Skip to main content

Limitation of Plant Biopesticides

  • Chapter
Advances in Plant Biopesticides

Abstract

The seeking of new alternatives of synthetic insecticides for the safe environment and health has become an important issue of scientific research which may enable us to obtain safe foods. Although botanical insecticides (BIs) can never entirely replace the amounts of produced synthetic insecticides, they may significantly contribute to seeking the solution of problems associated with application of synthetic pesticides. Three most important arguments support the use of BIs: environmental safety, low or no toxicity for vertebrates and prevention of resistance development. The above-mentioned assets of BIs make us believe in the need of increasing the society-wide efforts leading to further expansion of practical use of these products. However, despite these assets, several limiting factors are associated with BIs that prevent their wider use or restrict their practical applications. This chapter is an effort to critically summarise the advantages and disadvantages of botanical insecticides including major factors that pose limitations to their practical use.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anuradha A, Annadurai RS (2008) Biochemical and molecular evidence of azadirachtin binding to insect actins. Curr Sci 95:1588–1593

    CAS  Google Scholar 

  • Bakkali F, Averbecka S, Averbecka D, Idaomar M (2008) Biological effects of essential oils – a review. Food Chem Toxicol 46:446–475. doi:10.1016/j.fct.2007.09.106

    Article  CAS  PubMed  Google Scholar 

  • Betarbet R, Greenamyre JT (2008) Complex I inhibition, rotenone and Parkinson’s disease. In: Nas R, Przedlovski S (eds) Parkinson’s disease- molecular and therapeutic insights from model systems. Elsevier, New York, pp 745–749

    Google Scholar 

  • Bruneton J (2001) Pharmacognosy, phytochemistry, medicinal plants, 2nd edn., repr. Paris [u.a.]: Lavoisier Tec, France

    Google Scholar 

  • Casagrande RA (1987) The Colorado potato beetle: 125 years of mismanagement. Bull Entomol Soc Am 33:142–150

    Google Scholar 

  • Casida JE (2012) The greening of pesticide–environment interactions: some personal observations. Environ Health Perspect 120:487–493. doi:10.1289/ehp.1104405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chermenskaya TD, Stepanycheva EA, Shchenikova AV, Chakaeva AS (2010) Insectoacaricidal and deterrent activities of extracts of Kyrgyzstan plants against three agricultural pests. Ind Crop Prod 32:157–163. doi:10.1016/j.indcrop.2010.04.009

    Article  Google Scholar 

  • De Boer H, Vongsombath C, Pålsson K, Björk L, Jaenson TG (2010) Botanical repellents and pesticides traditionally used against hematophagous invertebrates in Lao People’s Democratic Republic: a comparative study of plants used in 66 villages. J Med Entomol 47:400–414

    Article  PubMed  Google Scholar 

  • Dubey NK (2011) Natural products in pest management. CAB International, London

    Google Scholar 

  • EEC (1991) Council Directive 91/414/EEC of 15 July 1991 concerning the placing of plant protection products on the market. Office for Official Publications of the European Communities, OJ No L 230, Brusseuls, 19.8.1991, p 194

    Google Scholar 

  • Esposti MD, Ghelli A, Ratta M, Cortes D, Estornell E (1994) Natural substances (acetogenins) from the family Annonaceae are powerful inhibitors of mitochondrial NADH dehydrogenase (Complex I). Biochem J 301:161–167

    Article  PubMed  PubMed Central  Google Scholar 

  • European Commission (2009) Council Regulation (EC) no. 1107/2009 of 21 October 2009 concerning the placing of plant protection products on the market and repealing Council Directives 79/117/EEC and 91/414/ EEC. Off J Europ Union 52:1–51. doi:10.3000/17252555.L_2009.309.eng

  • George DR, Guy JH, Arkle S, Harrington D, De Luna C, Okello EJ, Shiel RS, Port G, Sparaganoa OA (2008) Use of plant-derived products to control arthropods of veterinary importance: a review. Anim Biodivers Emerg Dis Ann N Y Acad Sci 1149:23–26

    Article  CAS  Google Scholar 

  • Isman MB (1997) Neem and other botanical insecticides: barriers to commercialization. Phytoparasitica 25:339–344

    Article  Google Scholar 

  • Isman MB (2000) Plant essential oils for pest & disease management. Crop Prot 19:603–608. doi:10.1016/S0261-2194(00)00079-X

    Article  CAS  Google Scholar 

  • Isman MB (2004) Factors limiting commercial success of neem insecticides in North America and Western Europe. In: Koul O, Wahab S (eds) Neem: today and in the new millennium. Kluwer Academic Publishers, Dordrecht

