Skip to main content

Ecology and Evolution of Marine Diatoms and Parmales

  • Chapter
Marine Protists

Abstract

Diatoms and Parmales are microscopic, photosynthetic algal groups that both have siliceous cell walls. It is probable that they shared a common ancestor, but each has evolved along a quite distinct path. Diatoms have undergone extensive adaptive radiation and colonized a wide range of freshwater, terrestrial and marine habitats. They are particularly important in the ecology of the oceans, where it has been estimated that they are responsible for 40 % of global marine production. In contrast, Parmalean algae have remained restricted to more specific niches, mainly in marine coastal areas at high latitudes. They are small (from 2 to 5 μm) and single celled. Until recently, their ecology was largely unknown, but new research has begun to reveal their biology for the first time. In this review, we concentrate on the roles and adaptations of both groups in the marine plankton, highlighting areas for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen AE, LaRoche J, Maheswari U et al (2008) Whole-cell response of the pennate diatom Phaeodactylum tricornutum to iron starvation. Proc Natl Acad Sci U S A 105:10438–10443

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Allen AE, Dupont CL, Obornik M et al (2011a) Evolution and metabolic significance of the urea cycle in photosynthetic diatoms. Nature 473:203–207

    Article  CAS  PubMed  Google Scholar 

  • Allen CS, Pike J, Pudsey CJ (2011b) Last glacial-interglacial sea-ice cover in the SW Atlantic and its potential role in global deglaciation. Quat Sci Rev 30:2446–2458

    Article  Google Scholar 

  • Alverson AJ, Beszteri B, Julius ML et al (2011) The model marine diatom Thalassiosira pseudonana likely descended from a freshwater ancestor in the genus Cyclotella. BMC Evol Biol 11:125

    Article  PubMed Central  PubMed  Google Scholar 

  • Amin SA, Parker MS, Armbrust EV (2012) Interactions between diatoms and bacteria. Microbiol Mol Biol Rev 76:667–684

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Armbrust EV (2009) The life of diatoms in the world’s oceans. Nature 459:185–192

    Article  CAS  PubMed  Google Scholar 

  • Armbrust EV, Berges JA, Bowler et al (2004) The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science 306:79–86

    Article  CAS  PubMed  Google Scholar 

  • Bates SS, Trainer VL (2006) The ecology of harmful diatoms. In: Granéli E, Turner J (eds) Ecology of harmful algae, vol 189, Ecological studies. Springer, New York, pp 81–93

    Chapter  Google Scholar 

  • Booth BC, Marchant HJ (1987) Parmales, a new order of marine chrysophytes, with descriptions of three new genera and seven new species. J Phycol 23:245–260

    Article  Google Scholar 

  • Bowler CI, Allen AE, Badger JH et al (2008) The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature 456:239–244

    Article  CAS  PubMed  Google Scholar 

  • Bowler CI, Vardi A, Allen AE (2010) Oceanographic and biogeochemical insights from diatom genomes. Ann Rev Mar Sci 2:333–365

    Article  PubMed  Google Scholar 

  • Bromke MAI, Hoefgen R, Hesse H (2013) Phylogenetic aspects of the sulfate assimilation genes from Thalassiosira pseudonana. Amino Acids 44:1253–1265

    Article  CAS  PubMed  Google Scholar 

  • Carpenter EJ, Janson S (2000) Intracellular cyanobacterial symbionts in the marine diatom Climacodium frauenfeldianum (Bacillariophyceae). J Phycol 36:540–544

    Article  Google Scholar 

  • Cermeño P, Falkowski PG (2009) Controls on diatom biogeography in the ocean. Science 325:1539–1541

    Article  PubMed  CAS  Google Scholar 

  • Cermeño P, Marañón E, Romero OE (2013) Response of marine diatom communities to Late Quaternary abrupt climate changes. J Plankton Res 35:12–21

    Article  Google Scholar 

  • Chepurnov VA, Mann DG, Sabbe K et al (2004) Experimental studies on sexual reproduction in diatoms. Int Rev Cytol 237:91–154

    Article  CAS  PubMed  Google Scholar 

  • Collins LG, Pike J, Claire S et al (2012) High-resolution reconstruction of southwest Atlantic sea-ice and its role in the carbon cycle during marine isotope stages 3 and 2. Paleoceanography 27. doi:10.1029/2011PA002264

  • Cortese G, Gersonde R, Hillenbrand C et al (2004) Opal sedimentation shifts in the World Ocean over the last 15 Myr. Earth Planet Sci Lett 224:509–527

    Article  CAS  Google Scholar 

  • Crawford RM (1995) The role of sex in the sedimentation of a marine diatom bloom. Limnol Oceanogr 40:200–204

    Article  Google Scholar 

  • Crawford RM, Sims PA (2008) Some principles of chain formation as evidenced by the early diatom fossil record. Nova Hedwigia 133:171–186

