Skip to main content

Abstract

A typical analytical electron microscopic method (i.e., energy dispersive X-ray spectroscopy, or EDS, sometimes called EDX or EDXS) is described in this chapter. Although some improvement in the resolution of EDS has been attempted, there has been no significant modification introduced in the practice and application of EDS in comparison with electron energyloss spectroscopy (EELS). Still, this method is the most standard and reliable one in the field of analytical electron microscopy and is widely used.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nomenclature, symbols, units and their usage in spectrochemical analysis-VIII. Nomenclature system for X-ray spectroscopy. Recommendations (1991)

    Google Scholar 

  2. Jenkins R, Manne R, Robin J, Senemaud C (1991) Part VIII. Nomenclature system for X-ray spectroscopy. Pure Appl Chem 63:735

    Article  Google Scholar 

  3. Wollman DA, Irwin KD, Hilton GC, Dulcie LL, Newbury DE, Martinis JM (1997) High-resolution, energy-dispersive microcalorimeter spectrometer for X-ray microanalysis. J Microsc 188:196

    Article  Google Scholar 

  4. Wollman DA, Irwin KD, Hilton GC, Dulcie LL, Bergren NF, Newbury DE, Martinis JM (1998) Microcalorimeter EDS with 3 eV energy resolution. In: Proceedings of the 14th international conference on electron microscopy, vol 3, p 573

    Google Scholar 

  5. Zaluzec NJ (1979) Quantitative X-ray microanalysis. In: Introduction to analytical electron microscopy. Hen JJ, Goldstein JI, Joy DC. (Plenum, New York, p 121)

    Chapter  Google Scholar 

  6. Yang J-M, Shindo D, Takeguchi M, Kawasaki M, Oikawa T (1999) Characterization of microstructure and magnetic domain structure in Sm-Co based permanent magnets by advanced transmission electron microscopy. J Jpn Inst Metals 63:542 (In Japanese)

    Google Scholar 

  7. Ziebold TO (1967) Precision and sensitivity in microprobe analysis. Anal Chem 39:858

    Article  Google Scholar 

  8. Watanabe M, Williams DB (1999) Atomic-level detection by X-ray microanalysis in the analytical electron microscope. Ultramicroscopy 78:89

    Article  Google Scholar 

  9. Kawasaki M, Oikawa T, Ibe K, Park K-H, Shiojiri M (1998) EDS elemental mapping of a DRAM with an FE-TEM. J Electron Microsc 47:335

    Article  Google Scholar 

  10. Cliff G, Lorimer GW (1975) The quantitative analysis of thin specimens. J Microsc 103:203

    Article  Google Scholar 

  11. Schreiber TP, Wims AM (1981) A quantitative Xray microanalysis thin film method using K-, L-, and M-lines. Ultramicroscopy 6:323

    Google Scholar 

  12. Goldstein JI, Williams DB, Cliff G (1986) Quantitative X-ray analysis. In: Joy DC, Romig AD Jr, Goldstein JI (eds) Principles of analytical electron microscopy. (Plenum, New York, p 155)

    Google Scholar 

  13. Mott NF, Massey HSW (1949) The theory of atomic collisions, 2nd edn. Oxford University Press, London, p 243

    MATH  Google Scholar 

  14. Green M, Cosslett VE (1961) The efficiency of production of characteristic X-radiation in thick targets of a pure element. Proc Phys Soc 78:1206

    Article  ADS  Google Scholar 

  15. Horita Z (1998) Quantitative X-ray microanalysis in analytical electron microscopy. Mater Trans JIM 39:947

    Google Scholar 

  16. Ãœberall H (1956) High-energy interference effect of bremsstrahlung and pair production in crystals. Phys Rev 103:1055

    Article  ADS  Google Scholar 

  17. Barbiellini G, Bologna G, Diambrini G, Murtas GP (1962) Experimental evidence for a quasi-monochromatic bremsstrahlung intensity from the Frascati 1-GeV electronsynchrotron. Phys Rev Lett 8:454

    Article  ADS  Google Scholar 

  18. Spence JCH, Reese G, Yamamoto N, Kurizki G (1983) Coherent bremsstrahlung peaks in X-ray microanalysis spectra. Phil Mag B48:L39

    Article  Google Scholar 

  19. Reese GM, Spence JCH, Yamamoto N (1984) Coherent bremsstrahlung from kilovolt electrons in zone axis orientations. Phil Mag A49:697

    ADS  Google Scholar 

  20. Spence JCH, Reese G (1986) Pendellösung radiation and coherent bremsstrahlung. Acta Cryst A42: 577

    Google Scholar 

  21. Satoh T, Otsuki E, Shindo D (1998) Coherent bremsstrahlung in ferrite observed by an analytical transmission electron microscope. J Electron Microsc 47:345

    Article  Google Scholar 

  22. Shindo D, Hiraga K, Williams T, Hirabayashi M, Inoue A, Masumoto T (1989) Electron channelling effect in an Al-Fe-Cu quasicrystal. Jpn J Appl Phys 28:L688

    Article  ADS  Google Scholar 

  23. Cowley JM (1964) The derivation of structural information from absorption effects in X-ray diffraction. Acta Cryst 17:33

    Article  Google Scholar 

  24. Batterman BW (1969) Detection of foreign atom sites by their X-ray fluorescence scattering. Phys Rev Lett 22:703

    Article  ADS  Google Scholar 

  25. Spence JCH, Taftø J (1983) ALCHEMI: a new technique for locating atoms in small crystals. J Microsc 130:147

    Article  Google Scholar 

  26. Shindo D, Hirabayashi M, Kawabata T, Kikuchi M (1986) A channelling enhanced microanalysis on niobium atom location in an Al-43 %Ti-2 %Nb intermetallic compound. J Electron Microsc 35:409

    Google Scholar 

  27. Shindo D, Chiba A, Hiraga K, Hanada S (1991) Electron channelling enhanced microanalysis of intermetallic compounds. In: Izumi O (ed) Proceedings of the International Symposium on Intermetallic Compounds, p 87

    Google Scholar 

  28. Horita Z, Matsumura S, Baba T (1995) General formulation for ALCHEMI. Ultramicroscopy 58:327

    Article  Google Scholar 

  29. Rossouw CJ, Forwood CT, Gibson MA, Miller PR (1996) Statistical ALCHEMI: general formulation and method with application to Ti-Al ternary alloys. Phil Mag A74:57

    ADS  Google Scholar 

  30. Shindo D, Kikuchi M, Hirabayashi M, Hanada S, Izumi O (1988) Site determination of Fe, Co and Cr atoms added in Ni3AI by electron channelling enhanced microanalysis. Trans Jpn Inst Metall 29:956

    Google Scholar 

  31. Chiba A, Shindo D, Hanada S (1991) Site occupation determination of Pd in Ni3Al by ALCHEMI. Acta Metall Mater 39:13

    Article  Google Scholar 

  32. Nakata Y, Tadaki T, Shimizu K (1991) Atom location of the third element in Ti-Ni-X shape memory alloys determined by the electron channelling enhanced microanalysis. Mater Trans JIM 32:580

    Google Scholar 

  33. Spence JCH, Graham RJ, Shindo D (1986) Cold ALCHEMI: impurity atom site location and the temperature dependance of dechannelling. Mater Res Soc Symp Proc 62:153

    Article  Google Scholar 

  34. Okaniwa H, Shindo D, Yoshida M, Takasugi T (1999) Determination of site occupancy of additives X (X = V, Mo, W and Ti) in the Nb-Cr-X Laves phase by ALCHEMI. Acta Mater 47:1987

    Article  Google Scholar 

  35. Gjønnes J, Høier R (1971) The application of nonsystematic many-beam dynamical effects to structure factor determination. Acta Cryst A27:313

    Google Scholar 

  36. Matsumura S, Morimura T, Oki K (1991) An analytical electron diffraction technique for the determination of long-range order parameters in multi-component ordered alloys. Mater Trans JIM 32:905

    Google Scholar 

  37. Bentley J (1986) Axial electron channeling microanalysis of Ll2 ordered alloys. In: Proceedings of the 11th International Congress on Electron Microscopy, Kyoto, vol 1, p 551

    Google Scholar 

  38. Pennycook SJ (1985) Electron channeling analysis and Z-contrast imaging of dopants in semiconductors. In: Bailey GW (ed) Proceedings of the 43rd annual EMSA meeting. San Francisco Press, San Francisco, p 296

    Google Scholar 

  39. Pennycook SJ (1988) Delocalization corrections for electron channeling analysis. Ultramicroscopy 26:239

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Japan

About this chapter

Cite this chapter

Shindo, D., Oikawa, T. (2002). Energy Dispersive X-ray Spectroscopy. In: Analytical Electron Microscopy for Materials Science. Springer, Tokyo. https://doi.org/10.1007/978-4-431-66988-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-66988-3_4

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-70336-5

  • Online ISBN: 978-4-431-66988-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics