Skip to main content

2015 | OriginalPaper | Buchkapitel

Axial Back Conduction through Channel Walls During Internal Convective Microchannel Flows

verfasst von : Sameer Khandekar, Manoj Kumar Moharana

Erschienen in: Nanoscale and Microscale Phenomena

Verlag: Springer India

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Recent developments during the last decade in the field of manufacturing and development of many high-power mini-/micro-devices led to increased interest in microfluidic devices involving heat transfer. Since the pioneering work by Tuckerman and Pease (IEEE Electron Device Lett 2:126–129, 1981) on the use of microchannels for high heat flux removal, certainly a lot of developments has been witnessed through ever-increasing analytical, experimental, and highly sophisticated numerical studies by many researchers across the globe. In spite of this progress, many fundamental understandings of flow and heat transfer phenomena in mini-/microchannel systems are still obscure. One such phenomenon is the flow of heat in the solid wall of microchannel systems by means of conduction normally in a direction opposite to that of internal convective mini-/microchannel flow of fluid, called “axial wall conduction” or “axial back conduction.” Axial back conduction is not a new phenomenon, rather mostly neglected unintentionally because of its convincingly smaller influence on heat transfer in conventional-size channels. As the hydraulic diameter of a channel decreases, the coupling between the substrate and bulk fluid temperatures becomes significant because of the relative size of the fluid to the solid wall. Unlike in conventional-size channels, negligence of axial back conduction along the solid walls of micro heat exchangers frequently leads to erroneous conclusions and inconsistencies in the interpretation of transport data. Thus, it is important to explicitly identify the thermofluidic parameters of interest which lead to a distortion in the boundary conditions and thus the true estimation of species transfer coefficients. In this chapter, we focus our attention on the axial back conduction in the solid substrate/channel wall as against the axial back conduction in the liquid flow domain; thus, a detailed review of the state-of-the-art on axial back conduction in both conventional as well as mini-/microchannel systems is presented.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Avci M, Aydin O, Arici ME (2012) Conjugate heat transfer with viscous dissipation in a microtube. Int J Heat Mass Transf 55(19–20):5302–5308CrossRef Avci M, Aydin O, Arici ME (2012) Conjugate heat transfer with viscous dissipation in a microtube. Int J Heat Mass Transf 55(19–20):5302–5308CrossRef
2.
Zurück zum Zitat Bahnke GD, Howard CP (1964) The effect of longitudinal heat conduction on periodic-flow heat exchanger performance. J Eng Power 86:105–120CrossRef Bahnke GD, Howard CP (1964) The effect of longitudinal heat conduction on periodic-flow heat exchanger performance. J Eng Power 86:105–120CrossRef
3.
Zurück zum Zitat Barozzi GS, Pagliarini G (1985) A method to solve conjugate heat transfer problems: the case of fully developed laminar flow in a pipe. J Heat Transf 107(1):77–83CrossRef Barozzi GS, Pagliarini G (1985) A method to solve conjugate heat transfer problems: the case of fully developed laminar flow in a pipe. J Heat Transf 107(1):77–83CrossRef
4.
Zurück zum Zitat Bier W, Keller W, Linder G, Seidel D, Schubert K, Martin H (1993) Gas to gas heat transfer in micro heat exchangers. Chem Eng Proc 32:33–43CrossRef Bier W, Keller W, Linder G, Seidel D, Schubert K, Martin H (1993) Gas to gas heat transfer in micro heat exchangers. Chem Eng Proc 32:33–43CrossRef
5.
Zurück zum Zitat Celata GL (2004) Heat transfer and fluid flow in microchannels, series in thermal and fluid physics and engineering. Begell House, New York Celata GL (2004) Heat transfer and fluid flow in microchannels, series in thermal and fluid physics and engineering. Begell House, New York
6.
Zurück zum Zitat Chaudhuri A, Guha C, Dutta TK (2007) Numerical study of fluid flow and heat transfer in partially heated microchannels using the explicit finite volume method. Chem Eng Tech 30(4):425–430CrossRef Chaudhuri A, Guha C, Dutta TK (2007) Numerical study of fluid flow and heat transfer in partially heated microchannels using the explicit finite volume method. Chem Eng Tech 30(4):425–430CrossRef
7.