    Google Scholar 

  • D’Alelio D, d’Alcalà MR, Dubroca L et al (2010) The time for sex: a biennial life cycle in a marine planktonic diatom. Limnol Oceanogr 55:106–114

    Article  Google Scholar 

  • d’Ovidio F, De Monte S, Alvain S et al (2010) Fluid dynamical niches of phytoplankton types. Proc Natl Acad Sci U S A 107:18366–18370

    Article  PubMed Central  PubMed  Google Scholar 

  • Decelle J, Colin S, Foster RA (2015) Symbiosis in marine planktonic protists. In: Ohtsuka S et al (eds) Marine protists: diversity and dynamics. Springer, Tokyo, pp 465–500

    Google Scholar 

  • Denman KL (2008) Climate change, ocean processes and ocean iron fertilization. Mar Ecol Prog Ser 364:219–225

    Article  Google Scholar 

  • Drebes G (1977) Sexuality. In: Werner D (ed) The biology of diatoms, vol 13, Botanical monograph. University of California Press, Berkeley, pp 250–283

    Google Scholar 

  • Dugdale RC, Goering JJ (1967) Uptake of new and regenerated forms of nitrogen in primary productivity. Limnol Oceanogr 12:196–206

    Article  CAS  Google Scholar 

  • Durkin CA, Mock T, Armbrust EV (2009) Chitin in diatoms and its association with the cell wall. Eukaryot Cell 8:1038–1050

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Durkin CA, Marchetti A, Bender SJ et al (2012) Frustule-related gene transcription and the influence of diatom community composition on the silica precipitation in an iron-limited environment. Limnol Oceanogr 57:1619–1633

    Article  CAS  Google Scholar 

  • Dyhrman ST, Jenkins BD, Rynearson TA et al (2012) The transcriptome and proteome of the diatom Thalassiosira pseudonana reveal a diverse phosphorus stress response. PLoS One 7(3):e33768

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Edlund MB, Stoermer EF (1997) Ecological, evolutionary, and systematic significance of diatom life histories. J Phycol 33:897–918

    Article  Google Scholar 

  • Estrada M, Berdalet E (1997) Phytoplankton in a turbulent world. Sci Mar 611:125–140

    Google Scholar 

  • Evans KM, Wortley AH, Simpson GE et al (2008) A molecular systematic approach to explore diversity within the Sellaphora pupula species complex (Bacillariophyta). J Phycol 44:215–231

    Article  CAS  Google Scholar 

  • Falkowski PG, Raven JA (2007) Aquatic photosynthesis. Princeton University Press, Princeton

    Google Scholar 

  • Falkowski PG, Barber RT, Smetacek V (1998) Biogeochemical controls and feedbacks on ocean primary production. Science 281:200–206

    Article  CAS  PubMed  Google Scholar 

  • Foster RA, O’Mullan GD (2008) Nitrogen-fixing and nitrifying symbioses in the marine environment. In: Capone DG, Bronk DA, Mulholland MR et al (eds) Nitrogen in the marine environment. Academic, London, pp 1197–1218

    Chapter  Google Scholar 

  • Foster RA, Zehr JP (2006) Characterization of diatom-cyanobacteria symbioses on the basis of nifH, hetR, and 16S rRNA sequences. Environ Microbiol 8:913–1925

    Article  CAS  Google Scholar 

  • Foster RA, Kuypers MMM, Vagner T et al (2011) Nitrogen fixation and transfer in open ocean diatom-cyanobacterial symbioses. ISME J 5:1484–1493

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gersonde R, Harwood DM et al (1990) Lower cretaceous diatoms from ODP Leg 113 Site 693 (Wedel Sea). Part 1: vegetative cells. In: Baker PR (ed) Proceedings of the Ocean Drilling Program, scientific results. Ocean Drilling Program, College Station, pp 365–402

    Google Scholar 

  • Guidry MW, Arvidson RS, MackKenzie FT (2007) Biological and geochemical forcing to Phanerozoic change in seawater, atmosphere and carbonate precipitate composition. In: Falkowski PG, Knoll A (eds) Evolution of primary producers in the sea. Academic, Burlington, pp 377–403

    Chapter  Google Scholar 

  • Guillard R, Kilham P (1977) The ecology of marine planktonic diatoms. In: Werner D (ed) The biology of diatoms, vol 13, Botanical monograph. University of California Press, Berkeley, pp 372–469

    Google Scholar 

  • Guillou L, Chrétiennot-Dinet MJ, Medlin LK et al (1999a) Bolidomonas: a new genus with two species belonging to a new algal class, the Bolidophyceae (Heterokonta). J Phycol 35:368–381

