tailleur J, Bryant G, Pusey PN et al (2011) Differential dynamic microscopy of bacterial motility. Phys Rev Lett 106:018101CrossRef
28.
Zurück zum Zitat Haiss W, Thanh NTK, Aveyard J, Fernig DG (2007) Determination of size and concentration of gold nanoparticles from UV−vis spectra. Anal Chem 79:4215–4221CrossRef Haiss W, Thanh NTK, Aveyard J, Fernig DG (2007) Determination of size and concentration of gold nanoparticles from UV−vis spectra. Anal Chem 79:4215–4221CrossRef
29.
Zurück zum Zitat Paramelle D, Sadovoy A, Gorelik S, Free P, Hobley J, Fernig DG (2014) A rapid method to estimate the concentration of citrate capped silver nanoparticles from UV-visible light spectra. Analyst 139:4855CrossRef Paramelle D, Sadovoy A, Gorelik S, Free P, Hobley J, Fernig DG (2014) A rapid method to estimate the concentration of citrate capped silver nanoparticles from UV-visible light spectra. Analyst 139:4855CrossRef
30.
Zurück zum Zitat Mutavdžić D, Xu J, Thakur G, Triulzi R, Kasas S, Jeremić M et al (2011) Determination of the size of quantum dots by fluorescence spectroscopy. Analyst 136:2391CrossRef Mutavdžić D, Xu J, Thakur G, Triulzi R, Kasas S, Jeremić M et al (2011) Determination of the size of quantum dots by fluorescence spectroscopy. Analyst 136:2391CrossRef
31.
Zurück zum Zitat Yim S-Y, Park J-H, Kim M-G (2015) Dark-field spectral imaging microscope for localized surface plasmon resonance-based biosensing. Proc SPIE 9523:952307CrossRef Yim S-Y, Park J-H, Kim M-G (2015) Dark-field spectral imaging microscope for localized surface plasmon resonance-based biosensing. Proc SPIE 9523:952307CrossRef
32.
Zurück zum Zitat Boyer D (2002) Photothermal imaging of nanometer-sized metal particles among scatterers. Science 297:1160–1163CrossRef Boyer D (2002) Photothermal imaging of nanometer-sized metal particles among scatterers. Science 297:1160–1163CrossRef
33.
Zurück zum Zitat Gaiduk A, Ruijgrok PV, Yorulmaz M, Orrit M (2010) Detection limits in photothermal microscopy. Chem Sci 1:343CrossRef Gaiduk A, Ruijgrok PV, Yorulmaz M, Orrit M (2010) Detection limits in photothermal microscopy. Chem Sci 1:343CrossRef
34.
Zurück zum Zitat Diwakar PK, Loper KH, Matiaske A-M, Hahn DW (2012) Laser-induced breakdown spectroscopy for analysis of micro and nanoparticles. J Anal At Spectrom 27:1110CrossRef Diwakar PK, Loper KH, Matiaske A-M, Hahn DW (2012) Laser-induced breakdown spectroscopy for analysis of micro and nanoparticles. J Anal At Spectrom 27:1110CrossRef
35.
Zurück zum Zitat Gimenez Y, Busser B, Trichard F, Kulesza A, Laurent JM, Zaun V et al (2016) 3D imaging of nanoparticle distribution in biological tissue by laser-induced breakdown spectroscopy. Sci Rep 6:29936CrossRef Gimenez Y, Busser B, Trichard F, Kulesza A, Laurent JM, Zaun V et al (2016) 3D imaging of nanoparticle distribution in biological tissue by laser-induced breakdown spectroscopy. Sci Rep 6:29936CrossRef
36.
Zurück zum Zitat Schwertfeger DM, Velicogna JR, Jesmer AH, Scroggins RP, Princz JI (2016) Single particle-inductively coupled plasma mass spectroscopy analysis of metallic nanoparticles in environmental samples with large dissolved analyte fractions. Anal Chem 88:9908–9914CrossRef Schwertfeger DM, Velicogna JR, Jesmer AH, Scroggins RP, Princz JI (2016) Single particle-inductively coupled plasma mass spectroscopy analysis of metallic nanoparticles in environmental samples with large dissolved analyte fractions. Anal Chem 88:9908–9914CrossRef
37.
Zurück zum Zitat Laborda F, Bolea E, Jiménez-Lamana J (2014) Single particle inductively coupled plasma mass spectrometry: a powerful tool for nanoanalysis. Anal Chem 86:2270–2278CrossRef Laborda F, Bolea E, Jiménez-Lamana J (2014) Single particle inductively coupled plasma mass spectrometry: a powerful tool for nanoanalysis. Anal Chem 86:2270–2278CrossRef
38.
Zurück zum Zitat Agbabiaka A, Wiltfong M, Park C (2013) Small angle X-ray scattering technique for the particle size distribution of nonporous nanoparticles. J Nanopart 2013:1–11CrossRef Agbabiaka A, Wiltfong M, Park C (2013) Small angle X-ray scattering technique for the particle size distribution of nonporous nanoparticles. J Nanopart 2013:1–11CrossRef
39.
Zurück zum Zitat Li T, Senesi AJ, Lee B (2016) Small angle X-ray scattering for nanoparticle research. Chem Rev 116:11128–11180CrossRef Li T, Senesi AJ, Lee B (2016) Small angle X-ray scattering for nanoparticle research. Chem Rev 116:11128–11180CrossRef
40.
Zurück zum Zitat Chu B, Liu T (2000) Characterization of nanoparticles by scattering techniques. J Nanopart Res 2:29–41CrossRef Chu B, Liu T (2000) Characterization of nanoparticles by scattering techniques. J Nanopart Res 2:29–41CrossRef
41.
Zurück zum Zitat Roberts GS, Kozak D, Anderson W, Broom MF, Vogel R, Trau M (2010) Tunable nano/micropores for particle detection and discrimination: scanning ion occlusion spectroscopy. Small 6:2653–2658CrossRef Roberts GS, Kozak D, Anderson W, Broom MF, Vogel R, Trau M (2010) Tunable nano/micropores for particle detection and discrimination: scanning ion occlusion spectroscopy. Small 6:2653–2658CrossRef
42.
Zurück zum Zitat Roberts GS, Yu S, Zeng Q, Chan LCL, Anderson W, Colby AH et al (2012) Tunable pores for measuring concentrations of synthetic and biological nanoparticle dispersions. Biosens Bioelectron 31:17–25CrossRef Roberts GS, Yu S, Zeng Q, Chan LCL, Anderson W, Colby AH et al (2012) Tunable pores for measuring concentrations of synthetic and biological nanoparticle dispersions. Biosens Bioelectron 31:17–25CrossRef
43.
Zurück zum Zitat Wang Y, Kececi K, Mirkin MV, Mani V, Sardesai N, Rusling JF (2013) Resistive-pulse measurements with nanopipettes: detection of Au nanoparticles and nanoparticle-bound anti-peanut IgY. Chem Sci 4:655–663CrossRef Wang Y, Kececi K, Mirkin MV, Mani V, Sardesai N, Rusling JF (2013) Resistive-pulse measurements with nanopipettes: detection of Au nanoparticles and nanoparticle-bound anti-peanut IgY. Chem Sci 4:655–663CrossRef
44.
Zurück zum Zitat Makra I, Gyurcsányi RE (2014) Electrochemical sensing with nanopores: a mini review. Electrochem Commun 43:55–59CrossRef Makra I, Gyurcsányi RE (2014) Electrochemical sensing with nanopores: a mini review. Electrochem Commun 43:55–59CrossRef
45.
Zurück zum Zitat Weatherall E, Willmott GR (2015) Applications of tunable resistive pulse sensing. Analyst 140:3318–3334CrossRef Weatherall E, Willmott GR (2015) Applications of tunable resistive pulse sensing. Analyst 140:3318–3334CrossRef
46.