Zurück zum Zitat Chein R, Chen YC, Chung JN (2012) Axial heat conduction and heat supply effects on methanol-steam reforming performance in micro-scale reformers. Int J Heat Mass Transf 55(11–12):3029–3042CrossRef Chein R, Chen YC, Chung JN (2012) Axial heat conduction and heat supply effects on methanol-steam reforming performance in micro-scale reformers. Int J Heat Mass Transf 55(11–12):3029–3042CrossRef
8.
Zurück zum Zitat Chiou JP (1980) The advancement of compact heat exchanger theory considering the effects of longitudinal heat conduction and flow non-uniformity. In: Proceedings of the symposium on compact heat exchangers-history, technological advancement and mechanical design problems. Book no. G00183, HTD vol 10, ASME, New York Chiou JP (1980) The advancement of compact heat exchanger theory considering the effects of longitudinal heat conduction and flow non-uniformity. In: Proceedings of the symposium on compact heat exchangers-history, technological advancement and mechanical design problems. Book no. G00183, HTD vol 10, ASME, New York
9.
Zurück zum Zitat Choi SB, Barron RF, Warrington RO (1991) Fluid flow and heat transfer in microtubes, micromechanical sensors, actuators, and systems, vol 32, ASME, DSC, pp. 123–134 Choi SB, Barron RF, Warrington RO (1991) Fluid flow and heat transfer in microtubes, micromechanical sensors, actuators, and systems, vol 32, ASME, DSC, pp. 123–134
10.
Zurück zum Zitat Cole KD, Cetin B (2011) The effect of axial conduction on heat transfer in a liquid microchannel flow. Int J Heat Mass Transf 54(11–12):2542–2549MATHCrossRef Cole KD, Cetin B (2011) The effect of axial conduction on heat transfer in a liquid microchannel flow. Int J Heat Mass Transf 54(11–12):2542–2549MATHCrossRef
11.
Zurück zum Zitat Cotton MA, Jackson JD (1985) The effect of heat conduction in a tube wall upon forced convection heat transfer in the thermal entry region. In: Proceedings of numerical methods in thermal problems, vol 4, Pineridge Press, Swansea, pp 504–515 Cotton MA, Jackson JD (1985) The effect of heat conduction in a tube wall upon forced convection heat transfer in the thermal entry region. In: Proceedings of numerical methods in thermal problems, vol 4, Pineridge Press, Swansea, pp 504–515
12.
Zurück zum Zitat Faghri M, Sparrow EM (1980) Simultaneous wall and fluid axial conduction in laminar pipe-flow heat transfer. J Heat Transf 102:58–63CrossRef Faghri M, Sparrow EM (1980) Simultaneous wall and fluid axial conduction in laminar pipe-flow heat transfer. J Heat Transf 102:58–63CrossRef
13.
Zurück zum Zitat Goodling JS (1993) Microchannel heat exchangers: a review. In: Proceedings of high heat flux engineering II, San Diego, 12–13 July 1997, pp 66–82 Goodling JS (1993) Microchannel heat exchangers: a review. In: Proceedings of high heat flux engineering II, San Diego, 12–13 July 1997, pp 66–82
14.
Zurück zum Zitat Guo ZY, Li ZX (2003) Size effect on single-phase channel flow and heat transfer at microscale. Int J Heat Fluid Flow 24(3):284–298CrossRef Guo ZY, Li ZX (2003) Size effect on single-phase channel flow and heat transfer at microscale. Int J Heat Fluid Flow 24(3):284–298CrossRef
15.
Zurück zum Zitat Herwig H (2002) Flow and heat transfer in micro systems: is everything different or just smaller? J Appl Math Mech 82:579–586MATHMathSciNet Herwig H (2002) Flow and heat transfer in micro systems: is everything different or just smaller? J Appl Math Mech 82:579–586MATHMathSciNet
16.
