Skip to main content

Diversity of Halophiles

  • Reference work entry
Extremophiles Handbook

Introduction

Hypersaline environments are inhabited by a great variety of microorganisms, and these are often present in extremely high community densities. Thanks to the fact that some of the most prevalent types are colored by carotenoid and other pigments, no microscope is needed to see halophilic microorganisms in environments such as saltern crystallizer brines and other salt lakes with saturating or near-saturating salt concentrations. Thus, the red-purple color of halophilic microbes can be observed throughout the northern half of Great Salt Lake, Utah.

The world of the halophilic microorganisms is highly diverse. We find representatives of the three domains of life, Archaea, Bacteria, and Eucarya that are adapted to salt concentrations up to saturation. We know aerobic as well as anaerobic halophiles, heterotrophic, phototrophic, and chemoautotrophic types, able to transform a wide variety of substrates (Oren 2002a, b, 2006a, 2007, 2008). Among the halophiles we also encounter...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 449.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexander E, Stock A, Breiner H-W, Behnke A, Bunge J, Yakimov MM, Stoeck T (2009) Microbial eukaryotes in the hypersaline anoxic L’Atalante deep-sea basin. Environ Microbiol 11:360–381

    Article  PubMed  CAS  Google Scholar 

  • Antón J, Rosselló-Mora R, Rodríguez-Valera R, Amann R (2000) Extremely halophilic bacteria in crystallizer ponds from solar salterns. Appl Environ Microbiol 66:3052–3057

    Article  PubMed  Google Scholar 

  • Antón J, Oren A, Benlloch S, Rodríguez-Valera F, Amann R, Rosselló-Mora R (2002) Salinibacter ruber gen. nov., sp. nov., a novel extreme halophilic member of the Bacteria from saltern crystallizer ponds. Int J Syst Evol Microbiol 52:485–491

    PubMed  Google Scholar 

  • Antunes A, Taborda M, Huber R, Moissl C, Nobre MF, da Costa MS (2008) Halorhabdus tiamatea sp. nov., a non-pigmented, extremely halophilic archaeon from a deep-sea, hypersaline anoxic basin of the Red Sea, and emended description of the genus Halorhabdus. Int J Syst Evol Microbiol 58:215–220

    Article  PubMed  CAS  Google Scholar 

  • Antunes A, Rainey FA, Wanner G, Taborda M, Pätzold J, Nobre MF, da Costa MS, Huber R (2009) A new lineage of halophilic, wall-less, contractile bacteria from a brine-filled deep on the Red Sea. J Bacteriol 190:3580–3587

    Article  Google Scholar 

  • Arahal DR, Ventosa A (2006) The family Halomonadaceae. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes. A handbook on the biology of bacteria, vol 6, 3rd edn. Springer, New York, pp 811–835

    Chapter  Google Scholar 

  • Banciu H, Sorokin DY, Galinski EA, Muyzer G, Kleerebezem R, Kuenen JG (2004) Thialkalivibrio halophilus sp. nov., a novel obligately chemolithoautotrophic, facultatively alkaliphilic, and extremely salt-tolerant, sulfur-oxidizing bacterium from a hypersaline alkaline lake. Extremophiles 8:325–334

    PubMed  CAS  Google Scholar 

  • Ben-Amotz A, Avron M (1973) The role of glycerol in the osmotic regulation of the halophilic alga Dunaliella parva. Plant Physiol 51:875–878

    Article  PubMed  CAS  Google Scholar 

  • Brandt KK, Ingvorsen K (1997) Desulfobacter halotolerans sp. nov., a halotolerant acetate-oxidizing sulfate-reducing bacterium isolated from sediments of Great Salt Lake, Utah. Syst Appl Microbiol 20:366–373

    Article  Google Scholar 

  • Burns DG, Janssen PH, Itoh T, Kamekura M, Li Z, Jensen G, Rodríguez-Valera F, Bolhuis H, Dyall-Smith ML (2007) Haloquadratum walsbyi gen. nov., sp. nov., the square haloarchaeon of Walsby, isolated from saltern crystallizers in Australia and Spain. Int J Syst Evol Microbiol 57:387–392