Zurück zum Zitat Yang L, Yamamoto T (2016) Quantification of virus particles using nanopore-based resistive-pulse sensing techniques. Front Microbiol 7:1500 Yang L, Yamamoto T (2016) Quantification of virus particles using nanopore-based resistive-pulse sensing techniques. Front Microbiol 7:1500
47.
Zurück zum Zitat Cheng W, Compton RG (2014) Electrochemical detection of nanoparticles by ‘nano-impact’ methods. TrAC Trends Anal Chem 58:79–89CrossRef Cheng W, Compton RG (2014) Electrochemical detection of nanoparticles by ‘nano-impact’ methods. TrAC Trends Anal Chem 58:79–89CrossRef
48.
Zurück zum Zitat Rees NV (2014) Electrochemical insight from nanoparticle collisions with electrodes: a mini-review. Electrochem Commun 43:83–86CrossRef Rees NV (2014) Electrochemical insight from nanoparticle collisions with electrodes: a mini-review. Electrochem Commun 43:83–86CrossRef
49.
Zurück zum Zitat Sokolov SV, Eloul S, Kätelhön E, Batchelor-McAuley C, Compton RG (2017) Electrode–particle impacts: a users guide. Phys Chem Chem Phys 19:28–43CrossRef Sokolov SV, Eloul S, Kätelhön E, Batchelor-McAuley C, Compton RG (2017) Electrode–particle impacts: a users guide. Phys Chem Chem Phys 19:28–43CrossRef
50.
Zurück zum Zitat Sokolov SV, Bartlett TR, Fair P, Fletcher S, Compton RG (2016) Femtomolar detection of silver nanoparticles by flow-enhanced direct-impact voltammetry at a microelectrode array. Anal Chem 88:8908–8912CrossRef Sokolov SV, Bartlett TR, Fair P, Fletcher S, Compton RG (2016) Femtomolar detection of silver nanoparticles by flow-enhanced direct-impact voltammetry at a microelectrode array. Anal Chem 88:8908–8912CrossRef
51.
Zurück zum Zitat DeBlois RW, Bean CP, Wesley RK (1977) Electrokinetic measurements with submicron particles and pores by the resistive pulse technique. J Colloid Interface Sci 61:323–335CrossRef DeBlois RW, Bean CP, Wesley RK (1977) Electrokinetic measurements with submicron particles and pores by the resistive pulse technique. J Colloid Interface Sci 61:323–335CrossRef
52.
Zurück zum Zitat Aliano A, Cicero G, Nili H, Green NG, García-Sánchez P, Ramos A et al (2012) AFM in liquids. In: Bhushan B (ed) Encyclopedia of nanotechnology. Springer, Dordrecht, pp 83–89 Aliano A, Cicero G, Nili H, Green NG, García-Sánchez P, Ramos A et al (2012) AFM in liquids. In: Bhushan B (ed) Encyclopedia of nanotechnology. Springer, Dordrecht, pp 83–89
53.
Zurück zum Zitat Baalousha M, Prasad A, Lead JR (2014) Quantitative measurement of the nanoparticle size and number concentration from liquid suspensions by atomic force microscopy. Environ Sci: Processes Impacts 16:1338 Baalousha M, Prasad A, Lead JR (2014) Quantitative measurement of the nanoparticle size and number concentration from liquid suspensions by atomic force microscopy. Environ Sci: Processes Impacts 16:1338
54.
Zurück zum Zitat Baalousha M, Kammer FVD, Motelica-Heino M, Le Coustumer P (2005) Natural sample fractionation by FlFFF–MALLS–TEM: sample stabilization, preparation, pre-concentration and fractionation. J Chromatogr A 1093:156–166CrossRef Baalousha M, Kammer FVD, Motelica-Heino M, Le Coustumer P (2005) Natural sample fractionation by FlFFF–MALLS–TEM: sample stabilization, preparation, pre-concentration and fractionation. J Chromatogr A 1093:156–166CrossRef
55.
Zurück zum Zitat Takahashi Y, Kumatani A, Shiku H, Matsue T (2017) Scanning probe microscopy for nanoscale electrochemical imaging. Anal Chem 89:342–357CrossRef Takahashi Y, Kumatani A, Shiku H, Matsue T (2017) Scanning probe microscopy for nanoscale electrochemical imaging. Anal Chem 89:342–357CrossRef
56.
Zurück zum Zitat Polcari D, Dauphin-Ducharme P, Mauzeroll J (2016) Scanning electrochemical microscopy: a comprehensive review of experimental parameters from 1989 to 2015. Chem Rev 116:13234–13278CrossRef Polcari D, Dauphin-Ducharme P, Mauzeroll J (2016) Scanning electrochemical microscopy: a comprehensive review of experimental parameters from 1989 to 2015. Chem Rev 116:13234–13278CrossRef
57.
Zurück zum Zitat Sun P, Laforge FO, Mirkin MV (2007) Scanning electrochemical microscopy in the 21st century. Phys Chem Chem Phys 9:802–823CrossRef Sun P, Laforge FO, Mirkin MV (2007) Scanning electrochemical microscopy in the 21st century. Phys Chem Chem Phys 9:802–823CrossRef
58.
Zurück zum Zitat Momotenko D, Byers JC, McKelvey K, Kang M, Unwin PR (2015) High-speed electrochemical imaging. ACS Nano 9:8942–8952CrossRef Momotenko D, Byers JC, McKelvey K, Kang M, Unwin PR (2015) High-speed electrochemical imaging. ACS Nano 9:8942–8952CrossRef
59.
Zurück zum Zitat Williamson MJ, Tromp RM, Vereecken PM, Hull R, Ross FM (2003) Dynamic microscopy of nanoscale cluster growth at the solid–liquid interface. Nat Mater 2:532–536CrossRef Williamson MJ, Tromp RM, Vereecken PM, Hull R, Ross FM (2003) Dynamic microscopy of nanoscale cluster growth at the solid–liquid interface. Nat Mater 2:532–536CrossRef
60.
Zurück zum Zitat Radisic A, Vereecken PM, Hannon JB, Searson PC, Ross FM (2006) Quantifying electrochemical nucleation and growth of nanoscale clusters using real-time kinetic data. Nano Lett 6:238–242CrossRef Radisic A, Vereecken PM, Hannon JB, Searson PC, Ross FM (2006) Quantifying electrochemical nucleation and growth of nanoscale clusters using real-time kinetic data. Nano Lett 6:238–242CrossRef
61.
Zurück zum Zitat Hodnik N, Dehm G, Mayrhofer KJJ (2016) Importance and challenges of electrochemical in situ liquid cell electron microscopy for energy conversion research. Acc Chem Res 49:2015–2022CrossRef Hodnik N, Dehm G, Mayrhofer KJJ (2016) Importance and challenges of electrochemical in situ liquid cell electron microscopy for energy conversion research. Acc Chem Res 49:2015–2022CrossRef
62.
Zurück zum Zitat Stuart EJE, Tschulik K, Omanović D, Cullen JT, Jurkschat K, Crossley A et al (2013) Electrochemical detection of commercial silver nanoparticles: identification, sizing and detection in environmental media. Nanotechnology 24:444002CrossRef Stuart EJE, Tschulik K, Omanović D, Cullen JT, Jurkschat K, Crossley A et al (2013) Electrochemical detection of commercial silver nanoparticles: identification, sizing and detection in environmental media. Nanotechnology 24:444002CrossRef
63.
Zurück zum Zitat Moretto LM, Kalcher K (eds) (2015) Environmental analysis by electrochemical sensors and biosensors. Springer, New York Moretto LM, Kalcher K (eds) (2015) Environmental analysis by electrochemical sensors and biosensors. Springer, New York
64.
