Skip to main content

Diversity and Ecology of Endophytic and Epiphytic Fungi of Tree Leaves in Japan: A Review

  • Chapter
  • First Online:
Book cover Advances in Endophytic Research

Abstract

The phyllosphere is the living leaf as a whole and is colonized by endophytic and epiphytic fungi in the interior and on the surface of leaves, respectively. In this chapter, I summarize studies on the diversity and ecology of endophytic and epiphytic phyllosphere fungi on live leaves of trees in Japan. Studies to date have detected endophytes and epiphytes on leaves of at least 255 coniferous and broad-leaved tree species in 69 plant families, according to 45 papers published since 1990. These studies have recorded 24 endophytic and 22 epiphytic genera of fungi. Major trees used in the ecological studies of phyllosphere fungi include pines (Pinus), beech (Fagus), and dogwood (Swida). Focal topics include (1) the infection and colonization of leaves; (2) seasonal and leaf age-dependent patterns of temporal changes; (3) spatial distribution at various scales, from within-leaf, to within-canopy, to altitudinal and geographic distributions; (4) direct and indirect roles in decomposition of dead leaves; and (5) interaction with pathogens and herbivores and effects of simulated acid rain. Future research directions in Japan are suggested and discussed with reference to international literature on the ecology of endophytic and epiphytic phyllosphere fungi.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Aoki et al. (1990), Asai et al. (1998), Hashizume et al. (2008, 2010), Hata and Futai (1993, 1995, 1996), Hata and Sone (2008), Hata et al. (1998, 2002), Ikebe et al. (2004), Ito et al. (2007), Kaneko and Kakishima (2001), Kaneko and Kaneko (2004), Kaneko et al. (2003), Koide et al. (2005a), Makisaka et al. (2005), Naito et al. (2002), Nakagiri et al. (1997), Nomura et al. (2003), Okane (2003), Okane et al. (1996, 1997, 1998, 2001a, b, 2003), Osono (2002, 2003, 2006a, b, 2008, 2012), Osono and Masuya (2012), Osono and Mori (2004, 2005), Osono et al. (2004a, 2008, 2013), Sahashi et al. (1999, 2000), Shirouzu et al. (2008), Suzuki et al. (2003), Tomita (2003), and Yoshihashi et al. (2000, 2001).

References

  • Ahlholm J, Helander M, Elamo P, Saloniemi I, Neuvonen S, Hanhimäki S, Sakkonen K (2002a) Micro-fungi and invertebrate herbivores on birch trees: fungal mediated plant-herbivore interactions or responses to host quality? Ecol Lett 5:648–655

    Google Scholar 

  • Ahlholm J, Helander M, Henriksson J, Metzler M, Sakkonen K (2002b) Environmental conditions and host genotype direct genetic diversity of Venturia ditricha, a fungal endophyte of birch trees. Evolution 56:1566–1573

    PubMed  Google Scholar 

  • Andrews JH, Kenerley CM, Nordheim EV (1980) Positional variation in phylloplane microbial populations within an apple tree canopy. Microb Ecol 6:71–84

    Google Scholar 

  • Andrews JH, Harris RF, Spear RN, Lau GW, Nordheim EV (1994) Morphogenesis and adhesion of Aureo-basidium pullulans. Can J Microbiol 40:6–17

    Google Scholar 

  • Aoki T, Tokumasu S, Tubaki K (1990) Fungal succession on momi fir needles. Trans Mycol Soc Jpn 31:355–374

    Google Scholar 

  • Arnold AE (2005) Diversity and ecology of fungal endophytes in tropical forests. In: Deshmukh SK, Rai MK (eds) Biodiversity of fungi, their role in human life. Science Publishers, Enfield, pp 49–68

    Google Scholar 

  • Arnold AE (2007) Understanding the diversity of foliar endophytic fungi: progress, challenges, and frontiers. Fungal Biol Rev 21:51–66

    Google Scholar 

  • Arnold AE, Lutzoni F (2007) Diversity and host range of foliar fungal endophytes: are tropical leaves biodiversity hotspots? Ecology 88:541–549

    PubMed  Google Scholar 

  • Arnold AE, Maynard Z, Gilbert GS, Coley PD, Kursar TA (2000) Are tropical fungal endophytes hyperdiverse? Ecol Lett 3:267–274

    Google Scholar 

  • Arnold AE, Mejia LC, Kyllo D, Rojas EI, Maynard Z, Robbins N, Herre EA (2003) Fungal endophytes limit pathogen damage in a tropical tree. Proc Natl Acad Sci USA 100:15649–15654

    PubMed  CAS  Google Scholar 

  • Arnold AE, Henk DA, Eells RL, Lutzoni F, Vilgalys R (2007) Diversity and phylogenetic affinities of foliar fungal endophytes in loblolly pine inferred by culturing and environmental PCR. Mycologia 99:185–206

    PubMed  CAS  Google Scholar 

  • Asai E, Hata K, Futai K (1998) Effect of simulated acid rain on the occurrence of Lophodermium on Japanese black pine needles. Mycol Res 102:1316–1318

    CAS  Google Scholar 

  • Baayen RP, Bonants PJM, Verkley G, Carroll GC, van der Aa HA, de Weerdt M, van Brouwershaven IR, Schutte GC, Maccheroni W Jr, Glienke de Blanco C, Azevedo JL (2002) Nonpathogenic isolates of the citrus black spot fungus, Guignardia citricarpa, identified as a cosmopolitan endophyte of woody plants, G. mangiferae (Phyllosticta capitalensis). Phytopathology 92:464–477

    PubMed  CAS  Google Scholar 

  • Bayman P, Angulo-Sasndoval P, Baez-Ortiz Z, Lodge DJ (1998) Distribution and dispersal of Xylaria endophytes in two tree species in Puerto Rico. Mycol Res 102:944–948

