Skip to main content

The development of transformation of temperate woody fruit crops

  • Chapter
Plant Tissue Culture

Abstract

In his memorial paper Härtel (1996) honours Haberlandts courage to break a tabu and destroy barriers between disciplines. What characterizes Haberlandt’s efforts in linking anatomy and physiology to create the most successful “Physiological Plant Anatomy” (Haberlandt 1884) nowadays would be called the capacity for transdisciplinarity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agrios G. N. (1997) Plant pathology. 4th edn. Academic Press, San Diego.

    Google Scholar 

  • Ali G. S., Reddy A. S. (2000) Inhibition of fungal and bacterial plant pathogens by synthetic peptides: in vitro growth inhibition, interaction between peptides and inhibition of disease progression. Mol. Plant Microbe. Interact. 13: 847–857.

    CAS  Google Scholar 

  • Ammann K. (1998) Vom Gentechnik-Skeptiker zum Befürworter. NZZ Online Dossiers. 28. Juni 1999 http://www.nzz.ch/online/02_dossiers/gentech/ gen980414bst.htm.

    Google Scholar 

  • Atkinson R. G., Gardner R. C. (1993) Regeneration of transgenic tamarillo plants. Plant Cell Rep. 12:347–351.

    Article  CAS  Google Scholar 

  • Barlass M., Skene K. G. M. (1978) In vitro propagation of grapevine (Vitis vinifera L.) from fragmented shoot apices. Vitis. 17: 335–340.

    Google Scholar 

  • Baulcombe D. C. (1996) Mechanisms of pathogen-derived resistance to viruses in transgenic plants. The Plant Cell 8: 1833–1844.

    PubMed  CAS  Google Scholar 

  • Baulcombe D. C. (1998) Resistance against viruses in plants: natural and artificial mechanisms. In: Invited papers Abstracts, ICPP 98 9.-16. August 1998, Edinburgh, Scotland: Vol. 1.

    Google Scholar 

  • Baulcombe D. C. (2002) Overcoming and exploiting RNA silencing. IAPTC&B Congress, June 2002. Orlando. P-7.

    Google Scholar 

  • Beachy R. N., Loesch-Fries L. S., Turner N. E. (1990) Coat protein-mediated resistance against virus infection. Annual Rev. Phytopath. 451–474.

    Google Scholar 

  • Bell R. L., Scorza R., Srinivasan C., Webb K. (1999) Transformation of “Beurre Bosc” pear with the rolC gene. J. Am. Soc. Hort. Sci. 124: 570–574.

    CAS  Google Scholar 

  • Bertioli D. J., Harris D. R., Edwards M. L., Cooper J. I., Hawes W. S. (1991) Transgenic plants and insect cells expressing the coat protein of arabis mosaic virus produce empty virus-like particles. J. Gen. Virol. 72: 1801–1809.

    Article  PubMed  CAS  Google Scholar 

  • Bergmann C., Ito Y., Singer D., Albersheim P., Darvill A. G., Benhamou N., Nuss L., Salvi G., Cervone F., De Lorenzo G. (1994) Polygalacturonase-inhibiting protein accumulates in Phaseolus vulgaris L. in response to wounding, elicitors and fungal infection. The Plant Journal 5: 625–634.

    Article  PubMed  CAS  Google Scholar 

  • Bellincampi D., De Lorenzo G., Cervone E (1994) Oligogalacturonides as signal molecules in plant-pathogen interactions and in plant growth and development. IAPTC Newsletters 73: 2–8.

    Google Scholar 

  • Bolar J. R, Norelli J. L., Wong K.-W., Hayes C. K., Harman G. E., Aldwinckle H. S. (2000) Expression of endochitinase from Trichoderma harzianum in transgenic apple increases resistance to apple scab and reduces vigor. Phytopathology 90: 72–77.

    Article  PubMed  CAS  Google Scholar 

  • Bovey R., Gärtel W., Hewitt W. B., Martelli G. R, Vuittenez A. (1980) Virosen und virusähnliche Krankheiten der Rebe. Verlag Eugen Ulmer, Stuttgart.

    Google Scholar 

  • Boyer J. C., Zaccomer B., Morch M. D., Tepfer M., Haenni A. M. (1990) Interference with turnip yellow mosaic virus replication by genome-like fragments and engineered defective interfering RNAs. Workshop on Genome Expression and Pathogenesis of plant RNA Viruses, Madrid, 59.

    Google Scholar 

  • Boxus R, Quorin M. (1977) Comportement en pepiniére d’arbres fruitiers issus de culture in vitro. Acta. Hort. 78: 373–378.

    Google Scholar 

  • Broekaert W. F., Cammue B. R A., De Bolle M. F. C., Thevissen K., de Samblanx G. W., Osborn R. W. (1997) Antimicrobial peptides from plants. Crit. Rev. Plant Sci. 16: 297–323.

    CAS  Google Scholar 

  • Broglie K., Chet I., Holliday M., Cressman R, Biddle R, Knowlton S., Mauvais C. J., Broglie R. (1991) Transgenic plants with enhanced resistance to the fungal pathogen Rhizoctonia solani. Science 254: 1194–1197.

    Article  PubMed  CAS  Google Scholar 

  • CABUEPPO (1992) Plum pox potyvirus. In: Organismes de Quarantaine pour l’Europe. 976–981.

    Google Scholar 

  • Cary J. W., Rajasekaran K., Jaynes J. M., Cleveland T. E. (2000) Transgenic expression of a gene encoding a synthetic antimicrobial peptide results in inhibition of fungal growth in vitro and in planta. Plant Sci. 154: 171–181.

    Article  PubMed  CAS  Google Scholar 

  • Cervera M., Ortega C., Navarro A., Navarro L., Peña L. (2000) Generation of transgenic citrus plants with the tolerance-to-salinity gene HAL2 from yeast. J. Hort. Science and Biotechnology 75: 26–30.