    Article  Google Scholar 

  • Guillou L, Moon-van der Staay SY, Claustre H et al (1999b) Diversity and abundance of Bolidophyceae (Heterokonta) in two oceanic regions. Appl Environ Microbiol 65:4528–4536

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hajos M, Strander H (1975) Late cretaceous archaeomonadaceae, diatomaceae, and silicoflagellatae from the South Pacific Ocean, Deep Sea Drilling Project, Leg 29, Site 275. In: Kennett JP et al (eds) Initial reports of the Deep Sea Drilling Project, vol 29. U. S. Government Printing Office, Washington, DC, pp 739–761

    Google Scholar 

  • Hamm CE, Merkel R, Springer O et al (2003) Architecture and material properties of diatom shells provide effective mechanical protection. Nature 421:841–843

    Article  CAS  PubMed  Google Scholar 

  • Hargraves PE, French FW (1983) Diatom resting spores: significance and strategies. In: Fryxell GA (ed) Survival strategies of algae. Cambridge University Press, Cambridge, pp 49–68

    Google Scholar 

  • Harwood DM, Gersonde R (1990) Lower cretaceous diatoms from ODP Leg 113, Site 693 (Weddell Sea). Part 2: resting spores, chrysophycean cysts, an endoskeletal dinoflagellate and notes on the origin of diatoms. In: Baker PR et al (eds) Proceedings of the Ocean Drilling Program, scientific results, vol 113. Ocean Drilling Program, College Station, TX, pp 403–425

    Google Scholar 

  • Harwood DM, Nikolaev VA et al (1995) Cretaceous diatoms; morphology, taxonomy, biostratigraphy. In: Blome D (ed) Siliceous microfossils. Paleontological society short courses in paleontology, vol 8. Paleonology Society, University of Tennessee, Knoxville, pp 81–106

    Google Scholar 

  • Hasle GR (1976) The biogeography of some marine planktonic diatoms. Deep Sea Res 23:319–338

    Google Scholar 

  • Hasle GR, Syvertsen EE (1997) Marine diatoms. In: Tomas CR (ed) Identifying marine phytoplankton. Academic, London, pp 5–385

    Chapter  Google Scholar 

  • Herth W, Schnepf E (1982) Chitin-fibril formation in algae. In: Brown RM (ed) Cellulose and other natural polymer systems. Plenum Press, New York, pp 184–206

    Google Scholar 

  • Hutchinson GE (1967) A treatise on limnology, vol. 2: introduction to lake biology and the limnoplankton. Wiley, New York

    Google Scholar 

  • Ichinomiya M, Gomi Y, Nakamachi M et al (2010) Temporal patterns in silica deposition among siliceous plankton during the spring bloom in the Oyashio region. Deep Sea Res Part II 57:1665–1670

    Article  CAS  Google Scholar 

  • Ichinomiya M, Yoshikawa S, Takaichi S et al (2011) Isolation and characterization of Parmales (Heterokonta/Heterokontophyta/Stramenopiles) from the Oyashio region, western North Pacific. J Phycol 47:144–151

    Article  Google Scholar 

  • Ichinomiya M, Nakamachi M, Shimizu Y et al (2013) Growth characteristics and vertical distribution of Triparma laevis (Parmales) during summer in the Oyashio region, western North Pacific. Aquat Microb Ecol 68:107–116

    Article  Google Scholar 

  • Isada T, Kuwata A, Saito H et al (2009) Photosynthetic features and primary productivity of phytoplankton in the Oyashio and Kuroshio-Oyashio transition regions of the northwest Pacific. J Plankton Res 31:1009–1025

    Article  CAS  Google Scholar 

  • Jacquet S, Partensky F, Lennon JF et al (2001) Diel patterns of growth and division in marine picoplankton in culture. J Phycol 37:357–369

    Article  Google Scholar 

  • Jewson DH (1992) Size reduction, reproductive strategy and the life cycle of a centric diatom. Philos Trans R Soc Lond B 336:191–213

    Article  Google Scholar 

  • Jewson DH, Granin NG (2015) Cyclical size change and population dynamics of a planktonic diatom, Aulacoseira baicalensis, in Lake Baikal. Eur J Phycol 50:1–19

    Article  CAS  Google Scholar 

  • Jewson DH, Lowry SF, Bowen R (2006) Coexistence and survival of diatoms on sand grains. Eur J Phycol 41:131–146

    Article  Google Scholar 

  • Jewson DH, Granin NG, Zhdarnov AA et al (2008) Resting stages and ecology of the planktonic diatom Aulacoseira skvortzowii in Lake Baikal. Limnol Oceanogr 53:1125–1136

    Article  Google Scholar 

  • Jewson DH, Granin NG, Zhdarnov AA et al (2010) Vertical mixing, size change and resting stage formation of the planktonic diatom Aulacoseira baicalensis. Eur J Phycol 45:354–364