    Google Scholar 

  • Bernstein ME, Carroll GC (1977) Internal fungi in old-growth Douglas fir foliage. Can J Bot 55:644–653

    Google Scholar 

  • Biodiversity Center of Japan (2010) Biodiversity of Japan: a harmonious coexistence between nature and humankind. Heibonsha, Tokyo

    Google Scholar 

  • Boddy L, Griffith GS (1989) Role of endophytes and latent invasion in the development of decay communities in sapwood of angiospermous trees. Sydowia 41:41–73

    Google Scholar 

  • Burgess TI, Gordon TR, Wingfield MJ, Wingfield BD (2004) Geographical isolation of Diplodia scrobiculata and its association with native Pinus radiata. Mycol Res 108:1399–1406

    PubMed  Google Scholar 

  • Butin H (1992) Effect of endophytic fungi from oak (Quercus robur L.) on mortality of leaf inhabiting gall insects. Eur J For Pathol 22:237–246

    Google Scholar 

  • Butler MJ, Day AW (1998) Fungal melanins: a review. Can J Microbiol 44:1115–1136

    CAS  Google Scholar 

  • Cabral D (1985) Phyllosphere of Eucalyptus viminalis: dynamics of fungal populations. Trans Br Mycol Soc 85:501–511

    Google Scholar 

  • Calhoun LA, Findlay JA, Miller JD, Whitney NJ (1992) Metabolites toxic to spruce budworm from balsam fir needle endophytes. Mycol Res 96:281–286

    Google Scholar 

  • Carroll GC (1979) Needle microepiphytes in a Douglas fir canopy: biomass and distribution patterns. Can J Bot 57:1000–1007

    Google Scholar 

  • Carroll GC (1988) Fungal endophytes in stems and leaves: from latent pathogen to mutualistic symbiont. Ecology 69:2–9

    Google Scholar 

  • Carroll GC (1990) Fungal endophytes in vascular plants: mycological research opportunities in Japan. Trans Mycol Soc Jpn 31:103–116

    Google Scholar 

  • Carroll GC (1991a) Fungal associates of woody plants as insect antagonists in leaves and stems. In: Krischik VA, Jones CG (eds) Microbial mediation of plant-herbivore interactions. Wiley, New York, pp 253–271

    Google Scholar 

  • Carroll GC (1991b) Beyond pest deterrence – alternative strategies and hidden costs of endophytic mutualisms in vascular plants. In: Andrews JH, Hirano SS (eds) Microbial ecology of leaves. Springer, New York, pp 358–375

    Google Scholar 

  • Carroll GC (1995) Forest endophytes: pattern and process. Can J Bot 73(Suppl 1):S1316–S1324

    Google Scholar 

  • Cheplick GP, Faeth SH (2009) Ecology and evolution of the grass-endophyte symbiosis. Oxford University Press, Oxford

    Google Scholar 

  • Clark CL, Miller JD, Whitney NJ (1989) Toxicity of conifer needle endophytes to spruce budworm. Mycol Res 93:508–512

    Google Scholar 

  • Clarke BB, White JF, Hurley RH, Torres MS, Sun S, Huff DR (2006) Endophyte-mediated suppression of dollar spot disease in fine fescues. Plant Dis 90:994–998

    Google Scholar 

  • Cohen SD (2004) Endophytic-host selectivity of Discula umbrinella on Quercus alba and Quercus rubra characterized by infection, pathogenicity and mycelial compatibility. Eur J Plant Pathol 110:713–721

    Google Scholar 

  • Cohen SD (2006) Host selectivity and genetic variation of Discula umbrinella isolates from two oak species: analyses of intergenic spacer region sequences of ribosomal DNA. Microb Ecol 52:463–469

    PubMed  CAS  Google Scholar 

  • Deckert RJ, Melville LH, Peterson RL (2001) Structural features of a Lophodermium endophyte during the cryptic life-cycle phase in the foliage of Pinus strobus. Mycol Res 105:991–997

    Google Scholar 

  • Deckert RJ, Hsiang T, Peterson RL (2002) Genetic relationships of endophytic Lophodermium nitens isolates from needles of Pinus strobus. Mycol Res 106:305–313

    Google Scholar 

  • Dickinson CH, Skidmore AM (1976) Interactions between germinating spore of Septoria nodorum and phylloplane fungi. Trans Br Mycol Soc 66:45–56

    Google Scholar 

  • Dobranic JK, Johnson JA, Alikhan QR (1995) Isolation of endophytic fungi from eastern larch (Larix laricina) leaves from New Brunswick, Canada. Can J Microbiol 41:194–198

    CAS  Google Scholar 

  • Duong LM, Jeewon R, Lumyong S, Hyde KD (2006) DGGE coupled with ribosomal DNA gene phylogenies reveal uncharacterized fungal phylotypes. Fungal Divers 23:121–138

    Google Scholar 

  • Faeth SH (2002) Are endophytic fungi defensive plant mutualists? Oikos 98:25–36

    Google Scholar 

  • Faeth SH, Hammon KE (1996) Fungal endophytes and phytochemistry of oak foliage: determinants of oviposition preference of leafminers? Oecologia 108:728–736

    Google Scholar 

  • Faeth SH, Hammon KE (1997a) Fungal endophytes in oak trees: long-term patterns of abundance and associations with leafminers. Ecology 78:810–819

    Google Scholar 

  • Faeth SH, Hammon KE (1997b) Fungal endophytes in oak trees: experimental analyses of interactions with leafminers. Ecology 78:820–827