    CAS  Google Scholar 

  • Chen H. C., Brown J. H., Morell J. L., Huang C. M. (1988) Synthetic magainin analogues with improved antimicrobial activity. FEBS Letters 236: 462–466.

    Article  PubMed  CAS  Google Scholar 

  • Clark H. R. G., Davis J. M., Wilbert S. M., Bradshaw Jr. H. D., Gordon M. P. (1994) Wound-induced and developmental activation of a poplar tree chitinase gene promoter in transgenic tobacco. Plant Mol. Biol. 25: 799–815.

    Google Scholar 

  • Cociu V., Dragoi D., Popescu A. N. (1997) Gene sources for breeding new plum (Prunus domestica L.) varieties with tolerance to plum pox virus (sharka) Horticultural Science (Budapest) 29: 52–56.

    Google Scholar 

  • Cocking E. C. (1960) A method for the isolation of plant protoplasts and vacuoles. Nature 187: 927–929.

    Article  Google Scholar 

  • Colby S. M., Meredith C. P. (1990) Kanamycin sensitivity of cultured tissues of Vitis. P.C.R. 9: 237–240.

    CAS  Google Scholar 

  • Colby S. M., Juncosa A. M., Stamp J. A., Meredith C. P. (1991) Developmental anatomy of direct shoot organogenesis from leaf petioles of Vitis vinifera (Vitaceae). Amer. J. Botany 78: 260–269.

    Article  Google Scholar 

  • da Câmara Machado A., Laimer da Câmara Machado M. (1995) Genetic transformation in Prunus armeniaca L. (apricot). In: Bajaj Y. P. S. (ed.) Biotechnology in agriculture and forestry. Plant protoplasts and genetic engineering VI. 34: 246–260.

    Google Scholar 

  • da Câmara Machado A., Puschmann M., Katinger H., Laimer da Câmara Machado M. (1995a) Somatic embryogenesis of Prunus subhirtella and regeneration of transgenic plants after Agrobacterium-mediated transformation. Plant Cell Rep. 14: 335–340.

    Article  CAS  Google Scholar 

  • da Câmara Machado A., Knapp E., Seifert G., Pühringer H., Hanzer V., Weiss H., Wang Q., Katinger H., Laimer da Câmara M. (1995b) Gene transfer methods for the pathogen mediated resistance breeding in fruit trees. XXIV ISHS Congress, Kyoto, 1994. Acta. Hort. 392: 193–202.

    Google Scholar 

  • da Câmara Machado A., Knapp E., Pühringer H., Hanzer V., Weiss H., Wang Q., Katinger H., Laimer da Câmara M. (1995c) Progress in pathogen mediated-resistance breeding against Plum Pox Virus. XVI ISHS Symposium on Fruit Tree Viruses. Rome, 1994. Acta. Hort. 386: 318–326.

    Google Scholar 

  • da Câmara Machado A., Druart R, Brazda M., Pühringer H., Watillon B., Kaydamov C., Angerer C., Katinger H., Laimer M. (2003) Production and molecular characterization of transgenic cherry rootstocks. (submitted).

    Google Scholar 

  • Dandekar A. M. (1992) Transformation. In: Hammerschlag F. A., Litz R. E. (eds.) Biotechnology of perennical fruit crops. CAB Intl. Univ. Press, Cambridge, pp. 141–168.

    Google Scholar 

  • Dandekar A. M., McGranahan G. H., Vail R V., Uratsu S. L., Leslie C., Tebbets J. S. (1994) Low levels of expression of wild type Bacillus thuringiensis var. Kurstaki cryA (c) sequences in transgenic walnut somatic embryos. Plant Sci. 96: 151–162.

    Article  CAS  Google Scholar 

  • Dandekar A. M., McGranahan G. H., Vail P. V., Uratsu S. L., Leslie C., Tebbets J. S. (1998) High levels of expression of full-length crylA(c) gene from Bacillus thuringiensis in transgenic somatic walnut embryos. Plant Sci. 131: 181–193.

    Article  CAS  Google Scholar 

  • De Bondt A., Eggermont K., Penninckx I., Goderis I., Broekaert W. (1996) Agrobacterium-mediated transformation of apple (Malus x domestica Borkh.): an assessment of factors affecting regeneration of transgenic plants. Plant Cell Rep. 15: 549–554.

    Article  Google Scholar 

  • De Bondt A., Zaman S., Broekaert W., Cammue B., Keulemans J (1998) Genetic transformation of apple (Malus x domestica Borkh.) for increased fungal resistance: In vitro antifungal activity in protein extracts of transgenic apple expressing Rs-AFP2 or Ace-AMP1. Acta Hort. 484: 565–569.

    Google Scholar 

  • Druart P. (1980) Plantlets regeneration from root callus of different Prunus species. Scientia Hort. 12: 339–342.

    Article  CAS  Google Scholar 

  • Druart P. (1990) Improvement of somatic embryogenesis of the cherry dwarf rootstock Inmil/GM9 by the use of different carbon sources. Acta Hort. 280: 125–129.

    Google Scholar 

  • Druart P., Delporte F., Brazda M., Ugarte-Ballon C., da Câmara Machado A., Laimer da Câmara Machado M., Jaquemin J., Watillon B. (1997) Genetic transformation of cherry trees. ISHS Cherry Meeting, Norway 1997. Acta Hort. 468: 71–76.

    Google Scholar 

  • Druart P., Kourteva G., Watillon B. (2000) Analysis of the shoot and root regeneration of Malus domestica cv “Jonagold” transformants expressing KNAP1, an apple knl-like homeobox gene. 4th Intl. Symp. “In vitro culture and Horticultural Breeding” 2–7 July 2000, Tampere, Finland. Acta Hort. (in press).

    Google Scholar 

  • Dodds J. (1983) Tissue Culture of Trees. Croom Helm Ltd. 147 pp.

    Google Scholar 

  • Dominguez A., Guerri J., Cambra M., Navarro L., Moreno P., Pena L. (2000) Efficient production of citrus transgenic plants expressing the coat protein gene of citrus tristeza virus. Plant Cell Rep. 19: 427–433.

    Article  CAS  Google Scholar 

  • Dougherty W. G., Parks T. D. (1995) Transgenes and gene suppression: telling us something new? Current Opinion in Cell Biology 7: 399–405.

    Google Scholar 

  • Ellis D. D., Rintamaki-Strait J., Francis F., Kleiner K. W., Raffa K. F., McCown B. H. (1996) Transgene expression in spruce and poplar: From the lab to the field. Somatic Cell Genetics and Molecular Biology of Trees, pp. 37–48.

    Google Scholar 

  • English J. J., Mueller E., Baulcombe D. C. (1996) Suppression of virus accumulation in transgenic plants exhibiting silencing of nuclear genes. The Plant Cell 8: 179–188.

    PubMed  CAS  Google Scholar 

  • FAO (1999) Production Yearbook, Rome, Vol. 53: 171–183.

    Google Scholar 

  • Favre J.-M. (1977) Premiers resultats concernant l’obtention in vitro de neoformations caulinaires chez la vigne. Ann. Amelior. Plantes. 27: 151–169.

    CAS  Google Scholar 

  • Fitch M. M., Manshardt R. M., Gonsalves D., Slightom J. L., Sanford J. C. (1990) Stable transformation of papaya via microprojectile bombardment. Plant Cell Rep. 9: 189–194.

    CAS  Google Scholar 

  • Fitch M. M., Manshardt R. M., Gonsalves D., Slightom J. L., Sanford J. C. (1992) Virus resistant papaya plants derived from tissues bombarded with the coat protein gene of papaya ringspot virus. Bio/Technology 10: 1466–1472.

    Article  CAS  Google Scholar 

  • Fitch M. M., Manshardt R. M., Gonsalves D., Slightom J. L. (1993) Transgenic papaya plants from Agrobacterium-mediated transformation of somatic embryos. Plant Cell Rep. 12: 245–249.

    Article  CAS  Google Scholar 

  • Fritig B., Heitz T., Legrand M. (1998) Antimicrobial proteins in induced plant defense. Curr Opin Immunol. 10: 16–22.

    Article  PubMed  CAS  Google Scholar 

  • Gadani F., Mansky L. M., Medici R., Miller W. A., Hill J. H. (1990) Genetic engineering of plants for virus resistance. Arch. Virol. 115: 1–21.

    CAS  Google Scholar 

  • Gao M., Tao R., Miura K., Dandekar A., Sugiura A. (2001) Transformation of Japanese Persimmon (Diospyros kaki Thunb.) with apple cDNA encoding NADPdependent sorbitol-6-phosphate dehydrogenase. Science 160: 837–845.

    CAS  Google Scholar 

  • Gallagher S. R. (1992) Quantification by fluorometry. In: Gallagher S. R. (ed.) GUS protocols: using the GUS gene as a reporter of gene expression. Academic Press Inc., Harcourt Brace Jovanovich, Publ., San Diego, N.Y., Boston, pp. 47–59.

    Google Scholar 

  • Gayner J. A., Jones O. P., Watkins R., Hopgood M. E. (1979) Report of East Mailing Research Station, p. 187.

    Google Scholar 

  • Geissbühler H., Skoog F. (1957) Comments on the application of plant tissue cultivation to propagation of forest trees. Tappi, 40: 258–262.

    Google Scholar 

  • Gölles R., da Câmara Machado A., Tsolova V., Bouquet A., Moser R., Katinger H., Laimer da Câmara Machado M. (1996) Transformation of somatic embryos of Vitis sp. with different constructs containing nucleotide sequences from nepovirus coat protein genes. Acta Hort. 447: 265–272.

    Google Scholar 

  • Gölles R., da Câmara Machado A., Tsolova V., Bouquet A., Moser R., Lopes M. S., Mendonça D., Katinger H., Laimer da Câmara Machado M. (1997a) Transformation of somatic embryos of Vitis sp. (Grapevine) with different constructs containing nucleotide sequences from Nepovirus coat protein genes. Arquipelago. Life and Marine Sciences 14A: 67–74.

    Google Scholar 

  • Gölles R., da Câmara Machado A., Tsolova V., Bouquet A., Moser R., Katinger H., Laimer da Câmara Machado M. (1997b) Transformation of somatic embryos of Vitis sp. with different constructs containing nucleotide sequences from nepovirus coat protein genes. Acta Hort. 447: 265–272.

    Google Scholar 

  • Gölles R., da Câmara Machado A., Minafra A., Savino V., Saldarelli G., Martelli G. P., Pühringer H., Katinger H., Laimer da Câmara Machado M. (2000) Transgenic grapevines expressing coat protein gene sequences of grapevine fanleaf virus, arabis mosaic virus, grapevine virus A and grapevine virus B. Acta Hort. 528: 305–311.

    Google Scholar 

  • Gray D. J. (1989) Effects of dehydration and exogenous growth regulators on dormancy, quiescence and germination of grape somatic embryos. In Vitro Cell Dev. Biol. 25: 173–178.

    Article  Google Scholar 

  • Gray D. J., Meredith C. P. (1992) Chapter 9 — Grape. In Biotechnology in Agriculture, No. 8. Biotechnology of Perennial Fruit Crops. CAB Intern Wallingford, 229–262.