Zurück zum Zitat Herwig H, Hausner O (2003) Critical view on “new results in micro-fluid mechanics”: an example. Int J Heat Mass Transf 46:935–937CrossRef Herwig H, Hausner O (2003) Critical view on “new results in micro-fluid mechanics”: an example. Int J Heat Mass Transf 46:935–937CrossRef
17.
Zurück zum Zitat Hetsroni G, Mosyak A, Pogrebnyak E, Yarin LP (2005) Heat transfer in micro-channels: comparison of experiments with theory and numerical results. Int J Heat Mass Transf 48(25–26):5580–5601CrossRef Hetsroni G, Mosyak A, Pogrebnyak E, Yarin LP (2005) Heat transfer in micro-channels: comparison of experiments with theory and numerical results. Int J Heat Mass Transf 48(25–26):5580–5601CrossRef
18.
Zurück zum Zitat Huang CY, Wu CM, Chen YN, Liou TM (2014) The experimental investigation of axial heat conduction effect on the heat transfer analysis in microchannel flow. Int J Heat Mass Transf 70:169–173CrossRef Huang CY, Wu CM, Chen YN, Liou TM (2014) The experimental investigation of axial heat conduction effect on the heat transfer analysis in microchannel flow. Int J Heat Mass Transf 70:169–173CrossRef
19.
Zurück zum Zitat Kabar Y, Rebay M, Kadja M, Padet C (2010) Numerical resolution of conjugate heat transfer problem in a parallel-plate micro-channel. Heat Transf Res 41(3):247–263CrossRef Kabar Y, Rebay M, Kadja M, Padet C (2010) Numerical resolution of conjugate heat transfer problem in a parallel-plate micro-channel. Heat Transf Res 41(3):247–263CrossRef
20.
Zurück zum Zitat Kakac S, Vasiliev LL, Bayazitoglu Y, Yener Y (eds) (2005) Microscale heat transfer: fundamentals and applications. Springer, Dordrecht Kakac S, Vasiliev LL, Bayazitoglu Y, Yener Y (eds) (2005) Microscale heat transfer: fundamentals and applications. Springer, Dordrecht
21.
Zurück zum Zitat Kandlikar SG (2012) History, advances, and challenges in liquid flow and flow boiling heat transfer in microchannels; a critical review. J Heat Transf 134(3):034001-1–034001-15CrossRef Kandlikar SG (2012) History, advances, and challenges in liquid flow and flow boiling heat transfer in microchannels; a critical review. J Heat Transf 134(3):034001-1–034001-15CrossRef
22.
Zurück zum Zitat Kandlikar SG, Garimella S, Li D, Colin S, King MR (2006) Heat transfer and fluid flow in minichannels and microchannels. Elsevier, Oxford Kandlikar SG, Garimella S, Li D, Colin S, King MR (2006) Heat transfer and fluid flow in minichannels and microchannels. Elsevier, Oxford
23.
Zurück zum Zitat Karakaya M, Avci AK (2011) Microchannel reactor modelling for combustion driven reforming of iso-octane. Int J Hydrogen Energ 36(11):6569–6577CrossRef Karakaya M, Avci AK (2011) Microchannel reactor modelling for combustion driven reforming of iso-octane. Int J Hydrogen Energ 36(11):6569–6577CrossRef
24.
Zurück zum Zitat Kim MH, Lee SY, Mehendale SS, Webb RL (2003) Microchannel heat exchanger design for evaporator and condenser applications. In: Advances in heat transfer. Elsevier, San Diego Kim MH, Lee SY, Mehendale SS, Webb RL (2003) Microchannel heat exchanger design for evaporator and condenser applications. In: Advances in heat transfer. Elsevier, San Diego
25.
Zurück zum Zitat Koo J, Kleinstreuer C (2004) Viscous dissipation effects in microtubes and microchannels. Int J Heat Mass Transf 47(14–16):3159–3169CrossRef Koo J, Kleinstreuer C (2004) Viscous dissipation effects in microtubes and microchannels. Int J Heat Mass Transf 47(14–16):3159–3169CrossRef
26.