    Google Scholar 

  • Fiss M, Kucheryava N, Schonherr J, Arnold KG, Auling G (2000) Isolation and characterization of epiphytic fungi from the phyllosphere of apple as potential biocontrol agents against apple scab (Venturia inaequalis). Z PflKrankh PflSchutz 107:1–11

    Google Scholar 

  • Gange AC (1996) Positive effects of endophyte infection on sycamore aphids. Oikos 75:500–510

    Google Scholar 

  • Ganley RJ, Brunsfeld SJ, Newcombe G (2004) A community of unknown, endophytic fungi in western white pine. Proc Natl Acad Sci USA 101:10107–10112

    PubMed  CAS  Google Scholar 

  • Gaylord ES, Preszler RW, Boecklen WJ (1996) Interactions between host plants, endophytic fungi, and a phytophagous insect in an oak (Quercus grisea x Q. gambelii) hybrid zone. Oecologia 105:336–342

    Google Scholar 

  • Gennaro M, Gonthier P, Nicolotti G (2003) Fungal endophytic communities in healthy and declining Quercus robur L. and Q. cerris L. trees in northern Italy. J Phytopathol 151:529–534

    Google Scholar 

  • Guo LD, Xu L, Zheng WH, Hyde KD (2004) Genetic variation of Alternaria alternata, an endophytic fungus isolated from Pinus tabulaeformis as determined by random amplified microsatellites (RAMS). Fungal Divers 16:53–65

    Google Scholar 

  • Hagiwara Y, Osono T, Takeda H (2012) Effects of clear-cutting on decomposition and bleaching of Camellia japonica leaf litter in a temperate secondary forest. Ap For Sci 21:1–6

    Google Scholar 

  • Halmschlager VE, Butin H, Donaubauer E (1993) Endophytische Pilze in Blättern und Zweigen von Quercus petraea. Eur J For Pathol 23:51–63 (in German with English abstract)

    Google Scholar 

  • Hashizume Y, Sahashi Y, Fukuda K (2008) The influence of altitude on endophytic mycobiota in Quercus acuta leaves collected in two areas 1000 km apart. For Pathol 38:218–226

    Google Scholar 

  • Hashizume Y, Fukuda K, Sahashi N (2010) Effects of summer temperature on fungal endophyte assemblages in Japanese beech (Fagus crenata) leaves in pure beech stands. Botany 88:266–274

    CAS  Google Scholar 

  • Hata K (1997) Collection, detection, and isolation of fungi: plant associated fungi (pathogens, symbionts, and saprobes): endophytes. Trans Mycol Soc Jpn 38:110–114 (in Japanese)

    Google Scholar 

  • Hata K, Futai K (1993) Effect of needle aging on the total colonization rates of endophytic fungi on Pinus thunbergii and Pinus densiflora needles. J Jpn For Soc 75:338–341

    Google Scholar 

  • Hata K, Futai K (1995) Endophytic fungi associated with healthy pine needles and needles infested by the pine needle gall midge, Thecodiplosis japonensis. Can J Bot 73:384–390

    Google Scholar 

  • Hata K, Futai K (1996) Variation in fungal endophyte populations in needles of the genus Pinus. Can J Bot 74:103–114

    Google Scholar 

  • Hata K, Sone K (2008) Isolation of endophytes from leaves of Neolitsea sericea in broadleaf and conifer stands. Mycoscience 49:229–232

    Google Scholar 

  • Hata K, Futai K, Tsuda M (1998) Seasonal and needle age-dependent changes of the endophytic mycobiota in Pinus thunbergii and Pinus densiflora needles. Can J Bot 76:245–250

    Google Scholar 

  • Hata K, Atari R, Sone K (2002) Isolation of endophytic fungi from leaves of Pasania edulis and their within-leaf distributions. Mycoscience 43:369–373

    Google Scholar 

  • Helander ML, Rantio-Lehtimäki A (1990) Effects of watering and simulated acid rain on quantity of phyllosphere fungi of birch leaves. Microb Ecol 19:119–125

    PubMed  CAS  Google Scholar 

  • Helander ML, Neuvonen S, Sieber T, Petrini O (1993a) Simulated acid rain affects birch leaf endophyte populations. Microb Ecol 26:227–234

    PubMed  CAS  Google Scholar 

  • Helander ML, Ranta H, Neuvonen S (1993b) Responses of phyllosphere microfungi to simulated sulphuric and nitric acid deposition. Mycol Res 97:533–537

    CAS  Google Scholar 

  • Helander ML, Sieber TN, Petrini O, Neuvonen S (1994) Endophytic fungi in Scots pine needles: spatial variation and consequences of simulated acid rain. Can J Bot 72:1108–1113

    Google Scholar 

  • Hirose D, Osono T (2006) Development and seasonal variations of Lophodermium populations on Pinus thunbergii needle litter. Mycoscience 47:242–247

    Google Scholar 

  • Hirose D, Matsuoka S, Osono T (2013) Assessment of the fungal diversity and succession of ligninolytic endophytes in Camellia japonica leaves using clone library analysis. Mycologia 105:837–843

    Google Scholar 

  • Hudson HJ (1968) The ecology of fungi on plant remains above the soil. New Phytol 67:837–874

    Google Scholar 

  • Ikebe M, Matsuda Y, Nakanishi K, Ito SI (2004) Temporal variations in isolation frequency of endophytic fungi in leaves of Ginkgo biloba. Chibu Shinrin Kenkyu 52:115–116 (in Japanese)

    Google Scholar 

  • Ikeda A, Matsuoka S Masuya H, Mori AS, Hirose D, Osono T (2013) Comparison of the diversity and assemblages of xylariaceous endophytes on forest tree leaves in subtropical, cool temperate, and subboreal forests in Japan. Popul Ecol (in press)