    Google Scholar 

  • Gribaudo I., Scariot V., Gambino G., Schubert A., Gölles R., Laimer M. (2002) Transformation of Vitis vinifera L. cv Nebbiolo with the coat protein gene of Grapevine FanLeaf Virus (GFLV). VII International Conference on Grape Genetics and Breeding August 26–31, 2002 — Kecskemét, Hungary. Acta Hort. (in press).

    Google Scholar 

  • Haberlandt G. (1884) Physiologische Pflanzenanatomie, 1. Ed. — W. Engelmann, Leipzig, 1914–24 Physiological Plant Anatomy 2. — 6. Ed. Macmillan and Co., London.

    Google Scholar 

  • Haissig B. E. (1965) Organ formation in vitro as applicable to forest tree propagation. Bot. Rev. 31:607–626.

    CAS  Google Scholar 

  • Hamilton R. I. (1980) Defenses triggered by previous invaders: viruses. In: Horsfall J. G., Cowling E. B. (eds.) Plant disease: an advanced treatise. Academic Press, N.Y., Vol 5, pp. 270–303.

    Google Scholar 

  • Hammerschlag F. A., Litz R. E. (1992) Biotechnology of perennical fruit crops CAB Intl. Univ. Press, Cambridge.

    Google Scholar 

  • Harrison D., Mayo M. A., Baulcombe D. C. (1987) Virus plant resistance in transgenic plants that express cucumber mosiac virus satellite RNA. Nature 328: 799–802.

    Article  Google Scholar 

  • Harst M., Bornhoff B.-A., Zyprian E., Jach G., Töpfer R. (2000) Regeneration and transformation of different explants of Vitis vinifera spp. Acta Hort. 528: 289–295.

    Google Scholar 

  • Hartmann W. (1998) Breeding of plums and prunes resistant to Plum Pox Virus. Acta Virologica 42: 230–232.

    PubMed  CAS  Google Scholar 

  • Härtel O. (1996) Gottlieb Haberlandt-ein Gedenkblatt. Anläßlich der 50. Wiederkehr seines Todestages. Mit. Naturwiss. Ver. Steierm. 126: 21–26.

    Google Scholar 

  • Hedtrich C. M. (1977) Differentiation of cultivated leaf discs of Prumus mahaleb. Acta. Hort. 78: 177–183.

    Google Scholar 

  • Herrera G., Rosales M., Hinrichsen P. (1997) Detection of Sharka Disease (Plum Pox Virus) in Chile. Proceedings of the Middle European Meeting 1996 on Plum Pox. Budapest, October 1996: 87–90.

    Google Scholar 

  • Hilder V. A., Gatehouse A. M., Sheerman S. E., Barker R. F., Boulter D. (1987) A novel mechanism of insect resistance engineered into tobacco. Nature 330: 160–163.

    Article  CAS  Google Scholar 

  • Hirabayashi T., Kozaki I., Akihama T. (1976) In vitro differentiation of shoots from anther callus in Vitis. Hort Sci. 11: 511–512.

    Google Scholar 

  • Hobhouse H. (1985) Seeds of change. Five plants that transformed mankind. Sidgwick and Jackson, London.

    Google Scholar 

  • Höfer M., Touraev A., Heberle-Bors E. (1999) Induction of embryogenesis from isolated apple microspores. Plant Cell Rep. 18: 1012–1017.

    Article  Google Scholar 

  • Horsch R. B., Fry J. E., Hoffmann N. L., Eichholtz D. A., Rogers S. G., Fraley R. T. (1985) A simple and general method for transferring genes into plants. Science 227: 1229–1231.

    Article  CAS  Google Scholar 

  • Huang S.-C., Millikan D F. (1980) In vitro micrografting of apple shoot tips. Hort. Sci. 15(6): 741–743.

    Google Scholar 

  • Jach G., Görnhardt B., Mundy J., Logemann J., Pinsdorf E., Leach R., Schell J., Maas C. (1995) Enhanced quantitative resistance against fungal diseases by combinatorial expression of different barley antifungal proteins in transgenic tobacco. Plant J. 8: 97–109.

    Article  PubMed  CAS  Google Scholar 

  • James D. J. (1987) Cell and tissue culture technology for the genetic manipulation of temperate fruit trees. In: Biotechnology and Genetic Engineering Reviews, Intercept Ltd., Dorset, UK, 5: 33–79.

    Google Scholar 

  • James D. J., Passey A. J., Predieri S., Rugini E. (1988) Regeneration and transformation of apple plants using wild-type and engineered plasmids in Agrobacterium spp. Somatic Cell Genetics of Woody Plants, pp. 65–71.

    Google Scholar 

  • James C., Krattiger A. F. (1996) Global Review of the Field Testing and Commercialization of Transgenic Plants, 1986 to 1995: The First Decade of Crop Biotechnology. ISAAA Briefs No. 1, ISAAA: Ithaca, NY, pp. 31.

    Google Scholar 

  • Janse J., Schaart J. G., Puite K. J., Florack D. E., Groenwold R., Pelgrom K., Krens F. A. (2002) Enhanced resistance to Venturia inaequalis in transgenic apple by a gene coding for hordothionin. IAPTC&B Congress, June 2002. Orlando. P1019.

    Google Scholar 

  • Jaynes J. M., Xanthopoulos K. G., Destefano-Beltran L., Dodds J. H. (1987) Increasing bacterial resistance in plants utilizing antibacterial genes from insects. BioEssays 6: 263–270.

    Article  CAS  Google Scholar 

  • Jefferson R. A., Kavanagh T. A., Bevan M. V. (1987) GUS fusions: ß-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 6: 3901–3907.

    PubMed  CAS  Google Scholar 

  • Jones O. P., Hopgood M. E., O’Farrell D. (1977) Propagation in vitro of M26 apple rootstocks. J. Hort. Sci. 52: 235–238.