    Chapter  Google Scholar 

  • Isman MB (2006) Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annu Rev Entomol 51:45–66. doi:10.1146/annurev.ento.51.110104.151146

    Article  CAS  PubMed  Google Scholar 

  • Isman MB (2008) Botanical insecticides: for richer, for poorer. Pest Manag Sci 64:8–11

    Article  CAS  PubMed  Google Scholar 

  • Jeyasankar A, Jesudasan RWA (2005) Insecticidal properties of novel botanicals against a few lepidopteran pests. Pestology 29:42–44

    Google Scholar 

  • Koul O (2008) Phytochemicals and insect control: an antifeedant approach. Crit Rev Plant Sci 27:1–24

    Article  CAS  Google Scholar 

  • LaForge FB, Haller HL, Smith LE (1933) The determination of the structure of rotenone. Chem Rev 12:181–213

    Article  CAS  Google Scholar 

  • Li N, Ragheb K, Lawler G, Sturgis J, Rajwa B, Melendez JA, Robinson JP (2003) Mitochondrial complex I inhibitor rotenone induces apoptosis through enhancing mitochondrial reactive oxygen species production. J Biol Chem 10:8516–8525

    Article  Google Scholar 

  • Liu J, Lu Y, Wu Q, Goyer RA, Waalkes MP (2008) Mineral arsenicals in traditional medicines: orpiment, realgar, and arsenolite. J Pharmacol Exper Ther 326:363–368

    Article  CAS  Google Scholar 

  • McIndoo NC, Sievers AF (1924) Plants tested for insecticidal value or reported to possess insecticidal properties, USDA Bulletin 1201. United States Department of Agriculture, Washington, DC

    Book  Google Scholar 

  • Mordue (Luntz) AJ, Blackwell A (1993) Azadirachtin: an update. J Insect Physiol 39:903–924

    Article  Google Scholar 

  • Paoletti MG, Pimentel D (2000) Environmental risks of pesticides versus genetic engineering for agricultural pest control. J Agric Environ Ethics 12:279–303

    Article  Google Scholar 

  • Pavela R (2007) Lethal and sublethal effects of thyme oil (Thymus vulgaris L.) on the house fly (Musca domestica Lin.). J Essent Oil Bear Plants 10:346–356

    Article  CAS  Google Scholar 

  • Pavela R (2008) Larvicidal effects of various Euro-Asiatic plants against Culex quinquefasciatus Say larvae (Diptera: Culicidae). Parasitol Res 102:555–559

    Article  PubMed  Google Scholar 

  • Pavela R (2009a) Larvicidal effects of some Euro-Asiatic plants against Culex quinquefasciatus Say larvae (Diptera: Culicidae). Parasitol Res 105:887–892

    Article  PubMed  Google Scholar 

  • Pavela R (2009b) Larvicidal property of essential oils against Culex quinquefasciatus Say (Diptera: Culicidae). Ind Crop Prod 30:311–315

    Article  CAS  Google Scholar 

  • Pavela R (2011a) Screening of Eurasian plants for insecticidal and growth inhibition activity against Spodoptera littoralis larvae. Afr J Agric Res 6:2895–2907

    Google Scholar 

  • Pavela R (2011b) Insecticidal and repellent activity of selected essential oils against pollen beetle, Meligethes aeneus (Fabricius) adults. Ind Crop Prod 34:888–892. doi:10.1016/j.indcrop.2011.02.014

    Article  CAS  Google Scholar 

  • Pavela R (2012) Efficacy of three newly developed botanical insecticides based on pongam oil against Plutella xylostella L. larvae. J Biopestic 5:62–70

    Google Scholar 

  • Pavela R, Barnet M, Kocourek F (2004) Effect of azadirachtin applied systemically through roots of plants on the mortality, development and fecundity of the cabbage aphid (Brevicoryne brassicae). Ptytoparasitica 32:286–294. doi:10.1007/BF02979823

    Article  CAS  Google Scholar 

  • Pavela R, Harmatha J, Barnet M, Vokac K (2005) Systemic effects of phytoecdysteroids on the cabbage aphid Brevicoryne brassicae (Sternorrhyncha: Aphididae). Eur J Entomol 102:647–653

    Article  CAS  Google Scholar 

  • Perry AS, Yamamoto I, Ishaaya I, Perry RY (1998) Insecticides in agriculture and environment. Springer, Berlin

    Book  Google Scholar 

  • Prakash A, Rao J (1997) Botanical pesticides in agriculture. CRC Lewis Publications, Boca Raton

    Google Scholar 

  • Prakash A, Rao J, Nandagopal V (2008) Future of botanical pesticides in rice, wheat, pulses and vegetables pest management. J Biopestic 1:154–169

    CAS  Google Scholar 

  • Randhawa MS (1980) History of agriculture in India, vol 1. Indian Council of Agricultural Research, New Delhi

    Google Scholar 

  • Rao DS (1957) The insecticidal property of petals of several common plants of India. Econ Bot 11:274–276

    Article  CAS  Google Scholar 

  • Rattan RS (2010) Mechanism of action of insecticidal secondary metabolites of plant origin. Crop Prot 29:913–920

    Article  CAS  Google Scholar 

  • Regnault-Roger C, Philogène BJ, Vincent C (2005) Biopesticides of plant origin. Lavoisier Publishing, Paris

    Google Scholar 

  • Richardson HW (2000) Copper compounds. Ullmann’s Encyclopedia of industrial chemistry. Published online only doi:10.1002/14356007.a07_567

  • Roberts JR, Karr CJ, Council on Environmental Health (2012) Pesticide exposure in children. Pediatrics 130:E1765–E1788. doi:10.1542/peds.2012-2758

    Article  PubMed  Google Scholar 

  • Rosell G, Quero C, Coll J, Guerrero A (2008) Biorational insecticides in pest management. J Pestic Sci 33:103–121. doi:10.1584/jpestics.R08-01

    Article  CAS  Google Scholar 

  • Salehzadeh A, Akhkha A, Cushley W, Adams RLP, Kusel JR, Strang RHC (2003) The antimitotic effect of the neem terpenoid azadirachtin on cultured insect cells. Insect Biochem Mol Biol 33:681–689

    Article  CAS  PubMed  Google Scholar 

  • Schillhorn van Veen TW (1999) Agricultural policy and sustainable livestock development. Int J Parasitol 29:7–15

    Article  CAS  PubMed  Google Scholar 

  • Simmonds MSJ, Manlove JD, Blaney WM, Khambay BPS (2000) Effect of botanical insecticides on the foraging and feeding behavior of the coccinellid predator Cryptolaemus montrouzieri. Phytoparasitica 28:99–107. doi:10.1007/BF02981738

    Article  CAS  Google Scholar 

  • Simmonds MSJ, Manlove JD, Blaney WM, Khambay BPS (2002) Effects of selected botanical insecticides on the behaviour and mortality of the glasshouse whitefly Trialeurodes vaporariorum and the parasitoid Encarsia formosa. Entomol Exp Appl 102:39–47. doi:10.1046/j.1570-7458.2002.00923.x

    Article  CAS  Google Scholar 

  • Singh D, Mehta SS (1998) Screening of plant material for repellent and insecticidal properties against pulse beetle (Callosobruchus chinensis) and house fly (Musca domestica). J Med Arom Plant Sci 20:397–400

    Google Scholar 

  • Singh D, Siddiqui MS, Sharma S (1989) Reproduction retardant and fumigant properties in essential oils against rice weevil (Coleoptera: Curculionidae) in stored wheat. J Econ Entomol 83:723–733

    Google Scholar 

  • Tattersfield F, Potter C (1940) The insecticidal properties of certain species of Annona and of an Indian strain of Mundulea sericea (“Supli”). Appl Biol 27:262–272

    Article  CAS  Google Scholar 

  • Tiffin P (2000) Are tolerance, avoidance, and antibiosis evolutionarily and ecologically equivalent responses of plants to herbivores? Am Nat 155:128–138

    Article  PubMed  Google Scholar 

  • Ware G, Whitacre D (2004) The pesticide book, 6th edn. Meister Media, Willoughby

    Google Scholar 

  • Yamamoto I, Casida JE (eds) (1999) Nicotinoid insecticides and the nicotinic acetylcholine receptor. Springer, Tokyo

    Google Scholar 

  • Yankanchi SR, Gadacher AH (2010) Grain protectant efficacy of certain plant extracts against rice weevil, Sitophilus oryzae L. (Coleoptera: Curculionidae). J Biopestic 3:511–513

    Google Scholar 

  • Yu XP, Lu ZX, Chen JM, Xu HX, Zheng XS, Chen LZ, Zhang JF, Shentu XP (2005) Review on research and development of botanical pesticides in China. Acta Agric Zhejiangensis 17:42–48 (in Chinese)

    Google Scholar 

Download references

Acknowledgements

Financial support for this work was provided by the Ministry of Education, Youth and Sports (No. LH11133).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roman Pavela Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this chapter

Cite this chapter

Pavela, R. (2014). Limitation of Plant Biopesticides. In: Singh, D. (eds) Advances in Plant Biopesticides. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2006-0_17

Download citation

Publish with us

Policies and ethics