    Article  PubMed  CAS  Google Scholar 

  • Butinar L, Sonjak S, Zalar P, Plemenitaš A, Gunde-Cimerman N (2005a) Melanized halophilic fungi are eukaryotic members of microbial communities in hypersaline waters of solar salterns. Bot Mar 48:73–79

    Article  Google Scholar 

  • Butinar L, Santos S, Spencer-Martins I, Oren A, Gunde-Cimerman N (2005b) Yeast diversity in hypersaline habitats. FEMS Microbiol Lett 244:229–234

    Article  PubMed  CAS  Google Scholar 

  • Casanueva A, Galada N, Grant BGC, WD HS, Jones B, Ma Y, Ventosa A, Blamey J, Cowan DA (2008) Nanoarchaeal 16S rRNA gene sequences are widely dispersed in hyperthermophilic and mesophilic halophilic environments. Extremophiles 12:651–656

    Article  PubMed  CAS  Google Scholar 

  • Cayol J-L, Ollivier B, Patel BKC, Prensier G, Guezennec J, Garcia J-L (1994) Isolation and characterization of Halothermothrix orenii gen. nov., sp. nov., a halophilic, thermophilic, fermentative, strictly anaerobic bacterium. Int J Syst Bacteriol 44:534–540

    Article  PubMed  CAS  Google Scholar 

  • Cho BC (2005) Heterotrophic flagellates in hypersaline waters. In: Gunde-Cimerman N, Oren A, Plemenitaš A (eds) Adaptation to life at high salt concentrations in Archaea, Bacteria, and Eukarya. Springer, Dordrecht, pp 543–549

    Google Scholar 

  • Conrad R, Frenzel P, Cohen Y (1995) Methane emission from hypersaline microbial mats: lack of aerobic methane oxidation activity. FEMS Microbiol Ecol 16:297–305

    Article  CAS  Google Scholar 

  • Desmarais D, Jablonski PE, Fedarko NS, Roberts MF (1997) 2-Sulfotrehalose, a novel osmolyte in haloalkaliphilic Archaea. J Bacteriol 179:3146–3153

    PubMed  CAS  Google Scholar 

  • Elshahed MS, Najar FZ, Roe BA, Oren A, Dewers TA, Krumholz LR (2004) Survey of archaeal diversity reveals abundance of halophilic Archaea in a low-salt, sulfide- and sulfur-rich spring. Appl Environ Microbiol 70:2230–2239

    Article  PubMed  CAS  Google Scholar 

  • Fukushima T, Usami R, Kamekura M (2007) A traditional Japanese-style salt field is a niche for haloarchaeal strains that can survive in 0.5% salt solution. Saline Syst 3:2

    Article  PubMed  Google Scholar 

  • Galinski EA (1993) Compatible solutes of halophilic eubacteria: molecular principles, water-solute interaction, stress protection. Experientia 49:487–496

    Article  CAS  Google Scholar 

  • Galinski EA (1995) Osmoadaptation in bacteria. Adv Microb Physiol 37:273–328

    Article  CAS  Google Scholar 

  • Hallsworth JE, Yakimov MM, Golyshin PN, Gillion JLM, D’Auria G, de Lima AF, La Cono V, Genovese M, McKew BA, Hayes SL, Harris G, Giuliano L, Timmis KN, McGenity TJ (2007) Limits of life in MgCl2-containing environments: chaotropicity defines the window. Environ Microbiol 9:801–813

    Article  PubMed  CAS  Google Scholar 

  • Hartmann R, Sickinger H-D, Oesterhelt D (1980) Anaerobic growth of halobacteria. Proc Natl Acad Sci USA 77:3821–3825

    Article  PubMed  CAS  Google Scholar 

  • Hauer G, Rogerson A (2005) Heterotrophic protozoa from hypersaline environments. In: Gunde-Cimerman N, Oren A, Plemenitaš A (eds) Adaptation to life at high salt concentrations in Archaea, Bacteria, and Eukarya. Springer, Dordrecht, pp 522–539