    Google Scholar 

  • Jones O. P., Pontikis C. A., Hopgood M. E. (1979) Propagation in vitro of five apple scion cultivars. J. Hort. Sci. 54: 155–158.

    Google Scholar 

  • Kikkert J., Herbert-Soule D., Wallace P., Striem M., Reisch B. (1996) Transgenic plantlets of “Chancellor” grapevine (Vitis sp.) from biolistic transformation of embryogenic cell suspensions. Plant Cell Rep. 15: 311–316.

    Article  CAS  Google Scholar 

  • Kikkert J. R., Ali G. S., Wallace P. G., Reustle G. M., Reisch B. I. (2000) Expression of a fungal chitinase in Vitis vinifera L. “Merlot” and “Chardonnay” plants produced by biolistic transformation. Acta Hort. 528: 297–303.

    CAS  Google Scholar 

  • Kikkert J. R., Thomas M. R., Reisch B. I. (2001) Grapevine genetic engineering. Molec Biol & Biotech of Grapevine, 387–404.

    Google Scholar 

  • Knapp E., da Câmara Machado A., Pühringer H., Wang Q., Hanzer V., Weiss H., Weiss B., Katinger H., Laimer da Câmara M. (1995) Localization of fruit tree viruses by immuno-tissue printing in infected shoots of Malus and Prunus sp. J. Virol. Meth. 55(2): 157–173.

    Article  CAS  Google Scholar 

  • Kondakova V., Druart Ph. (1997) Factors affecting the yield, viability and development of protoplasts isolated from the mesophyll of sour cherry (Prunus cerasus L `Montmorency’). Biotechnol. & Biotechnol. Eq.11/l: 40–44.

    Google Scholar 

  • Korte A.M., Maiss E., Kramer I., Casper R. (1995) Biosafety considerations of different plum pox potyvirus (PPV) genes used for transformation of plants. XVI International Symposium on Fruit Tree Virus Diseases. Acta Hort. 368: 280–284.

    Google Scholar 

  • Krastanova S., Perrin M., Barbier P., Demangeat G., Corneut P., Bardonnet N., Otten L., Pinck L., Walter B. (1995) Transformation of grapevine rootstocks with the coat protein gene of grapevine fanleaf nepovirus. Plant Cell Rep. 14: 550–554.

    Article  CAS  Google Scholar 

  • Krul W. R., Worley J. F. (1977) Formation of adventitious embryos in callus cultures of “Seyval” a French hybrid grape. J. Am. Soc. Hort. Sci. 102: 360–363.

    Google Scholar 

  • Laimer M. (2003) Detection and elimination of viruses and phytoplasmas from Pome and Stone Fruit Trees. Hort. Reviews 28: 187–236.

    Google Scholar 

  • Laimer M., da Câmara Machado A., Hanzer V., Himmler G., Mattanovich D., Katinger H. W. D. (1989) Regeneration of shoots from leaf discs of fruit trees as a tool for transformation. Acta Hort. 235: 85–92.

    Google Scholar 

  • Laimer da Câmara Machado M. (1992) The use of the transgenic approach to improve resistance in perennial fruit crops. IAPTC Newsletter 67, March 1992, Feature Article II: 5–16.

    Google Scholar 

  • Laimer da Câmara Machado M., da Câmara Machado A., Hanzer V., Weiß H., Regner F., Steinkellner H., Mattanovich D., Plail R., Knapp E., Kalthoff B., Katinger H. (1992) Regeneration of transgenic plants of Prunus armeniaca containing the coat protein gene of Plum Pox Virus. Plant Cell Reports 11(1): 25–29.

    Google Scholar 

  • Lambert C., Tepfer D. (1992) Use of Agrobacterium rhizogenes to create transgenic apple trees having an altered organogenic response to hormones. Theor. Appl. Genet. 85: 105–109.

    Article  CAS  Google Scholar 

  • Le Gall O., Torregrosa L., Danglot Y., Candresse T., Bouquet A. (1994) Agrobacterium-mediated genetic transformation of grapevine somatic embryos and regeneration of transgenic plants expressing the coat protein of grapevine chrome mosaic nepovirus (GCMV). Plant Sci. 102: 161–170.

    Article  Google Scholar 

  • Li Z., Jayasankar S., Gray D. J. (2001) An improved Enzyme-Linked Immunosorbent Assay Protocol for the detection of small lytic peptides in transgenic grapevines (Vits vinifera). Plant Molecular Biol. Rep. 19: 341–351.

    CAS  Google Scholar 

  • Liu Q., Ingersoll J., Owens L., Salih S., Meng R., Hammerschlag E (2001) Response of transgenic Royal Gala apple (Malus x domestica Borkh.) shoots carrying a modified cecropin MB39 gene, to Erwinia amylovora. Plant Cell Rep. 20: 306–312.

    Article  CAS  Google Scholar 

  • Lomonossoff G. P. (1995) Pathogen-derived resistance to plant viruses. Ann. Rev. Phytopathol. 33: 323–343.

    Article  CAS  Google Scholar 

  • Lorito M., Woo S. L., Garcia Fernandes I., Colucci G., Harman G. E., Pintor-Toro J. A., Filippone E., Muccifora S., Lawrence C. B., Zoina A., Tuzun S., Scala F. (1998) Genes from mycoparasitic fungi as a novel source for improving plant resistance to fungal pathogens. Proc National Acad Sci USA 95: 7860–7865.

    Article  CAS  Google Scholar 

  • Lorito M., Scala F. (1999) Microbial genes expressed in transgenic plants to improve disease resistance. J. Plant Pathol. 81: 73–88.