    Article  Google Scholar 

  • Jiang L, Eriksson J, Lage S et al (2014) Diatoms: a novel source for the neurotoxin BMAA in aquatic environments. PLoS One 9(1):e84578

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Jordan RW, Ito R (2002) Observations on Proboscia species from Late Cretaceous sediments, and their possible evolution from Kreagra. In: John J (ed) Proceedings of the 15th international diatom symposium, Koeltz Scientific Publishers, Königstein, pp 313–329

    Google Scholar 

  • Jordan RW, Stickley CE (2010) Chapter 22: diatoms as indicators of paleoceanographic events. In: Smol J, Stoermer E (eds) The diatoms: applications for the environmental and earth sciences, 2nd edn. Cambridge University Press, Cambridge, pp 424–453

    Chapter  Google Scholar 

  • Kaczmarska I, Beaton M, Benoit AC et al (2005) Molecular phylogeny of selected members of the order Thalassiosirales (Bacillariophyta) and evolution of the fultoportula. J Phycol 42:121–138

    Article  Google Scholar 

  • Kaczmarska I, Poulíčková A, Sato S et al (2013) Proposals for a terminology for diatom sexual reproduction, auxospores and resting stages. Diatom Res 28:263–294

    Article  Google Scholar 

  • Kaczmarska I, Mather L, Luddington IA et al (2014) Cryptic diversity in a cosmopolitan diatom known as Asterionellopsis glacialis (Fragilariaceae): implications for ecology, biogeography, and taxonomy. Am J Bot 101:267–286

    Article  PubMed  Google Scholar 

  • Kamp AI, de Beer D, Nitsch JL et al (2011) Diatoms respire nitrate to survive dark and anoxic conditions. Proc Natl Acad Sci U S A 108:5649–5654

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kamp AI, Stief P, Knappe J et al (2013) Response of the ubiquitous pelagic diatom Thalassiosira weissflogii to darkness and anoxia. PLoS One 8(12):e82605

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kessenich CR, Ruck EC, Schurko AM et al (2014) Transcriptomic insights into the life history of Bolidophytes, the sister lineage to diatoms. J Phycol 50:977–983

    Article  CAS  Google Scholar 

  • Komuro C, Narita H, Imai K et al (2005) Microplankton assemblages at Station KNOT in the subarctic western Pacific, 1999–2000. Deep Sea Res Part II 52:2206–2017

    Article  Google Scholar 

  • Konno S, Jordan RW (2012) Parmales. In: eLS (ed) Microbiology. Wiley, Chichester. doi:10.1002/9780470015902.a0023691

  • Kooistra WHCF, Gersonde R, Medlin LK et al (2007) The origin and evolution of the diatoms: their adaptation to a planktonic existence. In: Falkowski PG, Knoll AH (eds) In evolution of primary producers in the sea. Academic, Burlington, pp 207–249

    Chapter  Google Scholar 

  • Kooistra WHCF, Sarno D, Balzano S et al (2008) Global diversity and biogeography of Skeletonema species (Bacillariophyta). Protist 159:177–193

    Article  CAS  PubMed  Google Scholar 

  • Kröger N, Poulsen N (2008) Diatoms-from cell wall biogenesis to nanotechnology. Annu Rev Genet 42:83–107

    Article  PubMed  CAS  Google Scholar 

  • Kustka AB, Allen AE, Morel FMM (2007) Sequence analysis and transcriptional regulation of iron acquisition genes in two marine diatoms. J Phycol 43:715–729

    Article  CAS  Google Scholar 

  • Kuwata A, Takahashi M (1990) Life-form population responses of a marine planktonic diatom Chaetoceros pseudocurvisetus, to oligotrophication in regionally upwelled water. Mar Biol 107:503–512

    Article  Google Scholar 

  • Kuwata A, Takahashi M (1999) Survival and recovery of resting spores and resting cells of the marine planktonic diatom Chaetoceros pseudocurvisetus under fluctuatng nitrate conditions. Mar Biol 134:471–478

    Article  Google Scholar 

  • Kuwata A, Tsuda A (2005) Selection and viability after ingestion of vegetative cells, resting spores and resting cells of the marine diatom, Chaetoceros pseudocurvisetus, by two copepods. J Exp Mar Biol Ecol 322:143–151

    Article  Google Scholar 

  • Kuwata A, Hama T, Takahashi M (1993) Ecophysiological characterization of two life-forms, resting spores and resting cells of a marine planktonic diatom, Chaetoceros pseudocurvisetus, formed under nutrient depletion. Mar Ecol Prog Ser 102:245–255

    Article  Google Scholar 

  • Lauritano C, Borra M, Carotenuto Y et al (2011) First molecular evidence of diatom effects in the copepod Calanus helgolandicus. J Exp Mar Biol Ecol 404:79–86

    Article  CAS  Google Scholar 

  • Lauritano C, Carotenuto Y, Procaccini G et al (2012) Copepod population-specific response to a toxic diatom diet. PLoS One 7(10):e47262

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Leblanc K, Arístegui J, Armand L et al (2012) A global diatom database – abundance, biovolume and biomass in the world ocean. Earth Syst Sci Data 4:149–165

    Article  Google Scholar 

  • Leventer A, Crosta X, Pike J (2010) Chapter 21: Holocene marine diatom records of environmental change. In: Smol J, Stoermer E (eds) The diatoms: applications for the environmental and earth sciences, 2nd edn. Cambridge University Press, Cambridge, pp 401–423

    Chapter  Google Scholar 

  • Lewis WM (1983) Interruption of synthesis as a cost of sex in small organisms. Am Nat 121:825–833

    Article  Google Scholar 

  • Lewis WM (1984) The diatom sex clock and its evolutionary importance. Am Nat 123:73–80

    Article  Google Scholar 

  • Lommer M, Roy A-S, Schilhabel M et al (2010) Recent transfer of an iron-regulated gene from the plastid to the nuclear genome in an oceanic diatom adapted to chronic iron limitation. BMC Genomics 11:718

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lommer M, Specht M, Roy AS et al (2012) Genome and low-iron response of an oceanic diatom adapted to chronic iron limitation. Genome Biol 13(7):R66

    Article  PubMed Central  PubMed  Google Scholar 

  • Mann DG (1999) The species concept in diatoms. Phycologia 38:437–495

    Article  Google Scholar 

  • Mann DG (2011) Size and sex. In: Seckbach J, Kociolek JP (eds) Cellular origin, life in extreme habitats and astrobiology. Springer, New York, pp 145–165

    Google Scholar 

  • Mann DG, Droop SJM (1996) Biodiversity, biogeography and conservation of diatoms. Hydrobiologia 336:19–32

    Article  Google Scholar 

  • Mann DG, Marchant HJ (1989) The origins of the diatom and its life cycle. In: Green JC, Leadbeater BSC, Diver WL (eds) The chromophyte algae: problems and perspectives, vol 38, Systematics association special volume. Clarendon, Oxford, pp 307–323

    Google Scholar 

  • Mann DG, Vanormelingen P (2013) An inordinate fondness? The number, distributions and origins of diatom species. J Eukaryot Microbiol 60:414–420

    Article  PubMed  Google Scholar 

  • Mann DG, Thomas SJ, Evans KM (2008) Revision of the diatom genus Sellaphora: a first account of the larger species in the British Isles. Fottea 8:15–78

    Article  Google Scholar 

  • Marchetti A, Cassar N (2009) Diatom elemental and morphological changes in response to iron limitation: a brief review with paleoceanographic applications. Geobiology 7:419–431

    Article  CAS  PubMed  Google Scholar 

  • Marchetti A, Maldonado MT, Lane ES et al (2006) Iron requirements of the pennate diatom Pseudo-nitzschia: comparison of oceanic (HNLC) and coastal species. Limnol Oceanogr 51:2092–2101

    Article  CAS  Google Scholar 

  • Marchetti A, Parker MS, Moccia LP et al (2009) Ferritin is used for iron storage in bloom-forming marine pennate diatoms. Nature 457:467–470

    Article  CAS  PubMed  Google Scholar 

  • Margalef R (1978) Life-forms of phytoplankton as survival alternatives in an unstable environment. Oceanol Acta 1:493–509

    Google Scholar 

  • McLachlan J, Craigie JS (1966a) Chitan fibres in Cyclotella cryptica and growth of C. cryptica and Thalassiosira fluviatilis. In: Barnes H (ed) Some contemporary studies in marine science. Allen and Unwin, London, pp 511–517

    Google Scholar 

  • McLachlan J, Craigie JS (1966b) Chitan fibres in Cyclotella cryptica and growth of C. cryptica and Thalassiosira fluviatilis. In: Barnes H (ed) Some contemporary studies in marine science. Allen and Unwin, London, pp 511–517

    Google Scholar 

  • McQuoid MR, Hobson LA (1995) Importance of resting stages in diatom seasonal succession. J Phycol 31:44–50

    Article  Google Scholar 

  • McQuoid MR, Hobson LA (1996) Diatom resting stages. J Phycol 32:889–902

    Article  Google Scholar 

  • Medlin LK (2011) A review of the evolution of the diatoms from the origin of the lineage to their populations. In: Seckbach J, Kociolek JP (eds) The diatom world. Springer, Amsterdam, pp 95–118

    Google Scholar 

  • Medlin LK, Gersonde R, Kooistra WHCF et al (1996) Evolution of the diatoms (Bacillariophyta). II. Nuclear-encoded small-subunit rRNA sequence comparisons confirm a paraphyletic origin for the centric diatoms. Mol Biol Evol 13:67–75