Zurück zum Zitat Kosar A (2010) Effect of substrate thickness and material on heat transfer in microchannel heat sinks. Int J Therm Sci 49(4):635–642CrossRef Kosar A (2010) Effect of substrate thickness and material on heat transfer in microchannel heat sinks. Int J Therm Sci 49(4):635–642CrossRef
27.
Zurück zum Zitat Kroeker CJ, Soliman HM, Ormiston SJ (2004) Three-dimensional thermal analysis of heat sinks with circular cooling micro-channels. Int J Heat Mass Transf 47(22):4733–4744MATHCrossRef Kroeker CJ, Soliman HM, Ormiston SJ (2004) Three-dimensional thermal analysis of heat sinks with circular cooling micro-channels. Int J Heat Mass Transf 47(22):4733–4744MATHCrossRef
28.
Zurück zum Zitat Kumar M, Moharana MK (2013) Axial wall conduction in partially heated microtubes. In: Proceedings of 22nd national and 11th international ISHMT-ASME heat and mass transfer conference, IIT Kharagpur, Kharagpur, 28–31 Dec 2013 Kumar M, Moharana MK (2013) Axial wall conduction in partially heated microtubes. In: Proceedings of 22nd national and 11th international ISHMT-ASME heat and mass transfer conference, IIT Kharagpur, Kharagpur, 28–31 Dec 2013
29.
Zurück zum Zitat Lee PS, Garimella SV (2006) Thermally developing flow and heat transfer in rectangular microchannels of different aspect ratios. Int J Heat Mass Transf 49(17–18):3060–3067MATHCrossRef Lee PS, Garimella SV (2006) Thermally developing flow and heat transfer in rectangular microchannels of different aspect ratios. Int J Heat Mass Transf 49(17–18):3060–3067MATHCrossRef
30.
Zurück zum Zitat Lelea D (2007) The conjugate heat transfer of the partially heated microchannels. Heat Mass Transf 44(1):33–41CrossRef Lelea D (2007) The conjugate heat transfer of the partially heated microchannels. Heat Mass Transf 44(1):33–41CrossRef
31.
Zurück zum Zitat Lelea D (2009) The heat transfer and fluid flow of a partially heated microchannel heat sink. Int Comm Heat Mass Transf 36(8):794–798CrossRef Lelea D (2009) The heat transfer and fluid flow of a partially heated microchannel heat sink. Int Comm Heat Mass Transf 36(8):794–798CrossRef
32.
Zurück zum Zitat Li Z, He YL, Tang GH, Tao WQ (2007) Experimental and numerical studies of liquid flow and heat transfer in microtubes. Int J Heat Mass Transf 50(17–18):3447–3460MATHCrossRef Li Z, He YL, Tang GH, Tao WQ (2007) Experimental and numerical studies of liquid flow and heat transfer in microtubes. Int J Heat Mass Transf 50(17–18):3447–3460MATHCrossRef
33.
Zurück zum Zitat Lin TY, Kandlikar SG (2012) A theoretical model for axial heat conduction effects during single-phase flow in microchannels. J Heat Transf 134(2):020902-1–020902-6CrossRef Lin TY, Kandlikar SG (2012) A theoretical model for axial heat conduction effects during single-phase flow in microchannels. J Heat Transf 134(2):020902-1–020902-6CrossRef
34.
Zurück zum Zitat Liu D, Garimella SV (2005) Analysis and optimization of the thermal performance of microchannel heat sinks. Int J Numer Methods Heat Fluid Flow 15(1):7–26MATHCrossRef Liu D, Garimella SV (2005) Analysis and optimization of the thermal performance of microchannel heat sinks. Int J Numer Methods Heat Fluid Flow 15(1):7–26MATHCrossRef
35.
Zurück zum Zitat Liu Z, Zhao Y, Takei M (2007) Experimental study on axial wall heat conduction for conductive heat transfer in stainless steel microtube. Heat Mass Transf 43(6):587–594CrossRef Liu Z, Zhao Y, Takei M (2007) Experimental study on axial wall heat conduction for conductive heat transfer in stainless steel microtube. Heat Mass Transf 43(6):587–594CrossRef
36.
Zurück zum Zitat Maranzana G, Perry I, Maillet D (2004) Mini- and micro-channels: influence of axial conduction in the walls. Int J Heat Mass Transf 47(17–18):3993–4004MATHCrossRef Maranzana G, Perry I, Maillet D (2004) Mini- and micro-channels: influence of axial conduction in the walls. Int J Heat Mass Transf 47(17–18):3993–4004MATHCrossRef
37.
Zurück zum Zitat Mathew B, Hegab H (2008) Axial heat conduction in counter flow microchannel heat exchangers. In: Proceedings of ASME heat transfer summer conference, Jacksonville, 10–14 Aug 2008 Mathew B, Hegab H (2008) Axial heat conduction in counter flow microchannel heat exchangers. In: Proceedings of ASME heat transfer summer conference, Jacksonville, 10–14 Aug 2008
38.
Zurück zum Zitat Mathew B, Hegab H (2009) Axial heat conduction in parallel flow microchannel heat exchangers. In: Proceedings of ASME international mechanical engineering congress and exposition, Lake Buena Vista, 13–19 Nov 2009 Mathew B, Hegab H (2009) Axial heat conduction in parallel flow microchannel heat exchangers. In: Proceedings of ASME international mechanical engineering congress and exposition, Lake Buena Vista, 13–19 Nov 2009
39.
Zurück zum Zitat Mehendale SS, Jacobi AM, Shah RK (2000) Fluid flow and heat transfer at micro and meso scales with application to heat exchanger design. Appl Mech Rev 53(7):175–193CrossRef Mehendale SS, Jacobi AM, Shah RK (2000) Fluid flow and heat transfer at micro and meso scales with application to heat exchanger design. Appl Mech Rev 53(7):175–193CrossRef
40.
Zurück zum Zitat Moharana MK, Agarwal G, Khandekar S (2011) Axial conduction in single-phase simultaneously developing flow in a rectangular mini-channel array. Int J Therm Sci 50:1001–1012CrossRef Moharana MK, Agarwal G, Khandekar S (2011) Axial conduction in single-phase simultaneously developing flow in a rectangular mini-channel array. Int J Therm Sci 50:1001–1012CrossRef
41.
Zurück zum Zitat Moharana MK, Khandekar S (2012) Numerical study of axial back conduction in microtubes. In: Proceedings of 39th national conference on fluid mechanics and fluid power, Sardar Vallabhbhai National Institute of Technology, Surat, 13–15 Dec 2012 Moharana MK, Khandekar S (2012) Numerical study of axial back conduction in microtubes. In: Proceedings of 39th national conference on fluid mechanics and fluid power, Sardar Vallabhbhai National Institute of Technology, Surat, 13–15 Dec 2012
42.
Zurück zum Zitat Moharana MK, Khandekar S (2013) Effect of aspect ratio of rectangular microchannels on the axial back conduction in its solid substrate. Int J Microscale Nanoscale Thermal Fluid Trans Phenomena 4(3–4):211–229 Moharana MK, Khandekar S (2013) Effect of aspect ratio of rectangular microchannels on the axial back conduction in its solid substrate. Int J Microscale Nanoscale Thermal Fluid Trans Phenomena 4(3–4):211–229
43.
Zurück zum Zitat Moharana MK, Peela NR, Khandekar S, Kunzru D (2011) Distributed hydrogen production from ethanol in a microfuel processor: issues and challenges. Renewable Sustainable Energy Rev 15(1):524–533CrossRef Moharana MK, Peela NR, Khandekar S, Kunzru D (2011) Distributed hydrogen production from ethanol in a microfuel processor: issues and challenges. Renewable Sustainable Energy Rev 15(1):524–533CrossRef
44.
Zurück zum Zitat Moharana MK, Singh PK, Khandekar S (2012) Optimum Nusselt number for simultaneously developing internal flow under conjugate conditions in a square microchannel. J Heat Transf 134:071703-01–071703-10 Moharana MK, Singh PK, Khandekar S (2012) Optimum Nusselt number for simultaneously developing internal flow under conjugate conditions in a square microchannel. J Heat Transf 134:071703-01–071703-10
45.