Zurück zum Zitat Wagner T, Lazar J, Schnakenberg U, Böker A (2016) In situ electrochemical impedance spectroscopy of electrostatically driven selective gold nanoparticle adsorption on block copolymer lamellae. ACS Appl Mater Interfaces 8:27282–27290CrossRef Wagner T, Lazar J, Schnakenberg U, Böker A (2016) In situ electrochemical impedance spectroscopy of electrostatically driven selective gold nanoparticle adsorption on block copolymer lamellae. ACS Appl Mater Interfaces 8:27282–27290CrossRef
65.
Zurück zum Zitat Proll G, Markovic G, Fechner P, Proell F, Gauglitz G (2017) Reflectometric interference spectroscopy. In: Rasooly A, Prickril B (eds) Biosensors and biodetection. Springer, New York, pp 207–220CrossRef Proll G, Markovic G, Fechner P, Proell F, Gauglitz G (2017) Reflectometric interference spectroscopy. In: Rasooly A, Prickril B (eds) Biosensors and biodetection. Springer, New York, pp 207–220CrossRef
66.
Zurück zum Zitat Hänel C, Gauglitz G (2002) Comparison of reflectometric interference spectroscopy with other instruments for label-free optical detection. Anal Bioanal Chem 372:91–100CrossRef Hänel C, Gauglitz G (2002) Comparison of reflectometric interference spectroscopy with other instruments for label-free optical detection. Anal Bioanal Chem 372:91–100CrossRef
67.
Zurück zum Zitat Gauglitz G (2005) Multiple reflectance interference spectroscopy measurements made in parallel for binding studies. Rev Sci Instrum 76:062224CrossRef Gauglitz G (2005) Multiple reflectance interference spectroscopy measurements made in parallel for binding studies. Rev Sci Instrum 76:062224CrossRef
68.
Zurück zum Zitat Terrettaz S, Stora T, Duschl C, Vogel H (1993) Protein binding to supported lipid membranes: investigation of the cholera toxin-ganglioside interaction by simultaneous impedance spectroscopy and surface plasmon resonance. Langmuir 9:1361–1369CrossRef Terrettaz S, Stora T, Duschl C, Vogel H (1993) Protein binding to supported lipid membranes: investigation of the cholera toxin-ganglioside interaction by simultaneous impedance spectroscopy and surface plasmon resonance. Langmuir 9:1361–1369CrossRef
69.
Zurück zum Zitat Olsson ALJ, Quevedo IR, He D, Basnet M, Tufenkji N (2013) Using the quartz crystal microbalance with dissipation monitoring to evaluate the size of nanoparticles deposited on surfaces. ACS Nano 7:7833–7843CrossRef Olsson ALJ, Quevedo IR, He D, Basnet M, Tufenkji N (2013) Using the quartz crystal microbalance with dissipation monitoring to evaluate the size of nanoparticles deposited on surfaces. ACS Nano 7:7833–7843CrossRef
70.
Zurück zum Zitat Chen Q, Xu S, Liu Q, Masliyah J, Xu Z (2016) QCM-D study of nanoparticle interactions. Adv Colloid Interf Sci 233:94–114CrossRef Chen Q, Xu S, Liu Q, Masliyah J, Xu Z (2016) QCM-D study of nanoparticle interactions. Adv Colloid Interf Sci 233:94–114CrossRef
71.
Zurück zum Zitat Tellechea E, Johannsmann D, Steinmetz NF, Richter RP, Reviakine I (2009) Model-independent analysis of QCM data on colloidal particle adsorption. Langmuir 25:5177–5184CrossRef Tellechea E, Johannsmann D, Steinmetz NF, Richter RP, Reviakine I (2009) Model-independent analysis of QCM data on colloidal particle adsorption. Langmuir 25:5177–5184CrossRef
72.
Zurück zum Zitat Teigell Beneitez N, Missinne J, Schleipen J, Orsel J, Prins MWJ, Van Steenberge G (2014) Polymer slab waveguides for the optical detection of nanoparticles in evanescent field based biosensors. Proc SPIE 8954:89540QCrossRef Teigell Beneitez N, Missinne J, Schleipen J, Orsel J, Prins MWJ, Van Steenberge G (2014) Polymer slab waveguides for the optical detection of nanoparticles in evanescent field based biosensors. Proc SPIE 8954:89540QCrossRef
73.
Zurück zum Zitat Özdemir ŞK, Zhu J, Yang X, Peng B, Yilmaz H, He L et al (2014) Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser. Proc Natl Acad Sci 111:E3836–E3844CrossRef Özdemir ŞK, Zhu J, Yang X, Peng B, Yilmaz H, He L et al (2014) Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser. Proc Natl Acad Sci 111:E3836–E3844CrossRef
74.
Zurück zum Zitat Baaske M, Vollmer F (2012) Optical resonator biosensors: molecular diagnostic and nanoparticle detection on an integrated platform. ChemPhysChem 13:427–436CrossRef Baaske M, Vollmer F (2012) Optical resonator biosensors: molecular diagnostic and nanoparticle detection on an integrated platform. ChemPhysChem 13:427–436CrossRef
75.
Zurück zum Zitat Fujimaki M, Nomura K, Sato K, Kato T, Gopinath SCB, Wang X et al (2010) Detection of colored nanomaterials using evanescent field-based waveguide sensors. Opt Express 18:15732CrossRef Fujimaki M, Nomura K, Sato K, Kato T, Gopinath SCB, Wang X et al (2010) Detection of colored nanomaterials using evanescent field-based waveguide sensors. Opt Express 18:15732CrossRef
76.
Zurück zum Zitat Gopinath SCB, Awazu K, Fujimaki M (2010) Detection of influenza viruses by a waveguide-mode sensor. Anal Methods 2:1880CrossRef Gopinath SCB, Awazu K, Fujimaki M (2010) Detection of influenza viruses by a waveguide-mode sensor. Anal Methods 2:1880CrossRef
77.
Zurück zum Zitat Liedberg B, Nylander C, Lunstrom I (1983) Surface plasmon resonance for gas detection and biosensing. Sensors Actuators 4:299–304CrossRef Liedberg B, Nylander C, Lunstrom I (1983) Surface plasmon resonance for gas detection and biosensing. Sensors Actuators 4:299–304CrossRef
78.
Zurück zum Zitat Homola J (2008) Surface plasmon resonance sensors for detection of chemical and biological species. Chem Rev 108:462–493CrossRef Homola J (2008) Surface plasmon resonance sensors for detection of chemical and biological species. Chem Rev 108:462–493CrossRef
79.
Zurück zum Zitat Jung LS, Campbell CT, Chinowsky TM, Mar MN, Yee SS (1998) Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films. Langmuir 14:5636–5648CrossRef Jung LS, Campbell CT, Chinowsky TM, Mar MN, Yee SS (1998) Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films. Langmuir 14:5636–5648CrossRef
80.
Zurück zum Zitat Rebe Raz S, Leontaridou M, Bremer MGEG, Peters R, Weigel S (2012) Development of surface plasmon resonance-based sensor for detection of silver nanoparticles in food and the environment. Anal Bioanal Chem 403:2843–2850CrossRef Rebe Raz S, Leontaridou M, Bremer MGEG, Peters R, Weigel S (2012) Development of surface plasmon resonance-based sensor for detection of silver nanoparticles in food and the environment. Anal Bioanal Chem 403:2843–2850CrossRef
81.
Zurück zum Zitat Klemm F, Johnson R, Mirsky VM (2015) Binding of protein nanoparticles to immobilized receptors. Sensors Actuators B Chem 208:616–621CrossRef Klemm F, Johnson R, Mirsky VM (2015) Binding of protein nanoparticles to immobilized receptors. Sensors Actuators B Chem 208:616–621CrossRef
82.