    Google Scholar 

  • Ito Y, Matsuda Y, Nakanishi K, Ito SI (2007) The effect of bagging branches on temporal infection levels of endophytic fungi in Quercus serrata. Chibu Shinrin Kenkyu 55:69–72 (in Japanese)

    Google Scholar 

  • Jachmann HT, Fehrmann H (1989) Effects of phyllosphere microorganisms on the senescence of wheat leaves. Z PflKrankh PflSchutz 96:124–133

    Google Scholar 

  • Johnson JA, Whitney NJ (1989a) An investigation of needle endophyte colonization patterns with respect to height and compass direction in a single of balsam fir (Abies balsamea). Can J Bot 67:723–725

    Google Scholar 

  • Johnson JA, Whitney NJ (1989b) A study of fungal endophytes of needles of balsam fir (Abies balsamea) and red spruce (Picea rubens) in New Brunswick, Canada, using cultural and electron microscope techniques. Can J Bot 67:3513–3516

    Google Scholar 

  • Johnson JA, Whitney NJ (1992) Isolation of fungal endophytes from black spruce (Picea mariana) dormant buds and needles from New Brunswick, Canada. Can J Bot 70:1754–1757

    Google Scholar 

  • Johnson JA, Whitney NJ (1994) Cytotoxicity and insecticidal activity of endophytic fungi from black spruce (Picea mariana) needles. Can J Microbiol 40:24–27

    Google Scholar 

  • Jumpponen A, Jones KL (2009) Massively parallel 454 sequencing indicates hyperdiverse fungal communities in temperate Quercus macrocarpa phyllosphere. New Phytol 184:438–448

    PubMed  CAS  Google Scholar 

  • Jumpponen A, Jones KL (2010) Seasonally dynamic fungal communities in the Quercus macrocarpa phyllosphere differ between urban and nonurban environments. New Phytol 186:496–513

    PubMed  CAS  Google Scholar 

  • Kaneko R, Kakishima M (2001) Mycosphaerella buna sp. nov. with a Pseudocercospora anamorph isolated from the leaves of Japanese beech. Mycoscience 42:59–66

    Google Scholar 

  • Kaneko R, Kaneko S (2004) The effect of bagging branches on levels of endophytic fungal infection in Japanese beech leaves. For Pathol 34:65–78

    Google Scholar 

  • Kaneko R, Kakishima M, Tokumasu S (2003) The seasonal occurrence of endophytic fungus, Mycosphaerella buna, in Japanese beech, Fagus crenata. Mycoscience 44:277–281

    Google Scholar 

  • Kikuzawa K (1983) Leaf survival of woody plants in deciduous broad-leaved forests. 1. Tall trees. Can J Bot 61:2133–2139

    Google Scholar 

  • Kinkel LL (1991) Fungal community dynamics. In: Andrews JH, Hirano SS (eds) Microbial ecology of leaves. Springer, New York, pp 253–270

    Google Scholar 

  • Kinkel LL, Andrews JH (1988) Disinfestation of living leaves by hydrogen peroxide. Trans Br Mycol Soc 91:523–528

    CAS  Google Scholar 

  • Kodani J, Togashi K (1992) Leaf expansion and shoot elongation of Cornus controversa Hemsley. Jpn J Ecol 42:115–123 (in Japanese with English abstract)

    Google Scholar 

  • Kodani J, Togashi K (1995) Foliage productivity and winter bud formation in relation to twig growth pattern in Cornus controversa Hemsley. Jpn J Ecol 45:237–245 (in Japanese with English abstract)

    Google Scholar 

  • Koide K, Osono T, Takeda H (2005a) Colonization and lignin decomposition of Camellia japonica leaf litter by endophytic fungi. Mycoscience 46:280–286

    Google Scholar 

  • Koide K, Osono T, Takeda H (2005b) Fungal succession and decomposition of Camellia japonica leaf litter. Ecol Res 20:599–609

    Google Scholar 

  • Kowalski T (1982) Fungi infecting Pinus sylvestris needles of various ages. Eur J For Pathol 12:182–190

    Google Scholar 

  • Lappalainen JH, Helander ML (1997) The role of foliar microfungi in mountain birch. Insect herbivore relationships. Ecography 20:116–122

    Google Scholar 

  • Lappalainen JH, Koricheva J, Helander ML, Haukioja E (1999) Densities of endophytic fungi and performance of leafminers (Lepidoptera: Eriocraniidae) on birch along a pollution gradient. Environ Pollut 104:99–105

    CAS  Google Scholar 

  • Lasota JA, Waldvogel MG, Shetlar DJ (1983) Fungus found in galls of Adelges abietis (L.) (Homoptera: Adelgidae): identification, within-tree distribution, and possible impact on insect survival. Environ Entomol 12:245–246

    Google Scholar 

  • Legault D, Dessureault M, Laflamme G (1989a) Mycoflore des aiguilles de Pinus banksiana et Pinus resinosa. I. Champignons endophytes. Can J Bot 67:2052–2060 (in French with English abstract)

    Google Scholar 

  • Legault D, Dessureault M, Laflamme G (1989b) Mycoflora of Pinus banksiana and Pinus resinosa needles. II. Epiphytic fungi. Can J Bot 67:2061–2065

    Google Scholar 

  • Levetin E, Dorsey K (2006) Contribution of leaf surface fungi to the air spora. Aerobiologia 22:3–12

    Google Scholar 

  • Lindow SE, Brandl MT (2003) Microbiology of the phyllosphere. Appl Environ Microbiol 69:1875–1883

    PubMed  CAS  Google Scholar 

  • Lu G, Cannon PF, Reid A, Simmons CM (2004) Diversity and molecular relationships of endophytic Colleto-trichum isolates from the Iwokrama Forest Reserve, Guyana. Mycol Res 108:53–63