    Google Scholar 

  • Maiss E., Varrelmann M., DiFonzo C., Raccah B. (1997) Risk assessment of transgenic plants expressing the coat protein gene of Plum Pox potyvirus. In: Balks E., Tepfer M. (eds.) Virus resistant transgenic plants: potential ecological impact. Springer, Berlin Heidelberg NY, pp. 85–93.

    Google Scholar 

  • Mante S., Scorza R., Cordts J. M. (1989) Plant regeneration from cotyledons of Prunus persica, Prunus domestica and Prunus cerasus. Plant Cell, Tissue and Organ Culture 19: 1–11.

    Article  CAS  Google Scholar 

  • Mante S., Morgens R H., Scorza R., Cordts J. M., Callahan A. M. (1991) Agrobacterium-mediated transformation of plum (Prunus domestica) hypocotyl slices and regeneration of transgenic plants. Bio/Techn. 9: 853–857.

    Article  CAS  Google Scholar 

  • Martinelli L., Gribaudo I. (2001) Somatic embryogenesis in grapevine. Molec. Biol. and Biotechn. Grapevine, 327–346.

    Google Scholar 

  • Mauro M. C., Toutain S., Walter B., Pinck L., Otten L., Coutos-Thevenot P., Deloire A., Barbier P. (1995) High efficiency regeneration of grapevine plants transformed with the GFLV coat protein gene. Plant Sci. 112: 97–106.

    Article  CAS  Google Scholar 

  • Matsuta N., Hirabayashi T. (1989) Embryogenic cell lines from somatic embryos of grape (Vitis vinifera L.) PCR 7: 684–687.

    Google Scholar 

  • McGranahan G. H., Leslie C. A., Uratsu S. L., Martin L. A., Dandekar A. M. (1988) Agrobacteriurn-mediated transformation of walnut somatic embryos and regeneration of transgenic plants. Bio/Technology 6: 800–804.

    Article  CAS  Google Scholar 

  • McKinney H. H. (1929) Mosaic disease in the Canary Islands, West Africa and Gibraltar. Journal of Agricultural Research 39: 557–578.

    Google Scholar 

  • Mehlenbacher S. A. (1995) Classical and molecular approaches to breeding fruit and nut crops for disease resistance. Hort. Sci. 30: 466–477.

    Google Scholar 

  • Mehra A., Mehra R. N. (1974) Organogenesis and plantlet formation in vitro in Almond. Bot. Gaz. 135: 61–73.

    Article  Google Scholar 

  • Metz P. L. J., Nap J. P. (1997) A transgene-centered approach to the biosafety of transgenic plants: overview of selection and reporter genes. Acta Bot. Neerl. 46(1): 25–50.

    CAS  Google Scholar 

  • Minafra A., Saldarelli P., Martelli G. P. (1997) Grapevine virus A: nucleotide sequence, genome organization, and relationship in the Trichovirus genus. Arch. Virol. 142: 417–423.

    CAS  Google Scholar 

  • Mourgues F., Chevreau E., Lambert C., DeBondt A. (1996) Efficient Agrobacteriummediated transformation and recovery of transgenic plants from pear (Pyrus communis L.) Plant Cell Rep. 16: 245–249.

    Google Scholar 

  • Mourgues F., Brisset M. N., Chevreau E. (1998) Activity of different antibacterial peptides on Erwinia amylovora growth, and evaluation of the phytotoxicity and stability of cecropins. Plant Sci. 139: 83–91.

    Article  CAS  Google Scholar 

  • Mullins M. G., Srinivasan C. (1976) Somatic embryos and plantlets from an ancient clone of the grapevine (cv. Cabernet-Sauvignon) by apomixis in vitro. J. Exp. Bot. 27: 1022–1030.

    Article  Google Scholar 

  • Murata M., Haruta M., Murai N., Tanikawa N., Nishimura M., Homma S., Itoh Y. (2000) Transgenic apple (Malus x domestica) shoot showing low browning potential. J. Agric. Food Chem. 48: 5243–5248.

    Article  PubMed  CAS  Google Scholar 

  • Nakano M., Hoshino Y., Mii M. (1994) Regeneration of transgenic plants of grapevine (Vitis vinifera L.) via Agrobacterium rhizogenes-mediated transformation of embryogenic calli. J. Exper. Botany 45: 649–656.

    Article  CAS  Google Scholar 

  • Nuss L., Mahé A., Clark A. J., Grisvard J., Dron M., Cervone F., De Lorenzo G. (1996) Differential accumulation of polygalacturonase-inhibiting protein (PGIP) mRNA in two near isogenic lines of Phaseolus vulgaris L. upon infection with Colletotrichum lindemuthianum. Physiological and Molecular Plant Pathology 48: 83–89.

    Article  CAS  Google Scholar 

  • Norelli J. L., Aldwinckle H. S., Destéfano-Beltran L., Jaynes J. M. (1994) Transgenic “Malling 26” apple expressing the attacin E gene has increased resistance to Erwinia amylovora. Euphytica 77: 123–128.

    Article  CAS  Google Scholar 

  • Ochatt S. J. (1990) Protoplast technology and top-fruit breeding. Acta Hort. 280: 215–226.

    Google Scholar 

  • Oliveira M. M., Miguel C. M., Raquel M. H. (1996) Transformation studies in woody fruit species. Plant Tissue Culture and Biotechnology 2(2): 76–93.

    Google Scholar 

  • Peña L., Séguin A. (2001) Recent advances in the genetic transformation of trees. Trends in Biotechnology, pp. 500–506.

    Google Scholar 

  • Perl A., Saad S., Sahar N., Holland D. (1995) Establishment of long term embryogenic cultures of seedless Vitis vinifera cultivars — a synergistic effect of auxins and the role of abscisic acid. Plant Sci. 104: 193–200.