Zurück zum Zitat Canovi M, Lucchetti J, Stravalaci M, Re F, Moscatelli D, Bigini P et al (2012) Applications of surface plasmon resonance (SPR) for the characterization of nanoparticles developed for biomedical purposes. Sensors 12:16420–16432CrossRef Canovi M, Lucchetti J, Stravalaci M, Re F, Moscatelli D, Bigini P et al (2012) Applications of surface plasmon resonance (SPR) for the characterization of nanoparticles developed for biomedical purposes. Sensors 12:16420–16432CrossRef
83.
Zurück zum Zitat Rupert DLM, Lässer C, Eldh M, Block S, Zhdanov VP, Lotvall JO et al (2014) Determination of exosome concentration in solution using surface plasmon resonance spectroscopy. Anal Chem 86:5929–5936CrossRef Rupert DLM, Lässer C, Eldh M, Block S, Zhdanov VP, Lotvall JO et al (2014) Determination of exosome concentration in solution using surface plasmon resonance spectroscopy. Anal Chem 86:5929–5936CrossRef
84.
Zurück zum Zitat Rupert DLM, Shelke GV, Emilsson G, Claudio V, Block S, Lässer C et al (2016) Dual-wavelength surface plasmon resonance for determining the size and concentration of sub-populations of extracellular vesicles. Anal Chem 88:9980–9988CrossRef Rupert DLM, Shelke GV, Emilsson G, Claudio V, Block S, Lässer C et al (2016) Dual-wavelength surface plasmon resonance for determining the size and concentration of sub-populations of extracellular vesicles. Anal Chem 88:9980–9988CrossRef
85.
Zurück zum Zitat Nizamov S, Mirsky VM (2011) Self-referencing SPR-biosensors based on penetration difference of evanescent waves. Biosens Bioelectron 28:263–269CrossRef Nizamov S, Mirsky VM (2011) Self-referencing SPR-biosensors based on penetration difference of evanescent waves. Biosens Bioelectron 28:263–269CrossRef
86.
Zurück zum Zitat Axelrod D (1989) Chapter 9. Total internal reflection fluorescence microscopy. In: Methods in cell biology. Elsevier, Imprint: Academic Press, pp 245–270 Axelrod D (1989) Chapter 9. Total internal reflection fluorescence microscopy. In: Methods in cell biology. Elsevier, Imprint: Academic Press, pp 245–270
87.
Zurück zum Zitat Block S, Fast BJ, Lundgren A, Zhdanov VP, Höök F (2016) Two-dimensional flow nanometry of biological nanoparticles for accurate determination of their size and emission intensity. Nat Commun 7:12956CrossRef Block S, Fast BJ, Lundgren A, Zhdanov VP, Höök F (2016) Two-dimensional flow nanometry of biological nanoparticles for accurate determination of their size and emission intensity. Nat Commun 7:12956CrossRef
88.
Zurück zum Zitat Olsson T, Zhdanov VP, Höök F (2015) Total internal reflection fluorescence microscopy for determination of size of individual immobilized vesicles: theory and experiment. J Appl Phys 118:064702CrossRef Olsson T, Zhdanov VP, Höök F (2015) Total internal reflection fluorescence microscopy for determination of size of individual immobilized vesicles: theory and experiment. J Appl Phys 118:064702CrossRef
89.
Zurück zum Zitat Agnarsson B, Wayment-Steele HK, Höök F, Kunze A (2016) Monitoring of single and double lipid membrane formation with high spatiotemporal resolution using evanescent light scattering microscopy. Nanoscale 8:19219–19223CrossRef Agnarsson B, Wayment-Steele HK, Höök F, Kunze A (2016) Monitoring of single and double lipid membrane formation with high spatiotemporal resolution using evanescent light scattering microscopy. Nanoscale 8:19219–19223CrossRef
90.
Zurück zum Zitat Agnarsson B, Lundgren A, Gunnarsson A, Rabe M, Kunze A, Mapar M et al (2015) Evanescent light-scattering microscopy for label-free interfacial imaging: from single Sub-100 nm vesicles to live cells. ACS Nano 9:11849–11862CrossRef Agnarsson B, Lundgren A, Gunnarsson A, Rabe M, Kunze A, Mapar M et al (2015) Evanescent light-scattering microscopy for label-free interfacial imaging: from single Sub-100 nm vesicles to live cells. ACS Nano 9:11849–11862CrossRef
91.
Zurück zum Zitat Byrne GD, Pitter MC, Zhang J, Falcone FH, Stolnik S, Somekh MG (2008) Total internal reflection microscopy for live imaging of cellular uptake of sub-micron non-fluorescent particles. J Microsc 231:168–179CrossRef Byrne GD, Pitter MC, Zhang J, Falcone FH, Stolnik S, Somekh MG (2008) Total internal reflection microscopy for live imaging of cellular uptake of sub-micron non-fluorescent particles. J Microsc 231:168–179CrossRef
92.
Zurück zum Zitat Velinov T, Asenovska Y, Marinkova D, Yotova L, Stoicova S, Bivolarska M et al (2011) Total internal reflection imaging of microorganism adhesion using an oil immersion objective. Colloids and Surfaces B: Biointerfaces 88(1):407–412CrossRef Velinov T, Asenovska Y, Marinkova D, Yotova L, Stoicova S, Bivolarska M et al (2011) Total internal reflection imaging of microorganism adhesion using an oil immersion objective. Colloids and Surfaces B: Biointerfaces 88(1):407–412CrossRef
93.
Zurück zum Zitat Wang W, Tao N (2014) Detection, counting, and imaging of single nanoparticles. Anal Chem 86:2–14CrossRef Wang W, Tao N (2014) Detection, counting, and imaging of single nanoparticles. Anal Chem 86:2–14CrossRef
94.
Zurück zum Zitat Zybin A, Kuritsyn YA, Gurevich EL, Temchura VV, Überla K, Niemax K (2009) Real-time detection of single immobilized nanoparticles by surface plasmon resonance imaging. Plasmonics 5:31–35CrossRef Zybin A, Kuritsyn YA, Gurevich EL, Temchura VV, Überla K, Niemax K (2009) Real-time detection of single immobilized nanoparticles by surface plasmon resonance imaging. Plasmonics 5:31–35CrossRef
95.
Zurück zum Zitat Yang C-T, Wu L, Liu X, Tran NT, Bai P, Liedberg B et al (2016) Exploiting surface-plasmon-enhanced light scattering for the design of ultrasensitive biosensing modality. Anal Chem 88:11924–11930CrossRef Yang C-T, Wu L, Liu X, Tran NT, Bai P, Liedberg B et al (2016) Exploiting surface-plasmon-enhanced light scattering for the design of ultrasensitive biosensing modality. Anal Chem 88:11924–11930CrossRef
96.
Zurück zum Zitat Rengevych OV, Beketov GV, Ushenin YV (2014) Visualization of submicron Si-rods by SPR-enhanced total internal reflection microscopy. Semicond Phys Quantum Electron Optoelectron 17(4):368–373CrossRef Rengevych OV, Beketov GV, Ushenin YV (2014) Visualization of submicron Si-rods by SPR-enhanced total internal reflection microscopy. Semicond Phys Quantum Electron Optoelectron 17(4):368–373CrossRef
97.
Zurück zum Zitat Loison O, Fort E (2013) Transmission surface plasmon resonance microscopy. Appl Phys Lett 103:133110CrossRef Loison O, Fort E (2013) Transmission surface plasmon resonance microscopy. Appl Phys Lett 103:133110CrossRef
98.