    Google Scholar 

  • Hoeft SE, Switzer Blum J, Stolz JF, Tabita FR, Witte B, King GM, Santini JM, Oremland RS (2007) Alkalilimnicola ehrlichii sp. nov., a novel, arsenite-oxidizing haloalkaliphilic gammaproteobacterium capable of chemoautotrophic or heterotrophic growth with nitrate or oxygen as the electron acceptor. Int J Syst Evol Microbiol 57:504–512

    Article  PubMed  CAS  Google Scholar 

  • Jäälinoja HT, Roine E, Laurinmäki P, Kivelä HM, Bamford DH, Butcher SJ (2008) Structure and host-cell interaction of SH1, a membrane-containing, halophilic euryarchaeal virus. Proc Natl Acad Sci USA 105:8008–8013

    Article  PubMed  Google Scholar 

  • Joye SB, Connell TL, Miller LG, Oremland RS, Jellison RS (1999) Oxidation of ammonia and methane in an alkaline, saline lake. Limnol Oceanogr 44:178–188

    Article  CAS  Google Scholar 

  • Khmelenina VN, Starostina NG, Tsvetkova MG, Sokolov AP, Suzina NE, Trotsenko YA (1996) Methanotrophic bacteria in saline reservoirs of Ukraina and Tuva. Mikrobiologiya 65:609–615 (Eng Tr)

    Google Scholar 

  • Khmelenina VN, Kalyuzhneya MG, Starostina NG, Suzina NE, Trotsenko YA (1997) Isolation and characterization of halotolerant alkaliphilic methanotrophic bacteria from Tuva soda lakes. Curr Microbiol 35:257–261

    Article  CAS  Google Scholar 

  • Koops H-P, Böttcher B, Möller U, Pommerening-Röser A, Stehr G (1990) Description of a new species of Nitrosococcus. Arch Microbiol 154:244–248

    Article  CAS  Google Scholar 

  • Lai M-C, Sowers KR, Robertson DE, Roberts MF, Gunsalus RP (1991) Distribution of compatible solutes in the halophilic methanogenic archaebacteria. J Bacteriol 173:5352–5358

    PubMed  CAS  Google Scholar 

  • Lanyi JK (1974) Salt-dependent properties of proteins from extremely halophilic bacteria. Bacteriol Rev 38:272–290

    PubMed  CAS  Google Scholar 

  • Lanyi JK (2005) Xanthorhodopsin: a proton pump with a light-harvesting carotenoid antenna. Science 309:2061–2064

    Article  PubMed  Google Scholar 

  • Mackay MA, Norton RS, Borowitzka LJ (1984) Organic osmoregulatory solutes in cyanobacteria. J Gen Microbiol 130:2177–2191

    CAS  Google Scholar 

  • Mancinelli RL, Hochstein LI (1986) The occurrence of denitrification in extremely halophilic bacteria. FEMS Microbiol Lett 35:55–58

    Article  PubMed  CAS  Google Scholar 

  • Mavromatis K, Ivanova N, Anderson I, Lykidis A, Hooper SD, Sun H, Kunin V, Lapidus A, Hugenholtz P, Patel B, Kyrpides NC (2009) Genome analysis of the anaerobic thermohalophilic bacterium Halothermothrix orenii. PLoS ONE 4(1):e4192

    Article  PubMed  Google Scholar 

  • Mesbah NM, Wiegel J (2008) Life at extreme limits. The anaerobic halophilic alkalithermophiles. Ann NY Acad Sci 1125:44–57

    Article  PubMed  CAS  Google Scholar 

  • Mesbah NM, Hedrick DB, Peacock AD, Rohde M, Wiegel J (2007) Natranaerobius thermophilus gen. nov., sp. nov., a halophilic alkalithermophilic bacterium from soda lakes of the Wadi An Natrun, Egypt, and proposal of Natranaerobiaceae fam. nov. and Natranaerobiales ord. nov. Int J Syst Evol Microbiol 57:2507–2512

    Article  PubMed  CAS  Google Scholar 

  • Minegishi H, Mizuki T, Echigo A, Fukushima T, Kamekura M, Usami R (2008) Acidophilic haloarchaeal strains are isolated from various solar salts. Saline Syst 4:16

    Article  PubMed  Google Scholar 

  • Mongodin MEF, Nelson KE, Duagherty S, DeBoy RT, Wister J, Khouri H, Weidman J, Balsh DA, Papke RT, Sanchez Perez G, Sharma AK, Nesbo CL, MacLeod D, Bapteste E, Doolittle WF, Charlebois RL, Legault B, Rodríguez-Valera F (2005) The genome of Salinibacter ruber: convergence and gene exchange among hyperhalophilic bacteria and archaea. Proc Natl Acad Sci USA 102:18147–18152

    Article  PubMed  CAS  Google Scholar 

  • Nissenbaum A, Kaplan IR (1976) Sulfur and carbon isotopic evidence for biogeochemical processes in the Dead Sea. In: Nriagu JO (ed) Environmental biogeochemistry, vol 1. Ann Arbor Science, Ann Arbor, pp 309–325

    Google Scholar 

  • Ollivier B, Hatchikian CE, Prensier G, Guezennec J, Garcia J-L (1991) Desulfohalobium retbaense gen. nov. sp. nov., a halophilic sulfate-reducing bacterium from sediments of a hypersaline lake in Senegal. Int J Syst Bacteriol 41:74–81

    Article  CAS  Google Scholar 

  • Ollivier B, Caumette P, Garcia J-L, Mah RA (1994) Anaerobic bacteria from hypersaline environments. Microbiol Rev 58:27–38

    PubMed  CAS  Google Scholar 

  • Ollivier B, Fardeau M-L, Cayol J-L, Magot M, Patel BKC, Prensier G, Garcia J-L (1998) Methanocalculus halotolerans gen. nov., sp. nov., isolated from an oil-producing well. Int J Syst Bacteriol 48:821–828

    Article  PubMed  Google Scholar 

  • Oremland RS, King GM (1989) Methanogenesis in hypersaline environments. In: Cohen Y, Rosenberg E (eds) Microbial mats. Physiological ecology of benthic microbial communities. American Society for Microbiology, Washington, pp 180–190

    Google Scholar 

  • Oremland RS, Kulp TR, Switzer Blum J, Hoeft SE, Baesman S, Miller LG, Stolz JF (2005) A microbial arsenic cycle in a salt-saturated extreme environment. Science 308:1305–1308

    Article  PubMed  CAS  Google Scholar 

  • Oren A (1986) Intracellular salt concentrations of the anaerobic halophilic eubacteria Haloanaerobium praevalens and Halobacteroides halobius. Can J Microbiol 32:4–9

    Article  CAS  Google Scholar 

  • Oren A (1988) Anaerobic degradation of organic compounds at high salt concentrations. Antonie Leeuwenhoek 54:267–277

    Article  PubMed  CAS  Google Scholar 

  • Oren A (1999) Bioenergetic aspects of halophilism. Microbiol Mol Biol Rev 63:334–348

    PubMed  CAS  Google Scholar 

  • Oren A (2000) Salts and brines. In: Whitton BA, Potts M (eds) Ecology of cyanobacteria: their diversity in time and space. Kluwer, Dordrecht, pp 283–306

    Google Scholar 

  • Oren A (2002a) Halophilic microorganisms and their environments. Kluwer, Dordrecht

    Book  Google Scholar 

  • Oren A (2002b) Diversity of halophilic microorganisms: environments, phylogeny, physiology, and applications. J Ind Microbiol Biotechnol 28:56–63

    PubMed  CAS  Google Scholar 

  • Oren A (2006a) Life at high salt concentrations. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes. A handbook on the biology of bacteria, vol 2, 3rd edn. Springer, New York, pp 263–282

    Chapter  Google Scholar 

  • Oren A (2006b) The order Halobacteriales. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes. A handbook on the biology of bacteria, vol 3, 3rd edn. Springer, New York, pp 113–164