    Article  CAS  Google Scholar 

  • Perl A., Lotan O., Abu-Abeid M., Holland D. (1996) Establishment of an Agrobacterium mediated genetic transformation system for grape (Vitis vinifera L.): The role of antioxidants during grape-Agrobacterium interaction. Bio/ Technology 14: 624–628.

    CAS  Google Scholar 

  • Polito V. S., McGranahan G., Pinney K., Leslie C. (1989) Origin of somatic embryos from repetitive embryogenic cultures of walnut (Juglans regia L.) implications for Agrobacterium-mediated transformation. Plant Cell Reports 8: 219–221.

    Article  Google Scholar 

  • Powell W. A., Catranis C. M., Maynard C. A. (1995) Synthetic antimicrobial peptide design. Mol. Plant Microbe Interactions 8: 792–794.

    Article  CAS  Google Scholar 

  • Powell W. A., Catranis C. M., Maynard C. A. (2000) Design of self-processing antimicrobial peptides for plant protection. Lett. Appl. Microbiol. 31: 163–168.

    CAS  Google Scholar 

  • Pühringer H., Moll D., Hoffmann-Sommergruber K., Watillon B., Katinger H., Laimer da Câmara Machado M. (2000) The promoter of an apple YPR10 gene, encoding the major apple allergen Maldl, is stress and pathogen-inducible. Plant Science 152: 35–50.

    Google Scholar 

  • Ragan W. H. (1926) Nomenclature of the apple: a catalogue index of the known varieties referred to in American publications from 1804 to 1904. USDA Bur. Plant Ind. Bul. 56.

    Google Scholar 

  • Ratcliff F., Harrison B. D., Baulcombe D. C. (1997) A similarity between viral defense and gene silencing in plants. Science 276: 1558–1560.

    Article  PubMed  CAS  Google Scholar 

  • Reynoird J. P., Mourgues F., Norelli J., Aldwinckle H. S., Brisset M. N., Chevreau E. (1999) First evidence for improved resistance to fire blight in transgenic pear expressing the attacin E gene from Hyalophora cecropia. Plant Science 149: 23–31.

    Article  CAS  Google Scholar 

  • Rugini E., Pellegrineschi A., Mencuccini M., Mariotti D. (1991) Increase of rooting ability in the woody species kiwi (Actinidia deliciosa A. Chev.) by transformation with Agrobacterium rhizogenes rol genes. Plant Cell Rep. 10: 291–295.

    Article  CAS  Google Scholar 

  • Sanford J. C., Johnston S. A. (1985) The concept of parasite-derived resistance — Deriving resistance genes from the parasite’s own genome. J. Theor. Biol. 113: 395–405.

    Article  Google Scholar 

  • Schuerman P L, Dandekar A. M. (1991) Potentials of woody plant transformation. Subcellular Biochemistry. In: Biswas and Harris (eds.) Plant Genetic Engineering, Vol. 17. Plenum Press, New York, pp. 81–105.

    Chapter  Google Scholar 

  • Schlumbaum A., Mauch F., Vögeli U., Boller T. (1986) Plant chitinases are potent inhibitors of fungal growth. Nature 324: 365–367.

    Article  CAS  Google Scholar 

  • Scorza R., Cordts J. M., Ramming D W., Emershad R. L. (1995a) Transformation of grape (Vitis vinifera L.) zygotic-derived somatic embryos and regeneration of transgenic plants. Plant Cell Rep. 14: 589–592.

    Article  CAS  Google Scholar 

  • Scorza R., Levy L., Damsteegt V., Yepes L. M., Cordts J., Hadidi A., Slightom J., Gonsalves D. (1995b) Transformation of plum with the papaya ringspot virus coat protein gene and reaction of transgenic plants to plum pox virus. J. Amer. Soc. Hort. Sci. 120: 943–952.

    Google Scholar 

  • Scorza R., Callahan A., Levy L., Damsteegt V., Webb K., Ravelonandro M. (2001) Post-transcriptional gene silencing in plum pox virus resistant transgenic European plum containing the plum pox potyvirus coat protein gene. Transgenic Res. 10: 201–209.

    Article  PubMed  CAS  Google Scholar 

  • Shih-Kin M., Shu-Qiong L., Yue-Kun Z., Nan-Fen Q., Peng Z., Hong-Xun X., Fu-Shou Z., Zhen-Long Y. (1976) Induction of callus from apple endosperm and differentiation of the endosperm plantlet. Scientia Sinica. XX(3): 370–375.

    Google Scholar 

  • Srinivasan C., Mullins M. G. (1980) High frequency somatic embryo production from unfertilized ovules of grapes. Scientia Hortic. 13: 245–252.

    Article  Google Scholar 

  • Stamp J. A., Meredith C. P. (1988) Somatic embryogenesis from leaves and anthers of grapevine. Sci. Hortic. 35: 235–250.

    Article  Google Scholar 

  • Steiner H., Hultmark D., Engstrom A., Bennich H., Boman H. G. (1981) Sequence and specificity of 2 anti bacterial proteins involved in insect immunity. Nature 292: 246–248.

    Article  PubMed  CAS  Google Scholar 

  • Steinkellner H., Weinhäusl A., Laimer M., da Câmara Machado A., Katinger H. (1991) Identification of the coat protein gene of arabis mosaic nepovirus and its expression in transgenic plants. Acta Hort. 308: 37–41.

    Google Scholar 

  • Tao R., Dandekar A. M., Uratsu S. L., Vail P. V., Tebbets J. S. (1997) Engineering genetic resistance against insects in Japanese persimmon using the crylA (c) gene of Bacillus thuringiensis. J. Amer. Soc. Hort. Sci. 122: 764–771.

    CAS  Google Scholar 

  • Thomas M. R., Franks T., Iocco P. (2000) Transgenic grapevines: status and future. Acta Hort. 528: 279–287.