Zurück zum Zitat Meyer SA, Le REC, Etchegoin PG (2011) Combining surface plasmon resonance (SPR) spectroscopy with surface-enhanced Raman scattering (SERS). Anal Chem 83:2337–2344CrossRef Meyer SA, Le REC, Etchegoin PG (2011) Combining surface plasmon resonance (SPR) spectroscopy with surface-enhanced Raman scattering (SERS). Anal Chem 83:2337–2344CrossRef
99.
Zurück zum Zitat Meyer SA, Auguié B, Le Ru EC, Etchegoin PG (2012) Combined SPR and SERS microscopy in the Kretschmann configuration. J Phys Chem A 116:1000–1007CrossRef Meyer SA, Auguié B, Le Ru EC, Etchegoin PG (2012) Combined SPR and SERS microscopy in the Kretschmann configuration. J Phys Chem A 116:1000–1007CrossRef
100.
Zurück zum Zitat Roy S, Kim J-H, Kellis JT, Poulose AJ, Robertson CR, Gast AP (2002) Surface plasmon resonance/surface plasmon enhanced fluorescence: an optical technique for the detection of multicomponent macromolecular adsorption at the solid/liquid interface. Langmuir 18:6319–6323CrossRef Roy S, Kim J-H, Kellis JT, Poulose AJ, Robertson CR, Gast AP (2002) Surface plasmon resonance/surface plasmon enhanced fluorescence: an optical technique for the detection of multicomponent macromolecular adsorption at the solid/liquid interface. Langmuir 18:6319–6323CrossRef
101.
Zurück zum Zitat Balaa K, Devauges V, Goulam Y, Studer V, Lévêque-Fort S, Fort E (2009) Live cell imaging with surface plasmon-mediated fluorescence microscopy. SPIE-OSA 7367:736710 Balaa K, Devauges V, Goulam Y, Studer V, Lévêque-Fort S, Fort E (2009) Live cell imaging with surface plasmon-mediated fluorescence microscopy. SPIE-OSA 7367:736710
102.
Zurück zum Zitat Thariani R, Yager P (2010) Imaging of surfaces by concurrent surface plasmon resonance and surface plasmon resonance-enhanced fluorescence. Peccoud J, editor. PLoS One 5:e9833CrossRef Thariani R, Yager P (2010) Imaging of surfaces by concurrent surface plasmon resonance and surface plasmon resonance-enhanced fluorescence. Peccoud J, editor. PLoS One 5:e9833CrossRef
103.
Zurück zum Zitat Avci O, Ünlü N, Özkumur A, Ünlü M (2015) Interferometric reflectance imaging sensor (IRIS) – a platform technology for multiplexed diagnostics and digital detection. Sensors 15:17649–17665CrossRef Avci O, Ünlü N, Özkumur A, Ünlü M (2015) Interferometric reflectance imaging sensor (IRIS) – a platform technology for multiplexed diagnostics and digital detection. Sensors 15:17649–17665CrossRef
104.
Zurück zum Zitat Sevenler D, Ünlü NL, Ünlü MS (2015) Nanoparticle biosensing with interferometric reflectance imaging. In: Vestergaard MC, Kerman K, Hsing I-M, Tamiya E (eds) Nanobiosensors and nanobioanalyses. Springer, Tokyo, pp 81–95 Sevenler D, Ünlü NL, Ünlü MS (2015) Nanoparticle biosensing with interferometric reflectance imaging. In: Vestergaard MC, Kerman K, Hsing I-M, Tamiya E (eds) Nanobiosensors and nanobioanalyses. Springer, Tokyo, pp 81–95
105.
Zurück zum Zitat Ortega-Arroyo J, Kukura P (2012) Interferometric scattering microscopy (iSCAT): new frontiers in ultrafast and ultrasensitive optical microscopy. Phys Chem Chem Phys 14:15625CrossRef Ortega-Arroyo J, Kukura P (2012) Interferometric scattering microscopy (iSCAT): new frontiers in ultrafast and ultrasensitive optical microscopy. Phys Chem Chem Phys 14:15625CrossRef
106.
Zurück zum Zitat Piliarik M, Sandoghdar V (2014) Direct optical sensing of single unlabelled proteins and super-resolution imaging of their binding sites. Nat Commun 5:4495CrossRef Piliarik M, Sandoghdar V (2014) Direct optical sensing of single unlabelled proteins and super-resolution imaging of their binding sites. Nat Commun 5:4495CrossRef
107.
Zurück zum Zitat Lobinski R, Szpunar J (eds) (2003) Hyphenated techniques in speciation analysis. Royal Society of Chemistry, Cambridge Lobinski R, Szpunar J (eds) (2003) Hyphenated techniques in speciation analysis. Royal Society of Chemistry, Cambridge
108.
Zurück zum Zitat Cazes J (ed) (2010) Encyclopedia of chromatography, 3rd edn. CRC Press, Boca Raton Cazes J (ed) (2010) Encyclopedia of chromatography, 3rd edn. CRC Press, Boca Raton
109.
Zurück zum Zitat Messaud FA, Sanderson RD, Runyon JR, Otte T, Pasch H, Williams SKR (2009) An overview on field-flow fractionation techniques and their applications in the separation and characterization of polymers. Prog Polym Sci 34:351–368CrossRef Messaud FA, Sanderson RD, Runyon JR, Otte T, Pasch H, Williams SKR (2009) An overview on field-flow fractionation techniques and their applications in the separation and characterization of polymers. Prog Polym Sci 34:351–368CrossRef
110.
Zurück zum Zitat Baalousha M, Stolpe B, Lead JR (2011) Flow field-flow fractionation for the analysis and characterization of natural colloids and manufactured nanoparticles in environmental systems: a critical review. J Chromatogr A 1218:4078–4103CrossRef Baalousha M, Stolpe B, Lead JR (2011) Flow field-flow fractionation for the analysis and characterization of natural colloids and manufactured nanoparticles in environmental systems: a critical review. J Chromatogr A 1218:4078–4103CrossRef
111.
Zurück zum Zitat Scott D, Harding SE, Rowe A (eds) (2005) Introduction to differential sedimentation. analytical ultracentrifugation. Royal Society of Chemistry, Cambridge, pp 270–290 Scott D, Harding SE, Rowe A (eds) (2005) Introduction to differential sedimentation. analytical ultracentrifugation. Royal Society of Chemistry, Cambridge, pp 270–290
112.
Zurück zum Zitat Scott DJ, Harding SE, Rowe AJ, Royal Society of Chemistry (Great Britain) (eds) (2005) Analytical ultracentrifugation: techniques and methods. RSC Publishing, Cambridge Scott DJ, Harding SE, Rowe AJ, Royal Society of Chemistry (Great Britain) (eds) (2005) Analytical ultracentrifugation: techniques and methods. RSC Publishing, Cambridge
113.
Zurück zum Zitat Krpetić Ž, Davidson AM, Volk M, Lévy R, Brust M, Cooper DL (2013) High-resolution sizing of monolayer-protected gold clusters by differential centrifugal sedimentation. ACS Nano 7:8881–8890CrossRef Krpetić Ž, Davidson AM, Volk M, Lévy R, Brust M, Cooper DL (2013) High-resolution sizing of monolayer-protected gold clusters by differential centrifugal sedimentation. ACS Nano 7:8881–8890CrossRef
114.
Zurück zum Zitat Anderson W, Kozak D, Coleman VA, Jämting ÅK, Trau M (2013) A comparative study of submicron particle sizing platforms: accuracy, precision and resolution analysis of polydisperse particle size distributions. J Colloid Interface Sci 405:322–330CrossRef Anderson W, Kozak D, Coleman VA, Jämting ÅK, Trau M (2013) A comparative study of submicron particle sizing platforms: accuracy, precision and resolution analysis of polydisperse particle size distributions. J Colloid Interface Sci 405:322–330CrossRef
115.