    Chapter  Google Scholar 

  • Oren A (2006c) The order Haloanaerobiales. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes. A handbook on the biology of bacteria, vol 4, 3rd edn. Springer, New York, pp 804–817

    Google Scholar 

  • Oren A (2007) Biodiversity in highly saline environments. In: Gerdes C, Glansdorff N (eds) Physiology and biochemistry of extremophiles. ASM Press, Washington, pp 223–231

    Google Scholar 

  • Oren A (2008) Microbial life at high salt concentrations: phylogenetic and metabolic diversity. Saline Syst 4:2

    Article  PubMed  Google Scholar 

  • Oren A, Weisburg WG, Kessel M, Woese CR (1984) Halobacteroides halobius gen. nov., sp. nov., a moderately halophilic anaerobic bacterium from the bottom sediments of the Dead Sea. Syst Appl Microbiol 5:58–70

    Article  CAS  Google Scholar 

  • Park JS, Kim H, Choi DH, Cho BC (2003) Active flagellates grazing on prokaryotes in high salinity waters of a solar saltern. Aquat Microb Ecol 33:173–179

    Article  Google Scholar 

  • Pietilä MK, Roine E, Paulin L, Kalkkinen N, Bamford DH (2009) An ssDNA virus infecting archaea: a new lineage of viruses with a membrane envelope. Mol Microbiol 72:307–319

    Article  PubMed  Google Scholar 

  • Porter K, Russ BE, Dyall-Smith ML (2007) Virus-host interactions in salt lakes. Curr Opin Microbiol 10:418–424

    Article  PubMed  CAS  Google Scholar 

  • Rainey FA, Zhilina TN, Boulygina ES, Stackebrandt E, Tourova TP, Zavarzin GA (1995) The taxonomic status of the fermentative halophilic anaerobic bacteria: description of Haloanaerobiales ord. nov., Halobacteroidaceae fam. nov., Orenia gen. nov. and further taxonomic rearrangements at the genus and species level. Anaerobe 1:185–199

    Article  PubMed  CAS  Google Scholar 

  • Roberts MF (2005) Organic compatible solutes of halotolerant and halophilic microorganisms. Saline Syst 1:5

    Article  PubMed  Google Scholar 

  • Rothschild LJ, Mancinelli RL (2001) Life in extreme environments. Nature 409:1092–1101

    Article  PubMed  CAS  Google Scholar 

  • Rubentschik L (1929) Zur Nitrifikation bei hohen Salzkonzentrationen. Zentralbl Bakteriol II Abt 77:1–18

    Google Scholar 

  • Savage KN, Krumholz LR, Oren A, Elshahed MS (2007) Haladaptatus paucihalophilus gen. nov., sp. nov., a halophilic archaeon isolated from a low-salt, high-sulfide spring. Int J Syst Evol Microbiol 57:19–24

    Article  PubMed  CAS  Google Scholar 

  • Savage KN, Krumholz LR, Oren A, Elshahed MS (2008) Halosarcina pallida gen. nov., sp. nov., a halophilic archaeon isolated from a low-salt, sulfide-rich spring. Int J Syst Evol Microbiol 58:856–860

    Article  PubMed  Google Scholar 

  • Sokolov AP, Trotsenko YA (1995) Methane consumption in (hyper)saline habitats of Crimea (Ukraine). FEMS Microbiol Ecol 18:299–304

    Article  CAS  Google Scholar 

  • Sorokin DY, Kuenen JG (2005a) Haloalkaliphilic sulfur-oxidizing bacteria in soda lakes. FEMS Microbiol Rev 29:685–702

    Article  PubMed  CAS  Google Scholar 

  • Sorokin DY, Kuenen JG (2005b) Chemolithotrophic haloalkaliphiles from soda lakes. FEMS Microbiol Ecol 52:287–295