    Article  CAS  PubMed  Google Scholar 

  • Miklasz KA, Denny MW (2010) Diatom sinking speeds: improved predictions and insight from a modified Stokes’ law. Limnol Oceanogr 55:2513–2525

    Google Scholar 

  • Miralto A, Barone G, Romano G et al (1999) The insidious effect of diatoms on copepod reproduction. Nature 402:173–176

    Article  CAS  Google Scholar 

  • Mitchell BG, Holm-Hansen O (1991) Observations and modeling of the Antarctic phytoplankton crop in relation to mixing depth. Deep-Sea Res 38:981–1008

    Article  CAS  Google Scholar 

  • Montresor M, Di Prisco C, Sarno D et al (2013) Diversity and germination patterns of diatom resting stages at a coastal Mediterranean site. Mar Ecol Prog Ser 484:79–95

    Article  Google Scholar 

  • Moore JK, Villareal TA (1996) Size-ascent rate relationships in positively buoyant marine diatoms. Limnol Oceanogr 41:1514–1520

    Article  Google Scholar 

  • Moore JK, Doney SC, Glover DM, Fung IY (2002) Iron cycling and nutrient-limitation patterns in surface waters of the world ocean. Deep Sea Res Part II 49:463–507

    Article  CAS  Google Scholar 

  • Morris RM, Longnecker K, Giovannoni SJ (2006) Pirellula and OM43 are among the dominant lineages identified in an Oregon coast diatom bloom. Environ Microbiol 8:1361–1070

    Article  CAS  PubMed  Google Scholar 

  • Nagasaki K (2008) Dinoflagellates, diatoms, and their viruses. J Microbiol 46:235–243

    Article  PubMed  Google Scholar 

  • Nagasaki K, Tomaru Y (2015) Marine protist viruses. In: Ohtsuka S et al (eds) Marine protists: diversity and dynamics. Springer, Tokyo, pp 501–517

    Google Scholar 

  • Nelson DM, Treguer P, Brzezinski MA et al (1995) Production and dissolution of biogenic silica in the ocean: revised global estimates, comparison with regional data and relationship to biogenic sedimentation. Global Biogeochem Cycles 9:359–372

    Article  CAS  Google Scholar 

  • Nikolaev VA, Harwood DM, Samsonov NI (2001) Lower Cretaceous diatoms. Komarov Botanical Institute, Nauka, Saint Petersburg

    Google Scholar 

  • Nunn BL, Faux JF, Hippmann AA et al (2013) Diatom proteomics reveals unique acclimation strategies to mitigate Fe limitation. PLoS One 8(10):e75653

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Oku O, Kamatani A (1999) Resting spore formation and biochemical composition of the marine planktonic diatom Chaetoceros pseudocurvisetus in culture: ecological significance of decreased nucleotide content and activation of the xanthophyll cycle by resting spore formation. Mar Biol 135:425–436

    Article  CAS  Google Scholar 

  • Parsons TR (1979) Some ecological, experimental and evolutionary aspects of the upwelling ecosystem. South African J Sci 75:536–540

    Google Scholar 

  • Parsons ML, Dortch Q, Turner RE (2002) Sedimentological evidence of an increase in Pseudo-nitzschia (Bacillariophyceae) abundance in response to coastal eutrophication. Limnol Oceanogr 47:551–558

    Article  Google Scholar 

  • Peers G, Price NM (2006) Copper-containing plastocyanin used for electron transport by an oceanic diatom. Nature 441:341–344

    Article  CAS  PubMed  Google Scholar 

  • Pike J, Stickley CE (2013) Diatom fossil records from marine laminated sediments. In: Elias SA (ed) The encyclopedia of Quaternary science 1. Elsevier, Amsterdam, pp 554–561

    Chapter  Google Scholar 

  • Pike J, Allen CS, Leventer A et al (2008) Comparison of contemporary and fossil diatom assemblages from the western Antarctic Peninsula shelf. Mar Micropaleontol 67:274–287

    Article  Google Scholar 

  • Pike J, Crosta X, Maddison E et al (2009) Observations on the relationship between the Antarctic coastal diatoms Thalassiosira antarctica Comber and Porosira glacialis (Grunow) Jørgensen and sea ice concentrations during the Late Quaternary. Mar Micropaleontol 73:14–25

    Article  Google Scholar 

  • Pike J, Swann GEA, Leng MJ et al (2013) Glacial discharge along the west Antarctic Peninsula during the Holocene. Nat Geosci 6:199–202

    Article  CAS  Google Scholar 

  • Poulíčková A, Špačková J, Kelly MG et al (2008) Ecological variation within Sellaphora species complexes (Bacillariophyceae) – specialists or generalists? Hydrobiologia 614:373–386