Zurück zum Zitat Poda AR, Bednar AJ, Kennedy AJ, Harmon A, Hull M, Mitrano DM et al (2011) Characterization of silver nanoparticles using flow-field flow fractionation interfaced to inductively coupled plasma mass spectrometry. J Chromatogr A 1218:4219–4225CrossRef Poda AR, Bednar AJ, Kennedy AJ, Harmon A, Hull M, Mitrano DM et al (2011) Characterization of silver nanoparticles using flow-field flow fractionation interfaced to inductively coupled plasma mass spectrometry. J Chromatogr A 1218:4219–4225CrossRef
116.
Zurück zum Zitat Baalousha M, Kammer FVD, Motelica-Heino M, Hilal HS, Le Coustumer P (2006) Size fractionation and characterization of natural colloids by flow-field flow fractionation coupled to multi-angle laser light scattering. J Chromatogr A 1104:272–281CrossRef Baalousha M, Kammer FVD, Motelica-Heino M, Hilal HS, Le Coustumer P (2006) Size fractionation and characterization of natural colloids by flow-field flow fractionation coupled to multi-angle laser light scattering. J Chromatogr A 1104:272–281CrossRef
117.
Zurück zum Zitat Rothenhauesler B, Knoll W (1988) Surface plasmon microscopy. Lett Nat 332:615–617CrossRef Rothenhauesler B, Knoll W (1988) Surface plasmon microscopy. Lett Nat 332:615–617CrossRef
118.
Zurück zum Zitat Brockman JM, Nelson BP, Corn RM (2000) Surface plasmon resonance imaging measurements of ultrathin organic films. Annu Rev Phys Chem 51:41–63CrossRef Brockman JM, Nelson BP, Corn RM (2000) Surface plasmon resonance imaging measurements of ultrathin organic films. Annu Rev Phys Chem 51:41–63CrossRef
119.
Zurück zum Zitat Campbell C, Kim G (2007) SPR microscopy and its applications to high-throughput analyses of biomolecular binding events and their kinetics. Biomaterials 28:2380–2392CrossRef Campbell C, Kim G (2007) SPR microscopy and its applications to high-throughput analyses of biomolecular binding events and their kinetics. Biomaterials 28:2380–2392CrossRef
120.
Zurück zum Zitat Boecker D, Zybin A, Niemax K, Grunwald C, Mirsky VM (2008) Noise reduction by multiple referencing in surface plasmon resonance imaging. Rev Sci Instrum 79:023110CrossRef Boecker D, Zybin A, Niemax K, Grunwald C, Mirsky VM (2008) Noise reduction by multiple referencing in surface plasmon resonance imaging. Rev Sci Instrum 79:023110CrossRef
121.
Zurück zum Zitat Rich RL, Cannon MJ, Jenkins J, Pandian P, Sundaram S, Magyar R et al (2008) Extracting kinetic rate constants from surface plasmon resonance array systems. Anal Biochem 373:112–120CrossRef Rich RL, Cannon MJ, Jenkins J, Pandian P, Sundaram S, Magyar R et al (2008) Extracting kinetic rate constants from surface plasmon resonance array systems. Anal Biochem 373:112–120CrossRef
122.
Zurück zum Zitat Halpern AR, Wood JB, Wang Y, Corn RM (2014) Single-nanoparticle near-infrared surface plasmon resonance microscopy for real-time measurements of DNA hybridization adsorption. ACS Nano 8:1022CrossRef Halpern AR, Wood JB, Wang Y, Corn RM (2014) Single-nanoparticle near-infrared surface plasmon resonance microscopy for real-time measurements of DNA hybridization adsorption. ACS Nano 8:1022CrossRef
123.
Zurück zum Zitat Viitala L, Maley AM, Fung HWM, Corn RM, Viitala T, Murtomäki L (2016) Surface plasmon resonance imaging microscopy of liposomes and liposome-encapsulated gold nanoparticles. J Phys Chem C 120:25958–25966CrossRef Viitala L, Maley AM, Fung HWM, Corn RM, Viitala T, Murtomäki L (2016) Surface plasmon resonance imaging microscopy of liposomes and liposome-encapsulated gold nanoparticles. J Phys Chem C 120:25958–25966CrossRef
124.
Zurück zum Zitat Cho K, Fasoli JB, Yoshimatsu K, Shea KJ, Corn RM (2015) Measuring Melittin uptake into hydrogel nanoparticles with near-infrared single nanoparticle surface plasmon resonance microscopy. Anal Chem 87:4973–4979CrossRef Cho K, Fasoli JB, Yoshimatsu K, Shea KJ, Corn RM (2015) Measuring Melittin uptake into hydrogel nanoparticles with near-infrared single nanoparticle surface plasmon resonance microscopy. Anal Chem 87:4973–4979CrossRef
125.
Zurück zum Zitat Wang S, Shan X, Patel U, Huang X, Lu J, Li J et al (2010) Label-free imaging, detection, and mass measurement of single viruses by surface plasmon resonance. Proc Natl Acad Sci 107:16028–16032CrossRef Wang S, Shan X, Patel U, Huang X, Lu J, Li J et al (2010) Label-free imaging, detection, and mass measurement of single viruses by surface plasmon resonance. Proc Natl Acad Sci 107:16028–16032CrossRef
126.
Zurück zum Zitat Huang B, Yu F, Zare RN (2007) Surface plasmon resonance imaging using a high numerical aperture microscope objective. Anal Chem 79:2979–2983CrossRef Huang B, Yu F, Zare RN (2007) Surface plasmon resonance imaging using a high numerical aperture microscope objective. Anal Chem 79:2979–2983CrossRef
127.
Zurück zum Zitat Somekh MG, Liu S, Velinov TS, See CW (2000) High-resolution scanning surface-plasmon microscopy. Appl Opt 39:6279–6287CrossRef Somekh MG, Liu S, Velinov TS, See CW (2000) High-resolution scanning surface-plasmon microscopy. Appl Opt 39:6279–6287CrossRef
128.
Zurück zum Zitat Peterson AW, Halter M, Tona A, Plant AL (2014) High resolution surface plasmon resonance imaging for single cells. BMC Cell Biol 15:35CrossRef Peterson AW, Halter M, Tona A, Plant AL (2014) High resolution surface plasmon resonance imaging for single cells. BMC Cell Biol 15:35CrossRef
129.
Zurück zum Zitat Peterson AW, Halter M, Plant AL, Elliott JT (2016) Surface plasmon resonance microscopy: achieving a quantitative optical response. Rev Sci Instrum 87:093703CrossRef Peterson AW, Halter M, Plant AL, Elliott JT (2016) Surface plasmon resonance microscopy: achieving a quantitative optical response. Rev Sci Instrum 87:093703CrossRef
130.
Zurück zum Zitat Vander R, Lipson SG (2009) High-resolution surface-plasmon resonance real-time imaging. Opt Lett 34:37–39CrossRef Vander R, Lipson SG (2009) High-resolution surface-plasmon resonance real-time imaging. Opt Lett 34:37–39CrossRef
131.
Zurück zum Zitat Shan X, Díez-Pérez I, Wang L, Wiktor P, Gu Y, Zhang L et al (2012) Imaging the electrocatalytic activity of single nanoparticles. Nat Nanotechnol 7:668–672CrossRef Shan X, Díez-Pérez I, Wang L, Wiktor P, Gu Y, Zhang L et al (2012) Imaging the electrocatalytic activity of single nanoparticles. Nat Nanotechnol 7:668–672CrossRef
132.
Zurück zum Zitat Fang Y, Wang W, Wo X, Luo Y, Yin S, Wang Y et al (2014) Plasmonic imaging of electrochemical oxidation of single nanoparticles. J Am Chem Soc 136:12584–12587CrossRef Fang Y, Wang W, Wo X, Luo Y, Yin S, Wang Y et al (2014) Plasmonic imaging of electrochemical oxidation of single nanoparticles. J Am Chem Soc 136:12584–12587CrossRef
133.