    Google Scholar 

  • Thompson Klein J., Grossenbacher-Mansuy W., Häberli R., Bill A., Scholz R. W., Welti M. (2001) Transdisciplinarity: Joint problem solving among science, technology, and society. An effective way for managing complexity. Birkhäuser Verlag AG, Switzerland.

    Google Scholar 

  • Vaek M., Reynaerts A., Höfte H., Jansens S., de Beuckeleer M., Dean C., Zabeau M., van Montagu M., Leemans J. (1987) Transgenic plants protected from insect attack. Nature 328: 33–37.

    Article  Google Scholar 

  • Vancanneyt G., Schmidt R., O’Connor Sanchez A., Willmitzer L., Rocha Sosa M. (1990) Construction of an intron containing marker gene: splicing of the intron in transgenic plants and its use in monitoring early events in Agrobacterium — mediated plant transformation. MGG 220: 245–250.

    PubMed  CAS  Google Scholar 

  • Van den Elzen P. J. M., Jongedijk E., Melchers L. S., Cornelissen B. J. C. (1993) Virus and fungal resistance: from laboratory to field. Phil. Trans. R. Soc. Lond. B 342: 271–278.

    Article  Google Scholar 

  • Van der Biezen E. A. (2001) Quest for antimicrobial genes to engineer disease-resistant crops. Trends Plant Sci. 6: 89–91.

    Article  PubMed  Google Scholar 

  • Varrelmann M. (1999) Begrenzung von heterologer Enkapsidierung and Rekombination bei pathogen-vermittelter Resistenz gegen das Plum pox virus der Pflaume (PPV). Doct. Thesis, University Hannover.

    Google Scholar 

  • Vidal J. R., Kikkert J. R., Wallace P. G., Reisch B. I. (2002) Magainin and nptIl-gene co-integration in grapevine genomic DNA via particle co-bombardment. IAPTC&B Congress, June 2002. Orlando. P1276.

    Google Scholar 

  • Walkey D. G. (1972) Production of apple plantlets from axillary-bud meristems. Can. J. Plant. Sci. 52: 1085–1087.

    Article  Google Scholar 

  • Waterhouse P. M., Graham M. W., Wang M. B. (1998) Virus resistance and gene silencing in plants can be induced by simultaneous expression of sense and antisense RNA. PNAS 95: 13959–13964.

    Article  PubMed  CAS  Google Scholar 

  • Waterhouse P. A., Wang M. B., Lough T. (2001) Gene silencing as an adaptive defense against viruses. Nature 411: 834–842.

    Article  PubMed  CAS  Google Scholar 

  • Watillon B., Kettman R., Boxus P., Burny A. (1997) Knotted-like homeobox genes are expressed during apple tree (Malus domestica L. (Burkh) growth and development. Plant Mol. Biol. 33: 757–763.

    CAS  Google Scholar 

  • Yamamoto T., Iketani H., Leki H., Nishizawa Y., Notsuka K., Hibi T., Hayashi T., Matsuta N. (2000) Transgenic grapevine expressing a rice chitinase with enhanced resistance to fungal pathogens. Plant Cell Rep. 19: 639–646.

    Article  CAS  Google Scholar 

  • Yao J.-L., Cohen D., Atkinson R., Richardson K., Morris B. (1995) Regeneration of transgenic plants from the commercial apple cultivar Royal Gala. Plant Cell Rep. 14: 407–412.

    Article  CAS  Google Scholar 

  • Ye X., Brown S. K., Scorza R., Cordts J. C., Sanford J. (1994) Genetic transformation of peach tissues by particle bombardment. J. Amer. Soc. Hort. Sci. 119: 367–373.

    CAS  Google Scholar 

  • Young M., Gerlach W. L. (1990) Ribozyme activity against plant pathogen RNAs. Workshop on Genome Expression and Pathogenesis of plant RNA Viruses, Madrid, 31.

    Google Scholar 

  • Zaitlin M., Golemboski D. B., Can J. P., Lomonossoff G. P. (1990) Workshop on Genome Expression and Pathogenesis of plant RNA Viruses, Madrid, 30.

    Google Scholar 

  • Zasloff M. (1987) Magainins, a class of antimicrobial peptides from Xenopus skin: Isolation, characterization of two active forms, and partial cDNA sequence of a precursor. PNAS 84: 5449–5453.

    Article  PubMed  CAS  Google Scholar 

  • Zimmerman R. H., Broome O. C. (1980) Apple Cultivar Micropropagation in Proc. Conf. Nursery Production of Fruit Plants through Tissue Culture — Applications and Feasibility, U.S. Dept. Agr. — SEA-ARR-NE-11: 54–58.

    Google Scholar 

  • Zhang Y. X., Boccon-Gibod J., Lespinasse Y. (1987) Obtention d’embryons de pommier (Malus x domestica Borkh.) après culture d’anthères. Comptes Rendus Académie Science, Paris, Séries III 305: 443–448.

    Google Scholar 

  • Zhu Q., Maher E. A., Masoud S., Dixon R. A., Lamb C. J. (1994) Enhanced protection against fungal attack by constitutive co-expression of chitinase and glucanase genes in transgenic tobacco. Bio/Technology 12: 807–812.

    Article  CAS  Google Scholar 

  • Zhu L. H., Welander M. (2001) Growth characteristics of the untransformed and transformed apple rootstock M26 with rolA and rolB genes under steady-state nutrient supply conditions. Acta Hort. 521: 139–146.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Wien

About this chapter

Cite this chapter

Laimer, M. (2003). The development of transformation of temperate woody fruit crops. In: Laimer, M., Rücker, W. (eds) Plant Tissue Culture. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6040-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6040-4_13

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-83839-6

  • Online ISBN: 978-3-7091-6040-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics