Skip to main content

Dynamics of Water, Biomaterials, and Skin Investigated by Means of Dielectric Relaxation Spectroscopy

  • Chapter
Nano/Micro Science and Technology in Biorheology

Abstract

Recent developments in experimental techniques of dielectric spectroscopy are based on the new concept of broadband dynamics observed by using a broadband dielectric spectroscopy (BDS ) measuring system. BDS techniques are particularly effective for studying water structures in biological systems. Water molecules interacting with biomolecules show various behaviors of collective modes, and these behaviors are closely related to the macroscopic and microscopic properties and functions of biomaterials. This chapter discusses the basic concept of the dynamic behaviors of water structures obtained from experimental and analytical methods based on BDS. Observation techniques based on BDS solve some of the problem s of observing dynamics. The physical picture of water structures and the interpretation of relaxation phenomena are suggested from dynamic hydrogen bonding (HB) networks, and the dynamic properties are also explained on the basis of the fractal concept. Although this concept is not perfect, it is a suitable approach for characterizing the dynamic behaviors of HB networks . Although the fractal approach has been applied to complex materials using various techniques, this approach also suggests the existence of a problem related to length scales in the observation of dynamic behaviors. Complementary approaches with various observation techniques will be very effective for solving such problems and for suggesting future applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Debye PJW (1929) Polar molecules. Dover, New York

    Google Scholar 

  2. The International Dielectric Society. http://permittivity.org/index.html

  3. Memorial volume of for late Prof. R. H. Cole (1986). J Mol Liq 36(1). doi:10.1016/0167-7322(87)

  4. Kremer F, Schoenhals A (eds) (2002) Broadband dielectric spectroscopy. Springer, Berlin

    Google Scholar 

  5. Barthel J, Buchner R (1991) High frequency permittivity and its use in the investigation of solution properties. Pure Appl Chem 63(10):1473–1482. doi:10.1351/pac199163101473

    Article  CAS  Google Scholar 

  6. Fukasawa T, Sato T, Watanabe J, Hama Y, Kunz W, Buchner R (2005) Relation between dielectric and low-frequency Raman spectra of hydrogen-bond liquids. Phys Rev Lett 95(19):197802. doi:10.1103/PhysRevLett.95.197802

    Article  PubMed  Google Scholar 

  7. Yagihara S (2013) Concepts of observation problem and fractal on water structure by dielectric spectroscopy. Nanofiber (Japanese) 4(1):26–31

    Google Scholar 

  8. Yagihara S, Asano M, Kosuge M, Tsubotani S, Imoto D, Shinyashiki N (2005) Dynamical behavior of unfreezable molecules restricted in a frozen matrix. J Non-Cryst Solid 351(33–36):2629–2634. doi:10.1016/j.jnoncrysol.2005.03.059

    Article  CAS  Google Scholar 

  9. Shinyashiki N, Imoto D, Yagihara S (2007) Broadband dielectric. Study of dynamics of polymer and solvents in poly(vinyl pyrrolidone)/normal alcohol mixtures. J Phys Chem B 111(9):2181–2187. doi:10.1021/jp065414e

    Article  CAS  PubMed  Google Scholar 

  10. Shinyashiki N, Yagihara S, Arita I, Mashimo S (1998) Dynamics of water in polymer matrix studied by a microwave dielectric measurement. J Phys Chem B 102(17):3249–51. doi:10.1021/jp9729627

    Article  CAS  Google Scholar 

  11. Hayashi Y, Shinyashiki N, Yagihara S (2002) Dynamical structure of water around biopolymers investigated by microwave dielectric measurements via time domain reflectometry. J Non-Cryst Solid 305(1–3):328–332. doi: 10.1016/S0022-3093(02)01113-4

  12. Ryabov YE, Feldman Y, Shinyashiki N, Yagihara S (2002) The symmetric broadening of the water relaxation peak in polymer-water mixtures and its relationship to the hydrophilic and hydrophobic properties of polymers. J Chem Phys 116:8610–8615. doi:10.1063/1.1471551

    Article  CAS  Google Scholar 

  13. Sudo S, Shinyashiki N, Kitsuki Y, Yagihara S (2002) Dielectric relaxation time and relaxation time distribution of alcohol-water mixtures. J Phys Chem A 106(3):458–64. doi:10.1021/jp013117y

    Article  CAS  Google Scholar 

  14. Fujiwara S, Yonezawa F (1995) Anomalous relaxation in fractal structures. Phys Rev E 51(3):2278–85. doi:10.1103/PhysRevE.51.2277

    Article  Google Scholar 

  15. Kubo R (1957) Statistical-mechanical theory of irreversible processes. I. General theory and simple applications to magnetic and conduction problems. J Phys Soc Jpn 12:570–586. doi:10.1143/JPSJ.12.570

    Article  Google Scholar 

  16. Cole RH (1965) Correlation function theory of dielectric relaxation. J Chem Phys 42(2):637–643. doi:10.1063/1.1695984

    Article  CAS  Google Scholar 

  17. Oliver BM (1964) Time domain reflectometry. Hewlett-Packard J 15:6

    Google Scholar 

  18. Nicolson AM (1968) Broad-band microwave transmission. Characteristics from a single measurement of the transient. Response. IEEE Trans lnstrum Meas IM 17(4):395–402. doi:10.1109/TIM.1968.4313741

    Article  Google Scholar 

  19. Fellner-Feldegg H (1969) Measurement of dielectrics in the time domain. J Phys Chem 73:616–626. doi:10.1021/j100723a023

    Article  CAS  Google Scholar 

  20. Suggett A, Mackness PA, Tait MJ, Loeb HW, Young GM (1970) Dielectric relaxation studies by time domain spectroscopy. Nature 228:456–457. doi:10.1038/228456a0

    Article  CAS  PubMed  Google Scholar 

  21. Van Gernert MJC (1973) High-frequency time-domain methods in dielectric spectroscopy. Philips Res Rep 28:530–572

    Google Scholar 

  22. Cole RH (1977) Time domain reflectometry. Annu Rev Phys Chem 28:283–300. doi:10.1146/annurev.pc.28.100177.001435

    Article  CAS  PubMed  Google Scholar 

  23. Cole RH (1975) Evaluation of dielectric behavior by time domain spectroscopy. I. Dielectric response by real time analysis. J Phys Chem 79(14):1459–1469. doi:10.1021/j100581a022

    Article  CAS  Google Scholar 

  24. Cole RH (1975) Evaluation of dielectric behavior by time domain spectroscopy. II. Complex permittivity. J Phys Chem 79(14):1469–1474. doi:10.1021/j100581a023

    Article  CAS  Google Scholar 

  25. Cole RH, Mashimo S, Winsor IVP (1980) Evaluation of dielectric behavior by time domain spectroscopy. 3. Precision difference methods. J Phys Chem 84(7):786–793. doi:10.1021/j100444a017

    Article  CAS  Google Scholar 

  26. Nakamura H, Mashimo S, Wada A (1982) Application of time domain reflectometry covering a wide frequency range to the dielectric study of solutions. J Appl Phys 21(3):467–474. doi:10.1143/JJAP.21.467

    Article  CAS  Google Scholar 

  27. Nakamura H, Mashimo S, Wada A (1982) Easy method of TDR to obtain dielectric relaxation spectra in GHz region. J Appl Phys 21(7):1022–1024. doi:10.1143/JJAP.21.1022

    Article  CAS  Google Scholar 

  28. Cole RH, Berberian JG, Mashimo S, Chryssikos G, Burns A, Tombari E (1989) Time domain reflection methods for dielectric measurements to 10 GHz. J Appl Phys 66(2):793–802. doi:10.1063/1.343499

    Article  Google Scholar 

  29. Mashimo S, Umehara T, Ota T, Kuwabara S, Shinyashiki N, Yagihara S (1987) Evaluation of complex permittivity of aqueous solution by time domain reflectometry. J Mol Liq 36(1):135–151. doi:10.1016/0167-7322(87)80036-3

  30. Nozaki R, Bose TK (1990) Broadband complex permittivity measurements by time-domain spectroscopy. IEEE Trans Instrum Meas 39(6):945–951. doi:10.1109/19.65803

    Article  Google Scholar 

  31. Feldman Y, Kozlovich N (1995) Time domain dielectric spectroscopy studies of macromolecular solutions. Trends Polym Sci 3(2):53–60. doi:10.1016/S0966-4793(00)88890-1

    CAS  Google Scholar 

  32. Yagihara S, Miura N, Hayashi Y, Miyairi H, Asano M, Yamada G, Shinyashiki N, Mashimo S, Umehara T, Tokita M, Naito S, Nagahama T, Shiotsubo M (2001) Microwave dielectric study on water structure and physical properties of aqueous systems using time domain reflectometry with flat-end cells. Subsurf Sens Technol Appl 2(1):15–29

    Article  Google Scholar 

  33. Berberian JD, King E (2002) An overview of time domain spectroscopy. J Non-Cryst Solids 305(1–3):10–18. doi:10.1016/S0022-3093(02)01082-7

    Article  CAS  Google Scholar 

  34. Shinyashiki N, Asaka N, Mashimo S, Yagihara S, Sasaki N (1990) Microwave dielectric study on hydration of moist collagen. Biopolymers 29(8–9):1185–91. doi:10.1002/bip.360290809

    Article  CAS  PubMed  Google Scholar 

  35. Lahtinen T, Nuutinen J, Alanen E (1997) Dielectric properties of the skin. Phys Med Biol 42(7):1471–2. doi:10.1088/0031-9155/42/7/020

    Article  CAS  PubMed  Google Scholar 

  36. Naito S, Hoshi M, Mashimo S (1996) A method of measuring surface permittivity by microwave dielectric analysis. Rev Sci Instrum 67(10):3633–41. doi:10.1063/1.1147128

    Article  CAS  Google Scholar 

  37. Naito S, Hoshi M, Mashimo S (1997) In vivo dielectric analysis of free water content of biomaterials by time domain reflectometry. Anal Biochem 251(2):163–72. doi:10.1006/abio.1997.2256

    Article  CAS  PubMed  Google Scholar 

  38. Naito S, Hoshi M, Yagihara S (1998) Microwave dielectric analysis of human stratum corneum in vivo. Biochim Biophys Acta 1381(3):293–304. doi:10.1016/S0304-4165(98)00041-5

    Article  CAS  PubMed  Google Scholar 

  39. Nakasako M (1999) Large-scale networks of hydration water molecules around bovine β-trypsin revealed by cryogenic X-ray crystal structure analysis. J Mol Biol 289(3):547–564. doi:10.1006/jmbi.1999.2795

    Article  CAS  PubMed  Google Scholar 

  40. Takashima S, Asami K (1993) Calculation and measurement of the dipole moment of small proteins: use of protein data base. Biopolymers 33(1):59–68. doi:10.1002/bip.360330107

    Article  CAS  PubMed  Google Scholar 

  41. Higo J, Kono H, Nakamura H, Sarai A (2000) Solvent density and long-range dipole field around a DNA-binding protein studied by molecular dynamics. Proteins 40(2):193–206. doi:10.1002/(SICI)1097-0134(20000801)40:2<193::AID-PROT30>3.0.CO;2-0

    Article  CAS  PubMed  Google Scholar 

  42. Yokomizo T, Yagihara S, Higo J (2003) Rotational motions of solvent site–dipole field around a protein. Chem Phys Lett 374(5–6):453–458. doi:10.1016/S0009-2614(03)00684-5

    Article  CAS  Google Scholar 

  43. Miura N, Hayashi Y, Mashimo S (1996) Hinge-bending deformation of enzyme observed by microwave dielectric measurement. Biopolymers 39(2):183–187. doi:10.1002/(SICI)1097-0282(199608)39:2<183::AID-BIP6>3.0.CO;2-L

    Article  CAS  Google Scholar 

  44. Hayashi Y, Miura N, Isobe J, Shinyashiki Y, Yagihara S (2000) Molecular dynamics of Hinge bending motion of IgG vanishing with hydrolysis by Papain. Biophys J 79(2):1023–1029. doi: http://dx.doi.org/10.1016/S0006-3495(00)76356-9

  45. Hayashi Y et al (2014) personal communications

    Google Scholar 

  46. Karplus M, McCammon JA (2002) Molecular dynamics simulations of biomolecules. Nat Struct Biol 9(9):646–652. doi:10.1038/nsb0902-646

    Article  CAS  PubMed  Google Scholar 

  47. Hayashi Y, Miura N, Shinyashiki N, Yagihara S, Mashimo S (2000) Globule-coil transition of denatured globular protein investigated by a microwave dielectric technique. Biopolymers 54(6):388–397. doi:10.1002/1097-0282(200011)54:6<388::AID-BIP30>3.0.CO;2-K

    Article  CAS  PubMed  Google Scholar 

  48. Tokita M, Miyoshi T, Takegoshi K, Hikichi K (1996) Probe diffusion in gels. Phys Rev E 53(2):1823–1827. doi:10.1103/PhysRevE.53.1823

    Article  CAS  Google Scholar 

  49. Yamada G, Hashimoto T, Morita T, Shinyashiki N, Yagihara S, Tokita M (2001) Dielectric study on dynamics for volume phase transition of PAAm gel in acetone-water system. Trans Mater Res Soc Jpn 26(2):701–704

    CAS  Google Scholar 

  50. Maruyama Y, Numamoto Y, Saito H, Kita R, Shinyashiki N, Yagihara S, Fukuzaki M (2014) Complementary analyses of fractal and dynamic water structures in protein-water mixtures and cheeses. Colloid Surf A Physicochem Eng Asp 440:42–48. doi:10.1016/j.colsurfa.2012.10.051

    Article  CAS  Google Scholar 

  51. Matsumoto K, Shimazaki K, Kitamura K, Kita R, Shinyashiki N, Yagihara S (2008) Geometrical feature of fractal structure expression and characterization of aqueous mixtures by dielectric spectroscopy (Japanese). Proc Sch Sci Tokai Univ 43:127–143

    CAS  Google Scholar 

  52. Shimazaki K, Matsumoto K, Kita R, Shinyashiki N, Yagihara S (2010) Molecular dynamics simulation for molecular characterization analysis of aqueous solution of oligomer (Japanese). Proc Sch Sci Tokai Univ 45:113–129

    CAS  Google Scholar 

  53. Ladbrooke BD, Chapman D (1969) Thermal analysis of lipids, proteins and biological membranes. A review and summary of some recent studies. Chem Phys Lipids 3(4):304–356. doi:10.1016/0009-3084(69)90040-1

    Article  CAS  PubMed  Google Scholar 

  54. Janiak MJ, Small DM, Shipley GG (1979) Temperature and compositional dependence of the structure of hydrated dimyristoyl lecithin. J Biol Chem 254(13):6068–6078

    CAS  PubMed  Google Scholar 

  55. Schrader W, Kaatze U (2001) Zwitterion headgroup orientation correlation and mobility and domain structure of membranes. J Phys Chem B 105:6266–6272. doi:10.1021/jp010525t

    Article  CAS  Google Scholar 

  56. Schrader W, Halstenberg S, Behrends R, Kaatze U (2003) Critical slowing in lipid bilayers. J Phys Chem B 107(51):14457–14463. doi:10.1021/jp0306489

    Article  CAS  Google Scholar 

  57. Ermolina I, Lewis A, Feldman Y (2003) Dielectric properties of the bR membrane. J Phys Chem B 107(51):14537–14544. doi:10.1021/jp022682d

    Article  CAS  Google Scholar 

  58. Okudaira S, Choe S, Kosuge M, Kundu SK, Yamamoto W, Kita R, Shinyashiki N, Yagihara S (2007) Dielectric study on restricted molecules of liquid crystal and liposome. Trans Mater Res Soc Jpn 32(3):823–826

    CAS  Google Scholar 

  59. Hosoi Y, Kita R, Shinyashiki N, Yagihara S (2010) Dielectric study of liposome dispersion using statistical analysis of Jitter. Trans Mater Res Soc Jpn 35(4):861–864

    Article  CAS  Google Scholar 

  60. Chernik GG (1995) Phase equilibria in phospholipid-water systems. Adv Colloid Interf Sci 61:65–129. doi:10.1016/0001-8686(95)00262-O

    Article  CAS  Google Scholar 

  61. Kundu SK, Choe S, Yamamoto W, Kita R, Yagihara S (2007) Dielectric relaxation and dynamic light scattering study of liposome in the aqueous solution. MRS Proc 1019:FF04–08

    Article  Google Scholar 

  62. Kundu SK, Suzuki K, Chaudhuri BK (2003) The effect of biasing field on the soft mode in the vicinity of the SmC*-SmA phase transition of a ferroelectric liquid crystal “ZLI4851”. J Appl Phys 94(4):2271–76. doi:10.1063/1.1587871

    Article  CAS  Google Scholar 

  63. Kundu SK, Chaudhuri BK, Catala L, Mery S (2002) Soft mode and related behaviour in the SmA and SmC* phases of a ferroelectric liquid crystalline polymer by dielectric spectroscopy. Liq Cryst 29:837–842. doi:10.1080/02678290210133123

    Article  CAS  Google Scholar 

  64. Ermolina I, Strinkovski A, Lewis A, Feldman Y (2001) Observation of liquid-crystal-like ferroelectric behavior in a biological membrane. J Phys Chem B 105(14):2673–2676. doi:10.1021/jp001054y

    Article  CAS  Google Scholar 

  65. Asami K (1977) Dielectric behavior of yeast cell suspensions: effects of some chemical agents and physical treatments on the Plasma membranes and the cytoplasms. Bull Inst Chem Res Kyoto Univ 55:283–309

    CAS  Google Scholar 

  66. Asami K (2011) Design of a measurement cell for low-frequency dielectric spectroscopy of biological cell suspensions. Meas Sci Technol 22:085801. doi:10.1088/0957-0233/22/8/085801 (7 pp)

    Article  Google Scholar 

  67. Asami K (2013) Dielectric properties of dipicrylamine-doped erythrocytes, cultured cells and lipid vesicles. Bioelectrochem J Bioelechem 92:14–21. doi:10.1016/.2013.02.003

    Article  CAS  Google Scholar 

  68. Asami K (2012) Dielectric spectroscopy reveals nanoholes in erythrocyte ghosts. Soft Matter 8:3250–57. doi:10.1039/C2SM06306A

    Article  CAS  Google Scholar 

  69. Daoud J, Asami K, Rosenberg L, Tabrizian M (2012) Dielectric spectroscopy for non-invasive monitoring of epithelial cell differentiation within three-dimensional scaffolds. Phys Med Biol 57(21):5097–5112. doi:10.1088/0031-9155/57/16/5097

    Article  PubMed  Google Scholar 

  70. Miura N, Yagihara S, Mashimo S (2003) Microwave dielectric properties of solid and liquid foods investigated by time-domain reflectometry. J Food Sci 68(4):1396–1403. doi:10.1111/j.1365-2621.2003.tb09656.x

    Article  CAS  Google Scholar 

  71. Mashimo S, Kuwabara S, Yagihara S, Higasi K (1987) Dielectric relaxation time and structure of bound water in biological materials. J Phys Chem 91(25):6337–6338. doi:10.1021/j100309a005

    Article  CAS  Google Scholar 

  72. Yagihara S, Oyama M, Inoue A, Asano M, Sudo S, Shinyashiki N (2007) Dielectric relaxation measurement and analysis of restricted water structure in rice kernels. Meas Sci Technol 18(4):983–990. doi:10.1088/0957-0233/18/4/004

    Article  CAS  Google Scholar 

  73. Hayashi Y, Miura N, Shinyashiki N, Yagihara S (2005) Free water content and monitoring of healing processes of skin burns studied by microwave dielectric spectroscopy in vivo. Phys Med Biol 50(4):599–612. doi:10.1088/0031-9155/50/4/003

    Article  PubMed  Google Scholar 

  74. Goto T, Hashimoto M, Shinyashiki N, Yagihara S, Hayashi Y (2006) Dielectric study on distribution of water in human skin. Trans Mater Res Soc Jpn 31:771–774

    Google Scholar 

  75. Hashimoto M, Goto T, Shinyashiki N, Yagihara S (2006) Interpretation of hydration structure of human skin from analysis of electrodes used in dielectric spectroscopy (Japanese). Tokai J Sport Med Sci 19:53–62

    Google Scholar 

  76. Yazawa S (1933) Comparative study of the skin tissue in the human body (Japanese). Med Res (Japanese) 7:1805–1834

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shin Yagihara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Yagihara, S. (2015). Dynamics of Water, Biomaterials, and Skin Investigated by Means of Dielectric Relaxation Spectroscopy. In: Kita, R., Dobashi, T. (eds) Nano/Micro Science and Technology in Biorheology. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54886-7_8

Download citation

Publish with us

Policies and ethics