Zurück zum Zitat Yu H, Shan X, Wang S, Chen H, Tao N (2014) Plasmonic imaging and detection of single DNA molecules. ACS Nano 8:3427–3433CrossRef Yu H, Shan X, Wang S, Chen H, Tao N (2014) Plasmonic imaging and detection of single DNA molecules. ACS Nano 8:3427–3433CrossRef
134.
Zurück zum Zitat Fang Y, Wang H, Yu H, Liu X, Wang W, Chen H-Y et al (2016) Plasmonic imaging of electrochemical reactions of single nanoparticles. Acc Chem Res 49:2614–2624CrossRef Fang Y, Wang H, Yu H, Liu X, Wang W, Chen H-Y et al (2016) Plasmonic imaging of electrochemical reactions of single nanoparticles. Acc Chem Res 49:2614–2624CrossRef
135.
Zurück zum Zitat Wo X, Luo Y, Tao N, Wang W, Chen H-Y (2016) Measuring the number concentration of arbitrarily-shaped gold nanoparticles with surface plasmon resonance microscopy. SCIENCE CHINA Chem 59:843–847CrossRef Wo X, Luo Y, Tao N, Wang W, Chen H-Y (2016) Measuring the number concentration of arbitrarily-shaped gold nanoparticles with surface plasmon resonance microscopy. SCIENCE CHINA Chem 59:843–847CrossRef
136.
Zurück zum Zitat Wang Y, Shan X, Wang H, Wang S, Tao N (2017) Plasmonic imaging of surface electrochemical reactions of single gold nanowires. J Am Chem Soc 139:1376–1379CrossRef Wang Y, Shan X, Wang H, Wang S, Tao N (2017) Plasmonic imaging of surface electrochemical reactions of single gold nanowires. J Am Chem Soc 139:1376–1379CrossRef
137.
Zurück zum Zitat Maley AM, Terada Y, Onogi S, Shea KJ, Miura Y, Corn RM (2016) Measuring protein binding to individual hydrogel nanoparticles with single-nanoparticle surface plasmon resonance imaging microscopy. J Phys Chem C 120:16843–16849CrossRef Maley AM, Terada Y, Onogi S, Shea KJ, Miura Y, Corn RM (2016) Measuring protein binding to individual hydrogel nanoparticles with single-nanoparticle surface plasmon resonance imaging microscopy. J Phys Chem C 120:16843–16849CrossRef
138.
Zurück zum Zitat Sasian JM (1992) Image plane tilt in optical systems. Opt Eng 31:527–532CrossRef Sasian JM (1992) Image plane tilt in optical systems. Opt Eng 31:527–532CrossRef
139.
Zurück zum Zitat Smith WJ (2000) Modern optical engineering: the design of optical systems, 3rd edn. McGraw-Hill, New York Smith WJ (2000) Modern optical engineering: the design of optical systems, 3rd edn. McGraw-Hill, New York
140.
Zurück zum Zitat Laplatine L, Leroy L, Calemczuk R, Baganizi D, Marche PN, Roupioz Y et al (2014) Spatial resolution in prism-based surface plasmon resonance microscopy. Opt Express 22:22771CrossRef Laplatine L, Leroy L, Calemczuk R, Baganizi D, Marche PN, Roupioz Y et al (2014) Spatial resolution in prism-based surface plasmon resonance microscopy. Opt Express 22:22771CrossRef
141.
Zurück zum Zitat Schasfoort RBM, Tudos AJ (2008) Handbook of surface plasmon resonance. RSC Publishing, CambridgeCrossRef Schasfoort RBM, Tudos AJ (2008) Handbook of surface plasmon resonance. RSC Publishing, CambridgeCrossRef
142.
Zurück zum Zitat Nizamov S, Scherbahn V, Mirsky VM (2016) Detection and quantification of single engineered nanoparticles in complex samples using template matching in wide-field surface plasmon microscopy. Anal Chem 88:10206–10214CrossRef Nizamov S, Scherbahn V, Mirsky VM (2016) Detection and quantification of single engineered nanoparticles in complex samples using template matching in wide-field surface plasmon microscopy. Anal Chem 88:10206–10214CrossRef
143.
Zurück zum Zitat Sidorenko I, Nizamov S, Hergenröder R, Zybin A, Kuzmichev A, Kiwull B et al (2016) Computer assisted detection and quantification of single adsorbing nanoparticles by differential surface plasmon microscopy. Microchim Acta 183:101–109CrossRef Sidorenko I, Nizamov S, Hergenröder R, Zybin A, Kuzmichev A, Kiwull B et al (2016) Computer assisted detection and quantification of single adsorbing nanoparticles by differential surface plasmon microscopy. Microchim Acta 183:101–109CrossRef
144.
Zurück zum Zitat Scherbahn V, Nizamov S, Mirsky VM (2016) Plasmonic detection and visualization of directed adsorption of charged single nanoparticles to patterned surfaces. Microchim Acta 183:2837–2845CrossRef Scherbahn V, Nizamov S, Mirsky VM (2016) Plasmonic detection and visualization of directed adsorption of charged single nanoparticles to patterned surfaces. Microchim Acta 183:2837–2845CrossRef
145.
Zurück zum Zitat Nizamov S, Kasian O, Mirsky VM (2016) Individual detection and electrochemically assisted identification of adsorbed nanoparticles by using surface plasmon microscopy. Angew Chem Int Ed 55:7247–7251CrossRef Nizamov S, Kasian O, Mirsky VM (2016) Individual detection and electrochemically assisted identification of adsorbed nanoparticles by using surface plasmon microscopy. Angew Chem Int Ed 55:7247–7251CrossRef
146.
Zurück zum Zitat Nizamov S, Scherbahn V, Mirsky VM (2015) Self-referencing SPR-sensor based on integral measurements of light intensity reflected by arbitrarily distributed sensing and referencing spots. Sensors Actuators B Chem 207:740–747CrossRef Nizamov S, Scherbahn V, Mirsky VM (2015) Self-referencing SPR-sensor based on integral measurements of light intensity reflected by arbitrarily distributed sensing and referencing spots. Sensors Actuators B Chem 207:740–747CrossRef
147.
Zurück zum Zitat Nizamov S, Scherbahn V, Mirsky VM (2017) Ionic referencing in surface plasmon microscopy: visualization of the difference in surface properties of patterned monomolecular layers. Anal Chem 89:3873–3878CrossRef Nizamov S, Scherbahn V, Mirsky VM (2017) Ionic referencing in surface plasmon microscopy: visualization of the difference in surface properties of patterned monomolecular layers. Anal Chem 89:3873–3878CrossRef
148.
Zurück zum Zitat Zybin A, Shpacovitch V, Skolnik J, Hergenröder R (2017) Optimal conditions for SPR-imaging of nano-objects. Sensors Actuators B Chem 239:338–342CrossRef Zybin A, Shpacovitch V, Skolnik J, Hergenröder R (2017) Optimal conditions for SPR-imaging of nano-objects. Sensors Actuators B Chem 239:338–342CrossRef
149.
Zurück zum Zitat Weichert F, Gaspar M, Timm C, Zybin A, Gurevich EL, Engel M et al (2010) Signal analysis and classification for surface plasmon assisted microscopy of nanoobjects. Sensors Actuators B Chem 151:281–290CrossRef Weichert F, Gaspar M, Timm C, Zybin A, Gurevich EL, Engel M et al (2010) Signal analysis and classification for surface plasmon assisted microscopy of nanoobjects. Sensors Actuators B Chem 151:281–290CrossRef
150.