    Google Scholar 

  • Magan N, Kirkwood IA, McLeod AR, Smith MK (1995) Effect of open-air fumigation with sulphur dioxide and ozone on phyllosphere and endophytic fungi of conifer needles. Plant Cell Environ 18:291–302

    CAS  Google Scholar 

  • Makisaka K, Matsuda Y, Nakanishi K, Ito SI (2005) Decomposing ability of endophytic fungi in leaves of Quercus serrata. Chibu Shinrin Kenkyu 53:99–102 (in Japanese)

    Google Scholar 

  • Masuya H, Kusunoki M, Kosaka H, Aikawa T (2009) Haradamyces foliicola anam. gen. et sp. nov., a cause of zonate leaf blight disease in Cornus florida in Japan. Mycol Res 113:173–181

    PubMed  Google Scholar 

  • Miller JD (1986) Toxic metabolites of epiphytic and endophytic fungi of conifer needles. In: Fokkema NJ, Heuvel J (eds) Microbiology of the phyllosphere. Cambridge University Press, New York, pp 223–231

    Google Scholar 

  • Miller JD, Strongman D, Whitney NJ (1985) Observations on fungi associated with spruce budworm infested balsam fir needles. Can J For Res 15:896–901

    Google Scholar 

  • Miller JD, Mackenzie S, Foto M, Adams GW, Findlay JA (2002) Needles of white spruce inoculated with rugulosin-producing endophytes contain rugulosin reducing spruce budworm growth rate. Mycol Res 106:471–479

    Google Scholar 

  • Miura K, Kudo M (1970) An agar-medium for aquatic hyphomycetes. Trans Mycol Soc Jpn 11:116–118 (in Japanese)

    Google Scholar 

  • Müller MM, Valjakka R, Suokko A, Hantula J (2001) Diversity of endophytic fungi of single Norway spruce needles and their role as pioneer decomposers. Mol Ecol 10:1801–1810

    PubMed  Google Scholar 

  • Naito S, Yoshihashi H, Matsuda Y, Ito SI (2002) Endophytic fungi in leaves of four species of the Fagaceae. Chibu Shinrin Kenkyu 50:113–114 (in Japanese)

    Google Scholar 

  • Nakagiri A, Okane I, Ito T, Katumoto K (1997) Lanceispora amphibia gen. et sp. nov., a new amphisphaeriaceous ascomycete inhabiting senescent and fallen leaves of mangrove. Mycoscience 38:207–213

    Google Scholar 

  • Nomura K, Naito S, Shimada H, Matsuda Y, Nakanishi K, Ito SI (2003) Comparison of the endophytic mycobiota in needles of Pinus thunbergii grown at seaside and inland districts. Chibu Shinrin Kenkyu 51:209–210 (in Japanese)

    Google Scholar 

  • Okane I (2003) Diversity of xylariaceous fungi on natural substrates and its relationship with plant endophytes. In: Nakagiri A (ed) Clarification of subtropical microbial flora and collection and preservation of cultures. Report of Grants-in-Aid for Scientific Research (No. 11660326). Osaka, pp 31–45 (in Japanese)

    Google Scholar 

  • Okane I, Nakagiri A, Ito T (1996) Discostroma tricellulare, a new endophytic ascomycete with a Seimatosporium anamorph isolated from Rhododendron. Can J Bot 74:1338–1344

    Google Scholar 

  • Okane I, Nakagiri A, Ito T (1997) Preliminary study of endophytic fungi in evergreen plants from Ishigaki and Iriomote islands. IFO Res Commun 18:45–51

    Google Scholar 

  • Okane I, Nakagiri A, Ito T (1998) Endophytic fungi in leaves of ericaceous plants. Can J Bot 76:657–663

    Google Scholar 

  • Okane I, Nakagiri A, Ito T (2001a) Identity of Guignardia sp. inhabiting ericaceous plants. Can J Bot 79:101–109

    Google Scholar 

  • Okane I, Nakagiri A, Ito T (2001b) Surculiseries rugispora gen. et sp. nov., a new endophytic mitosporic fungus from leaves of Bruguiera gymnorrhiza. Mycoscience 42:115–122

    Google Scholar 

  • Okane I, Lumyong S, Nakagiri A, Ito T (2003) Extensive host range of an endophytic fungus, Guignardia endophyllicola (anamorph: Phyllosticta capitalensis). Mycoscience 44:353–363

    Google Scholar 

  • Okane I, Srikitikulchai P, Toyama K, Læssøe T, Sivichai S, Hywel-Jones N, Nakagiri A, Potacharoen W, Suzuki KI (2008) Study of endophytic Xylariaceae in Thailand: diversity and taxonomy inferred from rDNA sequence analyses with saprobes forming fruit bodies in the field. Mycoscience 49:359–372

    CAS  Google Scholar 

  • Okane I, Srikitikulchai P, Tabuchi Y, Sivichai S, Nakagiri A (2012) Recognition and characterization of four Thai xylariaceous fungi inhabiting various tropical foliages as endophytes by DNA sequences and host plant preference. Mycoscience 53:122–132

    CAS  Google Scholar 

  • Omar M, Heather WA (1979) Effect of saprophytic phylloplane fungi on germination and development of Melampsora larici-populina. Trans Br Mycol Soc 72:225–231

    Google Scholar 

  • Osono T (2002) Phyllosphere fungi on leaf litter of Fagus crenata: occurrence, colonization, and succession. Can J Bot 80:460–469

    Google Scholar 

  • Osono T (2003) Effects of prior decomposition of beech leaf litter by phyllosphere fungi on substrate utilization by fungal decomposers. Mycoscience 44:41–45

    Google Scholar 

  • Osono T (2005) Colonization and succession of fungi during decomposition of Swida controversa leaf litter. Mycologia 97:589–597

    PubMed  Google Scholar 

  • Osono T (2006a) Fungi associated with Swida controversa leaves infested by zonate leaf blight and their antagonistic effects on the pathogenic fungus. Ap For Sci 15:7–12 (in Japanese with English abstract)

    Google Scholar 

  • Osono T (2006b) Role of phyllosphere fungi of forest trees in the development of decomposer fungal communities and decomposition processes of leaf litter. Can J Microbiol 52:701–716

    PubMed  CAS  Google Scholar 

  • Osono T (2007) Role of endophytic fungi in grass litter decomposition. In: Popay A, Thom E (eds) Proceedings for the 6th international endophyte symposium, New Zealand Grassland Association, Christchurch, New Zealand, 25–28 March 2007, pp 103–105

    Google Scholar 

  • Osono T (2008) Endophytic and epiphytic phyllosphere fungi of Camellia japonica: seasonal and leaf-age-dependent variations. Mycologia 100:387–391

    PubMed  Google Scholar 

  • Osono T (2012) Endophytic fungal assemblages on leaves of 73 deciduous tree species in a cool temperate forest. Ap For Sci 21:13–20

    Google Scholar 

  • Osono T (2013) Metagenomic approach yields insights into fungal diversity and functioning. In: Sota S (ed) Species diversity and community structure, novel patterns and processes in plants, insects, and fungi. Springer, Tokyo

    Google Scholar 

  • Osono T, Hirose D (2009a) Effects of prior decomposition of Camellia japonica leaf litter by an endophytic fungus on the subsequent decomposition by fungal colonizers. Mycoscience 50:52–55

    Google Scholar 

  • Osono T, Hirose D (2009b) Ecology of endophytic fungi associated with leaf litter decomposition. In: Rai M, Bridge P (eds) Current advances in mycology. CAB International, Oxon, pp 92–109

    Google Scholar 

  • Osono T, Hirose D (2011) Colonization and lignin decomposition of pine needle litter by Lophodermium pinastri. For Pathol 41:156–162

    Google Scholar 

  • Osono T, Masuya H (2012) Endophytic fungi associated with leaves of Betulaceae in Japan. Can J Microbiol 58:507–515

    PubMed  CAS  Google Scholar 

  • Osono T, Mori A (2003) Colonization of Japanese beech leaves by phyllosphere fungi. Mycoscience 44:437–441

    Google Scholar 

  • Osono T, Mori A (2004) Distribution of phyllosphere fungi within the canopy of giant dogwood. Mycoscience 45:161–168

    Google Scholar 

  • Osono T, Mori A (2005) Seasonal and leaf age-dependent changes in occurrence of phyllosphere fungi of giant dogwood. Mycoscience 46:273–279

    Google Scholar 

  • Osono T, Takeda H (1999) A methodological survey on incubation of fungi on leaf litter of Fagus crenata. Ap For Sci Kansai 8:103–108 (in Japanese with English abstract)

    Google Scholar 

  • Osono T, Bhatta BK, Takeda H (2004a) Phyllosphere fungi on living and decomposing leaves of giant dogwood. Mycoscience 45:35–41

    Google Scholar 

  • Osono T, Mori A, Koide K (2004b) Defoliation of giant dogwood (Swida controversa) caused zonate leaf blight. Ap For Sci 13:161–164 (in Japanese with English abstract)

    Google Scholar 

  • Osono T, Ishii Y, Hirose D (2008) Fungal colonization and decomposition of Castanopsis sieboldii leaves in a subtropical forest. Ecol Res 23:909–917

    Google Scholar 

  • Osono T, Hagiwara Y, Masuya H (2011) Effects of temperature and litter type on fungal growth and decomposition of leaf litter. Mycoscience 52:327–332

    CAS  Google Scholar 

  • Osono T, Tateno O, Masuya H (2013) Diversity and ubiquity of xylariaceous endophytes in live and dead leaves of temperate forest trees. Mycoscience 54:54–61

    Google Scholar 

  • Osorio M, Stephan BR (1991a) Life cycle of Lophoder-mium piceae in Norway spruce needles. Eur J For Pathol 21:152–163

    Google Scholar 

  • Osorio M, Stephan BR (1991b) Morphological studies of Lophodermium piceae (Fuckel) v. Höhnel on Norway spruce needles. Eur J For Pathol 21:389–403

    Google Scholar 

  • Park D (1982) Phylloplane fungi: tolerance of hyphal tips to drying. Trans Br Mycol Soc 79:174–178

    Google Scholar 

  • Petrini O (1986) Taxonomy of endophytic fungi of aerial plant tissues. In: Fokkema NJ, Van den Heuvel J (eds) Microbiology of the phyllosphere. Cambridge University Press, New York, pp 175–187

    Google Scholar 

  • Petrini O (1991) Fungal endophytes of tree leaves. In: Andrews JH, Hirano SS (eds) Microbial ecology of leaves. Springer, New York, pp 179–197

    Google Scholar 

  • Petrini O (1996) Ecological and physiological aspects of host specificity in endophytic fungi. In: Redlin SC, Carris LM (eds) Endophytic fungi in grasses and woody plants. APS Press, St. Paul, pp 87–100

    Google Scholar 

  • Petrini O, Carroll GC (1981) Endophytic fungi in foliage of some Cupressaceae in Oregon. Can J Bot 59:629–636

    Google Scholar 

  • Petrini O, Fisher PJ (1990) Occurrence of fungal endophytes in twigs of Salix fragilis and Quercus robur. Mycol Res 94:1077–1080

    Google Scholar 

  • Petrini LE, Petrini O, Laflamme G (1989) Recovery of endophytes of Abies balsamea from needles and galls of Paradiplosis tumifex. Phytoprotection 70:97–103

    Google Scholar 

  • Petrini O, Sieber TN, Toti L, Viret O (1992) Ecology, metabolite production, and substrate utilization in endophytic fungi. Nat Toxins 1:185–196

    PubMed  CAS  Google Scholar 

  • Promputtha I, Jeewon R, Lumyong S, McKenzie EHC, Hyde KD (2005) Ribosomal DNA fingerprinting in the identification of non sporulating endophytes from Magnolia liliifera (Magnoliaceae). Fungal Divers 20:167–186

    Google Scholar 

  • Promputtha I, Lumyong S, Dhanasekaran V, McKenzie EHC, Hyde KD, Jeewon R (2007) A phylogenetic evaluation of whether endophytes become saprotrophs at host senescence. Microb Ecol 53:579–590

    PubMed  Google Scholar 

  • Rodriguez RJ, Redman RS (1997) Fungal life-style and ecosystem dynamics: biological aspects of plant pathogens, plant endophytes and saprophytes. Adv Bot Res 24:169–193

    Google Scholar 

  • Ruscoe QW (1971) Mycoflora of living and dead leaves of Nothofagus truncata. Trans Br Mycol Soc 56:463–474

    Google Scholar 

  • Sahashi N, Kubono T, Miyasawa Y, Ito S (1999) Temporal variations in isolation frequency of endophytic fungi of Japanese beech. Can J Bot 77:197–202

    Google Scholar 

  • Sahashi N, Miyasawa Y, Kubono T, Ito S (2000) Colonization of beech leaves by two endophytic fungi in northern Japan. For Pathol 30:77–86

    Google Scholar 

  • Saikkonen K (2007) Forest structure and fungal endophytes. Fungal Biol Rev 21:67–74

    Google Scholar 

  • Saikkonen K, Faeth SH, Helander M, Sullivan TJ (1998) Fungal endophytes: a continuum of interactions with host plants. Annu Rev Ecol Syst 29:319–343

    Google Scholar 

  • Santamaria J, Bayman P (2005) Fungal epiphytes and endophytes of coffee leaves (Coffea arabica). Microb Ecol 50:1–8

    PubMed  Google Scholar 

  • Shirouzu T, Hirose D, Fukasawa Y, Tokumasu S (2008) Fungal succession associated with the decay of leaves of an evergreen oak Quercus myrsinaefolia. Fungal Divers 34:87–107

    Google Scholar 

  • Sieber TN (2007) Endophytic fungi in forest trees: are they mutualists? Fungal Biol Rev 21:75–89

    Google Scholar 

  • Sieber TN, Hugentobler C (1987) Endophytische Pilze in Blättern und Ästen gesunder und geschädigter Buchen (Fagus sylvatica L.). Eur J For Pathol 17:411–425 (in German with English abstract)

    Google Scholar 

  • Sieber TN, Rys J, Holdenrieder O (1999) Mycobiota in symptomless needles of Pinus mugo ssp. uncinata. Mycol Res 103:306–310

    Google Scholar 

  • Skidmore AM, Dickinson CH (1973) Effect of phylloplane fungi on the senescence of excised barley leaves. Trans Br Mycol Soc 60:107–116

    Google Scholar 

  • Skidmore AM, Dickinson CH (1976) Colony interactions and hyphal interference between Septoria nodorum and phylloplane fungi. Trans Br Mycol Soc 66:57–64

    Google Scholar 

  • Soma K, Saito T (1979) Ecological studies of soil organisms with references to the decomposition of pine needles. I. Soil macrofaunal and mycofloral surveys in coastal pine plantations. Rev Ecol Biol Sol 16:337–354

    Google Scholar 

  • Stadler B, Müller T (1996) Aphid honeydew and its effect on the phyllosphere microflora of Picea abies (L.) karst. Oecologia 108:771–776

    Google Scholar 

  • Stadler B, Müller T (2000) Effects of aphids and moth caterpillars on epiphytic microorganisms in canopies of forest trees. Can J For Res 30:631–638

    Google Scholar 

  • Stone JK (1988) Fine structure of latent infections by Rhabdocline parkeri on Douglas-fir, with observations on uninfected epidermal cells. Can J Bot 66:45–54

    Google Scholar 

  • Stone J, Petrini O (1997) Endophytes of forest trees: a model for fungus-plant interactions. In: Carroll GC, Tudzynski P (eds) The Mycota, V. Plant relationships, Part B. Springer, Berlin, pp 129–140

    Google Scholar 

  • Stone JK, Sherwood MA, Carroll GC (1996) Canopy microfungi: function and diversity. Northwest Sci 70:37–45

    Google Scholar 

  • Suske J, Acker G (1987) Internal hyphae in young, symptomless needles of Picea abies: electron microscopic and cultural investigation. Can J Bot 65:2098–2103

    Google Scholar 

  • Suske J, Acker G (1989) Identification of endophytic hyphae of Lophodermium piceae in tissues of green, symptomless Norway spruce needles by immunoelectron microscopy. Can J Bot 67:1768–1774

    Google Scholar 

  • Suzuki T, Naito S, Matsuda Y, Ito SI (2003) Differences of endophytic mycobiota in the leaves of Quercus serrata among sites and host trees. Chibu Shinrin Kenkyu 51:211–212 (in Japanese)

    Google Scholar 

  • Terashita T (1973) Studies of an anthracnose fungus on broad-leaved trees in Japan, with special reference to the latency of the fungus. Bull Gov For Exp Sta 252:1–85 (in Japanese with English abstract)

    Google Scholar 

  • Tokumasu S (1980) Observations on the fungal flora on pine needle litter. In: Biseibutsu no seitai 7. Gakkai Shuppan Center, Tokyo, pp 129–144 (in Japanese)

    Google Scholar 

  • Tomita F (2003) Endophytes in Southeast Asia and Japan: their taxonomic diversity and potential applications. Fungal Divers 14:187–204

    Google Scholar 

  • Toti L, Viret O, Chapela IH, Petrini O (1992) Differential attachment by conidia of the endophyte, Discula umbrinella (Berk. & Br.) Morelet, to host and non-host surfaces. New Phytol 121:469–475

    Google Scholar 

  • Toti L, Viret O, Horat G, Petrini O (1993) Detection of the endophyte Discula umbrinella in buds and twigs of Fagus sylvatica. Eur J For Pathol 23:147–152

    Google Scholar 

  • Valkama E, Koricheva J, Salminen JP, Helander M, Saloniemi I, Saikkonen K, Pihlaja K (2005) Leaf surface traits: overlooked determinants of birch resistance to herbivores and foliar micro-fungi? Trees 19:191–197

    Google Scholar 

  • Viret O, Petrini O (1994) Colonization of beech leaves (Fagus sylvatica) by the endophyte Discula umbrinella (teleomorph: Apiognomonia errabunda). Mycol Res 98:423–432

    Google Scholar 

  • Viret O, Scheidegger C, Petrini O (1993) Infection of beech leaves (Fagus sylvatica) by the endophyte Discula umbrinella (teleomorph: Apiognomonia errabunda): low-temperature scanning electron microscopy studies. Can J Bot 71:1520–1527

    Google Scholar 

  • Viret O, Toti L, Chapela IH, Petrini O (1994) The role of the extracellular sheath in recognition and attachment of conidia of Discula umbrinella (Berk. & Br.) Morelet to the host surface. New Phytol 127:123–131

    Google Scholar 

  • Wang Y, Guo LD, Hyde KD (2005) Taxonomic placement of sterile morphotypes of endophytic fungi from Pinus tabulaeformis (Pinaceae) in northeast China based on rDNA sequences. Fungal Divers 20:235–260

    CAS  Google Scholar 

  • Wei CZ, Harada Y (1998) Didymella fagi sp. nov. and its anamorph Ascochyta fagi, causing the yellow leaf spot disease of Fagus crenata and Quercus mongolica var. grosseserrata in Japan. Mycoscience 39:63–69

    Google Scholar 

  • Wei JG, Xu T, Guo LD, Liu AR, Zhang Y, Pan XH (2007) Endophytic Pestalotiopsis species associated with plants of Podocarpaceae, Theaceae, and Taxaceae in southern China. Fungal Divers 24:55–74

    CAS  Google Scholar 

  • Weis AE (1982) Use of a symbiotic fungus by the gall maker Asteromyia carbonifera to inhibit attack by the parasitoid Torymus capite. Ecology 63:1602–1605

    Google Scholar 

  • Wildman HG, Parkinson D (1979) Microfungal succession on living leaves of Populus tremuloides. Can J Bot 57:2800–2811

    Google Scholar 

  • Wilson D (1995) Fungal endophytes which invade insect galls: insect pathogens, benign saprophytes, or fungal inquilines? Oecologia 103:255–260

    Google Scholar 

  • Wilson D (1996) Manipulation of infection levels of horizontally transmitted fungal endophytes in the field. Mycol Res 100:827–830

    Google Scholar 

  • Wilson D (2000) Ecology of woody plant endophytes. In: Bacon CW, White JF Jr (eds) Microbial endophytes. Marcel Dekker, New York, pp 389–420

    Google Scholar 

  • Wilson D, Carroll GC (1994) Infection studies of Discula quercina, an endophyte of Quercus garryana. Mycologia 86:635–647

    Google Scholar 

  • Wilson D, Carroll GC (1997) Avoidance of high-endophyte space by gall-forming insects. Ecology 78:2153–2163

    Google Scholar 

  • Wilson D, Faeth SH (2001) Do fungal endophytes result in selection for leafminer ovipositional preference? Ecology 82:1097–1111

    Google Scholar 

  • Wilson D, Barr ME, Faeth SH (1997) Ecology and description of a new species of Ophiognomonia endophytic in the leaves of Quercus emoryi. Mycologia 89:537–546

    Google Scholar 

  • Yan L, Zhang C, Ding L, Ma Z (2008) Development of a real-time PCR assay for the detection of Cladosporium fulvum in tomato leaves. J Appl Microbiol 104:1417–1424

    PubMed  CAS  Google Scholar 

  • Yoshihashi H, Okuda A, Takeda A, Ito SI (2000) Endophytic fungi in leaves of the woody plants. Chibu Shinrin Kenkyu 48:155–156 (in Japanese)

    Google Scholar 

  • Yoshihashi H, Okuda A, Takeda A, Matsuda Y, Ito SI (2001) Endophytic fungi in leaves of the woody plants. Temporal variations in isolation frequency of endophytic fungi. Chibu Shinrin Kenkyu 49:97–100 (in Japanese)

    Google Scholar 

Download references

Acknowledgments

I thank Dr. Elizabeth Nakajima for her critical reading of the manuscript. This work has received partial financial support from the Ministry of Education, Culture, Sports, Science, and Technology of Japan (No. 23770083), the global COE program A06 to Kyoto University, and Grants for Excellent Graduate Schools, MEXT, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Osono .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this chapter

Cite this chapter

Osono, T. (2014). Diversity and Ecology of Endophytic and Epiphytic Fungi of Tree Leaves in Japan: A Review. In: Verma, V., Gange, A. (eds) Advances in Endophytic Research. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1575-2_1

Download citation

Publish with us

Policies and ethics