    Article  PubMed  CAS  Google Scholar 

  • Sorokin DY, Tourova TP, Lysenko AM, Muyzer G (2006) Diversity of culturable halophilic sulfur-oxidizing bacteria in hypersaline habitats. Microbiology 152:3013–3023

    Article  PubMed  Google Scholar 

  • Sorokin DY, Tourova TP, Henstra AM, Stams AJM, Galinski EA, Muyzer G (2008a) Sulfidogenesis under extremely haloalkaline conditions by Desulfonatronospira thiodismutans gen. nov., sp. nov., and Desulfonatronospira delicate sp. nov. – a novel lineage of Deltaproteobacteria from hypersaline soda lakes. Microbiology 154:1444–1453

    Article  PubMed  CAS  Google Scholar 

  • Sorokin DY, Tourova TP, Muyzer G, Kuenen GJ (2008b) Thiohalospira halophila gen. nov., sp. nov. and Thiohalospira alkaliphila sp. nov., novel obligately chemolithoautotrophic, halophilic, sulfur-oxidizing gammaproteobacteria from hypersaline habitats. Int J Syst Evol Microbiol 58:1685–1692

    Article  PubMed  CAS  Google Scholar 

  • Sorokin DY, Tourova TP, Galinski EA, Muyzer G, Kuenen JG (2008c) Thiohalorhabdus denitrificans gen. nov., sp. nov., an extremely halophilic, sulfur-oxidizing, deep-lineage gammaproteobacterium from hypersaline habitats. Int J Syst Evol Microbiol 58:2890–2897

    Article  PubMed  CAS  Google Scholar 

  • Switzer Blum J, Stolz JF, Oren A, Oremland RS (2001) Selenihalanaerobacter shriftii gen. nov., sp. nov., a halophilic anaerobe from Dead Sea sediments that respires selenate. Arch Microbiol 175:208–219

    Article  Google Scholar 

  • Switzer Blum J, Han S, Lanoil B, Saltikov C, Witte B, Tabita FR, Langley S, Beveridge TJ, Jahnke L, Oremland RS (2009) Ecophysiology of “Haloarsenatibacter silvermanii” strain SLAS-1T, gen. nov., sp. nov., a facultative chemoautotrophic arsenate respirer from salt-saturated Searles Lake, California. Appl Environ Microbiol 75:1950–1960

    Article  CAS  Google Scholar 

  • Trotsenko YA, Khmelenina VN (2002) Biology of extremophilic and extremotolerant methanotrophs. Arch Microbiol 177:123–131

    Article  PubMed  CAS  Google Scholar 

  • Ventosa A, Nieto JJ, Oren A (1998) Biology of moderately aerobic bacteria. Microbiol Mol Biol Rev 62:504–544

    PubMed  CAS  Google Scholar 

  • Ward BB, Martinko DP, Diaz MC, Joye SB (2000) Analysis of ammonia-oxidizing bacteria from hypersaline Mono Lake, California, on the basis of 16S rRNA sequences. Appl Environ Microbiol 66:2873–2881

    Article  PubMed  CAS  Google Scholar 

  • Wood AP, Kelly DP (1991) Isolation and characterisation of Thiobacillus halophilus sp. nov., a sulphur-oxidising autotrophic eubacterium from a Western Australian hypersaline lake. Arch Microbiol 156:277–280

    Article  CAS  Google Scholar 

  • Zavarzin GA, Zhilina TN, Pusheva MA (1994) Halophilic acetogenic bacteria. In: Drake HL (ed) Acetogenesis. Chapman & Hall, New York, pp 432–444

    Chapter  Google Scholar 

  • Zhilina TN, Zavarzin GA (1987) Methanohalobium evestigatum gen. nov., sp. nov., extremely halophilic methane-producing archaebacteria. Dokl Akad Nauk SSSR 293:464–468, in Russian

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aharon Oren .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer

About this entry

Cite this entry

Oren, A. (2011). Diversity of Halophiles. In: Horikoshi, K. (eds) Extremophiles Handbook. Springer, Tokyo. https://doi.org/10.1007/978-4-431-53898-1_14

Download citation

Publish with us

Policies and ethics