Zurück zum Zitat Radke RJ, Andra S, Al-Kofahi O, Roysam B (2005) Image change detection algorithms: a systematic survey. IEEE Trans Image Process 14:294–307CrossRef Radke RJ, Andra S, Al-Kofahi O, Roysam B (2005) Image change detection algorithms: a systematic survey. IEEE Trans Image Process 14:294–307CrossRef
151.
Zurück zum Zitat Lapresta-Fernández A, Salinas-Castillo A, Anderson de la Llana S, Costa-Fernández JM, Domínguez-Meister S, Cecchini R et al (2014) A general perspective of the characterization and quantification of nanoparticles: imaging, spectroscopic, and separation techniques. Crit Rev Solid State Mater Sci 39:423–458CrossRef Lapresta-Fernández A, Salinas-Castillo A, Anderson de la Llana S, Costa-Fernández JM, Domínguez-Meister S, Cecchini R et al (2014) A general perspective of the characterization and quantification of nanoparticles: imaging, spectroscopic, and separation techniques. Crit Rev Solid State Mater Sci 39:423–458CrossRef
152.
Zurück zum Zitat von der Kammer F, Legros S, Hofmann T, Larsen EH, Loeschner K (2011) Separation and characterization of nanoparticles in complex food and environmental samples by field-flow fractionation. TrAC Trends Anal Chem 30:425–436CrossRef von der Kammer F, Legros S, Hofmann T, Larsen EH, Loeschner K (2011) Separation and characterization of nanoparticles in complex food and environmental samples by field-flow fractionation. TrAC Trends Anal Chem 30:425–436CrossRef
153.
Zurück zum Zitat Lewis JP (1995) Fast template matching. Vision interface. Canadian Image Processing and Pattern Recognition Society, Quebec, pp 15–19 Lewis JP (1995) Fast template matching. Vision interface. Canadian Image Processing and Pattern Recognition Society, Quebec, pp 15–19
154.
Zurück zum Zitat Wo X, Li Z, Jiang Y, Li M, Su Y, Wang W et al (2016) Determining the absolute concentration of nanoparticles without calibration factor by visualizing the dynamic processes of interfacial adsorption. Anal Chem 88:2380–2385CrossRef Wo X, Li Z, Jiang Y, Li M, Su Y, Wang W et al (2016) Determining the absolute concentration of nanoparticles without calibration factor by visualizing the dynamic processes of interfacial adsorption. Anal Chem 88:2380–2385CrossRef
155.
Zurück zum Zitat Love JC, Estroff LA, Kriebel JK, Nuzzo RG, Whitesides GM (2005) Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem Rev 105:1103–1170CrossRef Love JC, Estroff LA, Kriebel JK, Nuzzo RG, Whitesides GM (2005) Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem Rev 105:1103–1170CrossRef
156.
Zurück zum Zitat Shpacovitch V, Sidorenko I, Lenssen J, Temchura V, Weichert F, Müller H et al (2017) Application of the PAMONO-sensor for quantification of microvesicles and determination of nano-particle size distribution. Sensors 17:244CrossRef Shpacovitch V, Sidorenko I, Lenssen J, Temchura V, Weichert F, Müller H et al (2017) Application of the PAMONO-sensor for quantification of microvesicles and determination of nano-particle size distribution. Sensors 17:244CrossRef
157.
Zurück zum Zitat Shpacovitch V, Temchura V, Matrosovich M, Hamacher J, Skolnik J, Libuschewski P et al (2015) Application of surface plasmon resonance imaging technique for the detection of single spherical biological submicrometer particles. Anal Biochem 486:62–69CrossRef Shpacovitch V, Temchura V, Matrosovich M, Hamacher J, Skolnik J, Libuschewski P et al (2015) Application of surface plasmon resonance imaging technique for the detection of single spherical biological submicrometer particles. Anal Biochem 486:62–69CrossRef
158.
Zurück zum Zitat Demetriadou A, Kornyshev AA (2015) Principles of nanoparticle imaging using surface plasmons. New J Phys 17:013041CrossRef Demetriadou A, Kornyshev AA (2015) Principles of nanoparticle imaging using surface plasmons. New J Phys 17:013041CrossRef
159.
Zurück zum Zitat Demetriadou A (2015) The impact of natural modes in plasmonic imaging. Sci Rep 5:18247CrossRef Demetriadou A (2015) The impact of natural modes in plasmonic imaging. Sci Rep 5:18247CrossRef
160.
Zurück zum Zitat Son T, Kim D (2015) Theoretical approach to surface plasmon scattering microscopy for single nanoparticle detection in near infrared region. Proc SPIE 9340:93400WCrossRef Son T, Kim D (2015) Theoretical approach to surface plasmon scattering microscopy for single nanoparticle detection in near infrared region. Proc SPIE 9340:93400WCrossRef
161.
Zurück zum Zitat Lozovski V (2012) Visualization of Nano-sized objects by scattering of surface plasmon polariton theoretical aspects of the problem. J Comput Theor Nanosci 9:859–863CrossRef Lozovski V (2012) Visualization of Nano-sized objects by scattering of surface plasmon polariton theoretical aspects of the problem. J Comput Theor Nanosci 9:859–863CrossRef
162.
Zurück zum Zitat Gurevich EL, Temchura VV, Überla K, Zybin A (2011) Analytical features of particle counting sensor based on plasmon assisted microscopy of nano objects. Sensors Actuators B Chem 160:1210–1215CrossRef Gurevich EL, Temchura VV, Überla K, Zybin A (2011) Analytical features of particle counting sensor based on plasmon assisted microscopy of nano objects. Sensors Actuators B Chem 160:1210–1215CrossRef
163.
Zurück zum Zitat Yu H, Shan X, Wang S, Chen H, Tao N (2014) Molecular scale origin of surface plasmon resonance biosensors. Anal Chem 86:8992–8997CrossRef Yu H, Shan X, Wang S, Chen H, Tao N (2014) Molecular scale origin of surface plasmon resonance biosensors. Anal Chem 86:8992–8997CrossRef
164.
Zurück zum Zitat Concentrative properties of aqueous solutions: density, refractive index, freezing point depression, and viscosity. In: CRC Handbook of Chemistry and Physics, 87th ed Editor-in-Chief: David R. Lide (NIST). CRC Press/Taylor and Francis Group: Boca Raton, FL. 2006. 2608 pp. ISBN 0-8493-0487-3. Concentrative properties of aqueous solutions: density, refractive index, freezing point depression, and viscosity. In: CRC Handbook of Chemistry and Physics, 87th ed Editor-in-Chief: David R. Lide (NIST). CRC Press/Taylor and Francis Group: Boca Raton, FL. 2006. 2608 pp. ISBN 0-8493-0487-3.
165.
Zurück zum Zitat Syal K, Wang W, Shan X, Wang S, Chen H-Y, Tao N (2015) Plasmonic imaging of protein interactions with single bacterial cells. Biosens Bioelectron 63:131–137CrossRef Syal K, Wang W, Shan X, Wang S, Chen H-Y, Tao N (2015) Plasmonic imaging of protein interactions with single bacterial cells. Biosens Bioelectron 63:131–137CrossRef
166.
Zurück zum Zitat Yang Y, Yu H, Shan X, Wang W, Liu X, Wang S et al (2015) Label-free tracking of single organelle transportation in cells with nanometer precision using a plasmonic imaging technique. Small 11:2878–2884CrossRef Yang Y, Yu H, Shan X, Wang W, Liu X, Wang S et al (2015) Label-free tracking of single organelle transportation in cells with nanometer precision using a plasmonic imaging technique. Small 11:2878–2884CrossRef
Metadaten
Titel
Wide-Field Surface Plasmon Resonance Microscopy for In-Situ Characterization of Nanoparticle Suspensions
verfasst von
Shavkat Nizamov
Vladimir M. Mirsky
Copyright-Jahr
2018
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-56322-9_3

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.