    Article  Google Scholar 

  • Raven JA, Waite AM (2004) The evolution of silicification in diatoms: inescapable sinking and sinking as escape? New Phytol 162:45–61

    Article  Google Scholar 

  • Reynolds CS (1984) The ecology of freshwater phytoplankton. Cambridge University Press, Cambridge

    Google Scholar 

  • Reynolds CS (1987) Community organization in the freshwater plankton. Symp Br Soc 27:297–325

    Google Scholar 

  • Round FE, Crawford RM, Mann DG (1990) The diatoms. Cambridge University Press, Cambridge

    Google Scholar 

  • Rynearson TA, Richardson K, Lampitt RS et al (2013) Major contribution of diatom resting spores to vertical flux in the sub-polar North Atlantic. Deep Sea Res Part I 82:60–71

    Article  CAS  Google Scholar 

  • Ryther JH (1969) Photosynthesis and fish production in the sea. Science 166:72–76

    Article  CAS  PubMed  Google Scholar 

  • Sackett O, Petrou K, Reedy B et al (2013) Phenotypic plasticity of Southern Ocean diatoms: key to success in the sea ice habitat? PLoS One 8(11):e81185

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Sarno D, Kooistra WCHF, Medlin LK et al (2005) Diversity in the genus Skeletonema (Bacillariophyceae). II. An assessment of the taxonomy S. costatum-like species, with the description of four new species. J Phycol 41:151–176

    Article  Google Scholar 

  • Sarthou G, Timmermans KR, Blain S et al (2005) Growth physiology and fate of diatoms in the ocean: a review. J Sea Res 53:25–42

    Article  CAS  Google Scholar 

  • Schmid A-M (2003) Endobacteria in the diatom Pinnularia (Bacillariophyceae). I. “Scattered ct-Nucleoids” explained: DAPI–DNA complexes stem from exoplastidial bacteria boring into the chloroplasts. J Phycol 39:122–138

    Article  Google Scholar 

  • Shimizu K, Del Amo Y, Brzezinski MA et al (2001) A novel fluorescent silica tracer for biological silicification studies. Chem Biol 8:1051–1060

    Article  CAS  PubMed  Google Scholar 

  • Shirokawa Y, Shimada M (2013) Sex allocation pattern of the diatom Cyclotella meneghiniana. Proc R Soc Lond B 280(1761):20130503

    Article  CAS  Google Scholar 

  • Silver MW, Bargu S, Coale SL et al (2010) Toxic diatoms and domoic acid in natural and iron enriched waters of the oceanic Pacific. Proc Natl Acad Sci U S A 107:20762–20767

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sims PA, Mann DG, Medlin LK (2006) Evolution of the diatoms: insights from fossil, biological and molecular data. Phycologia 45:361–402

    Article  Google Scholar 

  • Smayda TJ (1970) The suspension and sinking of phytoplankton in the sea. Oceanogr. Mar Biol Ann Rev 8:353–414

    Google Scholar 

  • Smayda TJ, Reynolds CS (2001) Community assembly in marine phytoplankton: application of recent models to harmful dinoflagellate blooms. J Plankton Res 23:447–461

    Article  Google Scholar 

  • Smetacek VS (1985) The role of sinking in diatom life-history cycles – ecological, evolutionary and geological significance. Mar Biol 84:239–251

    Article  Google Scholar 

  • Smetacek VS (1999) Diatoms and the ocean carbon cycle. Protist 150:25–32

    Article  CAS  PubMed  Google Scholar 

  • Smol JP, Stoermer EF (2010) The diatoms: applications for the environmental and earth sciences. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Stickley CE, Pike J, Jones VJ (2013) Antarctic waters. In: Elias SA (ed) The encyclopedia of Quaternary science 1. Elsevier, Amsterdam, pp 527–539

    Chapter  Google Scholar 

  • Strzepek RF, Harrison PJ (2004) Photosynthetic architecture differs in coastal and oceanic diatoms. Nature 431:689–692

    Article  CAS  PubMed  Google Scholar 

  • Sunda WG (2001) Bioavailability and bioaccumulation of iron in the sea. In: Turner DR, Hunter KA (eds) The biogeochemistry of iron in seawater. Wiley, New York, pp 41–84

    Google Scholar 

  • Sunda WG, Swift DG, Huntsman SA (1991) Low iron requirement for growth in oceanic phytoplankton. Nature 351:55–57

    Article  CAS  Google Scholar 

  • Suzuki N, Oba M (2015) Oldest fossil records of marine protists and the geologic history toward the establishment of the modern-type marine protist world. In: Ohtsuka S et al (eds) Marine protists: diversity and dynamics. Springer, Tokyo, pp 359–364

    Google Scholar 

  • Suzuki K, Kuwata A, Yoshie N et al (2011) Population dynamics of phytoplankton, heterotrophic bacteria, and viruses during the spring bloom in the western subarctic Pacific. Deep Sea Res Part I 58:575–589

    Article  CAS  Google Scholar 

  • Swann GEA, Pike J, Snelling AM et al (2013) Seasonally resolved diatom δ18O records from the West Antarctic Peninsula over the last deglaciation. Earth Planet Sci Lett 364:12–23

    Article  CAS  Google Scholar 

  • Takahashi K, Billings JD, Morgan JK (1990) Oceanic province: assessment from the time-series diatom fluxes in the northeastern Pacific. Limnol Oceanogr 35:154–165

    Article  Google Scholar 

  • Takahashi K, Kuwata A, Saito H et al (2008) Grazing impact of the copepod community in the Oyashio region of the western subarctic Pacific Ocean. Prog Oceanogr 78:222–240

    Article  Google Scholar 

  • Taniguchi A, Suzuki T, Shimada S (1995) Growth characteristics of Parmales (Chrysophyceae) observed in bag cultures. Mar Biol 123:631–638

    Article  Google Scholar 

  • Thamatrakoln K, Korenovska O, Niheu AK et al (2012) Whole-genome expression analysis reveals a role for death-related genes in stress acclimation of the diatom Thalassiosira pseudonana. Environ Microbiol 14:67–81

    Article  CAS  PubMed  Google Scholar 

  • Trainer VL, Bates SS, Lundholm N et al (2012) Pseudo-nitzschia physiological ecology, phylogeny, toxicity, monitoring and impacts on ecosystem health. Harmful Algae 14:271–300

    Article  Google Scholar 

  • Tréguer P, Nelson DM, van Bennekom JV et al (1995) The silica balance in the world Ocean: a reestimate. Science 268:375–379

    Article  PubMed  Google Scholar 

  • Van Mooy BA, Fredricks HF, Pedler BE et al (2009) Phytoplankton in the ocean use non-phosphorus lipids in response to phosphorus scarcity. Nature 458:69–72

    Article  PubMed  CAS  Google Scholar 

  • Vanelslander B, Créach V, Vanormelingen P et al (2009) Ecological differentiation between sympatric pseudocryptic species in the estuarine benthic diatom Navicula phyllepta (Bacillariophyceae). J Phycol 45:1278–1289

    Article  CAS  Google Scholar 

  • Villareal TA (1988) Positive buoyancy in the oceanic diatom Rhizosolenia dtbyana H. Peragallo. Deep-Sea Res 35:1037–1045

    Article  Google Scholar 

  • Villareal TA (1992) Buoyancy properties of the giant diatom Ethmodiscus. J Plankton Res 14:459–463

    Article  Google Scholar 

  • Villareal TA, Woods S, Moore JK et al (1996) Vertical migration of Rhizosolenia mats and their significance to NO3 fluxes in the central North Pacific gyre. J Plankton Res 18:1103–1021

    Article  Google Scholar 

  • Waite AM, Thompson PA, Harrison PJ (1992) Does energy control the sinking rates of marine diatoms? Limnol Oceanogr 37:468–477

    Article  Google Scholar 

  • Waite A, Fisher A, Thompson PA et al (1997) Sinking rate vs volume relationships illuminate sinking control mechanisms in marine diatoms. Mar Ecol Progr Ser 157:97–108

    Article  Google Scholar 

  • Werner D (1977) The biology of diatoms. Blackwell, Oxford

    Google Scholar 

  • Wyatt T (2013) Margalef’s mandala and phytoplankton bloom strategies. Deep Sea Res Part II 101:32–49

    Article  Google Scholar 

  • Yamada K, Yoshikawa S, Ichinomiya S et al (2014) Effects of silicon-limitation on growth and morphology of Triparma laevis NIES-2565 (Parmales, Heterokontophyta). PLoS One 9(7):e103289

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Zielinski U, Gersonde R (1997) Diatom distribution in Southern Ocean surface sediments (Atlantic sector): implications for paloeenvironmental reconstructions. Palaeogeogr Palaeoclimat Palaeoecol 129:213–250

    Article  Google Scholar 

Download references

Acknowledgments

This study was partially supported by Grants-in-Aid for Scientific Research 22657027, 23370046 and 26291085 from the Japan Society for the Promotion of Science, the Canon Foundation and Core Research for Evolutional Science and Technology from Japan Science and Technology (AK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira Kuwata .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Kuwata, A., Jewson, D.H. (2015). Ecology and Evolution of Marine Diatoms and Parmales. In: Ohtsuka, S., Suzaki, T., Horiguchi, T., Suzuki, N., Not, F. (eds) Marine Protists. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55130-0_10

Download citation

Publish with us

Policies and ethics