Zurück zum Zitat Moreno A, Murphy K, Wilhite BA (2008) Parametric study of solid-phase axial heat conduction in thermally integrated microchannel networks. Ind Eng Chem Res 47:9040–9054CrossRef Moreno A, Murphy K, Wilhite BA (2008) Parametric study of solid-phase axial heat conduction in thermally integrated microchannel networks. Ind Eng Chem Res 47:9040–9054CrossRef
46.
Zurück zum Zitat Mori S, Sakakibara M, Tanimoto A (1974) Steady state heat transfer to laminar flow in circular tube with conduction in the tube wall. Heat Transf Japanese Res 3(2):37–46 Mori S, Sakakibara M, Tanimoto A (1974) Steady state heat transfer to laminar flow in circular tube with conduction in the tube wall. Heat Transf Japanese Res 3(2):37–46
47.
48.
Zurück zum Zitat Nonino C, Savino S, Giudice SD, Mansutti L (2009) Conjugate forced convection and heat conduction in circular microchannels. Int J Heat Fluid Flow 30(5):823–830CrossRef Nonino C, Savino S, Giudice SD, Mansutti L (2009) Conjugate forced convection and heat conduction in circular microchannels. Int J Heat Fluid Flow 30(5):823–830CrossRef
49.
Zurück zum Zitat Peterson RB (1999) Numerical modeling of conduction effects in microscale counter flow heat exchangers. Microscale Thermophy Eng 3:17–30CrossRef Peterson RB (1999) Numerical modeling of conduction effects in microscale counter flow heat exchangers. Microscale Thermophy Eng 3:17–30CrossRef
50.
Zurück zum Zitat Petukhov BS (1967) Heat transfer and drag of laminar flow of liquid in pipes. Energiya, Moscow Petukhov BS (1967) Heat transfer and drag of laminar flow of liquid in pipes. Energiya, Moscow
51.
Zurück zum Zitat Qu W, Mudawar I (2002) Analysis of three-dimensional heat transfer in micro-channel heat sinks. Int J Heat Mass Transf 45(19):3973–3985MATHCrossRef Qu W, Mudawar I (2002) Analysis of three-dimensional heat transfer in micro-channel heat sinks. Int J Heat Mass Transf 45(19):3973–3985MATHCrossRef
52.
Zurück zum Zitat Rahimi M, Mehryar R (2012) Numerical study of axial heat conduction effects on the local Nusselt number at the entrance and ending regions of a circular microchannel. Int J Therm Sci 59:87–94CrossRef Rahimi M, Mehryar R (2012) Numerical study of axial heat conduction effects on the local Nusselt number at the entrance and ending regions of a circular microchannel. Int J Therm Sci 59:87–94CrossRef
53.
Zurück zum Zitat Raisi A, Ghasemi B, Aminossadati SM (2011) A numerical study on the forced convection of laminar nanofluid in a microchannel with both slip and no-slip conditions. Numerical Heat Transf: Part A 59(2):114–129CrossRef Raisi A, Ghasemi B, Aminossadati SM (2011) A numerical study on the forced convection of laminar nanofluid in a microchannel with both slip and no-slip conditions. Numerical Heat Transf: Part A 59(2):114–129CrossRef
54.
Zurück zum Zitat Rosa P, Karayiannis TG, Collins MW (2009) Single-phase heat transfer in microchannels: the importance of scaling effects. Appl Thermal Eng 29(17–18):3447–3468CrossRef Rosa P, Karayiannis TG, Collins MW (2009) Single-phase heat transfer in microchannels: the importance of scaling effects. Appl Thermal Eng 29(17–18):3447–3468CrossRef
55.
Zurück zum Zitat Ryu JH, Choi DH, Kim SJ (2002) Numerical optimization of the thermal performance of a microchannel heat sink. Int J Heat Mass Transf 45(13):2823–2827MATHCrossRef Ryu JH, Choi DH, Kim SJ (2002) Numerical optimization of the thermal performance of a microchannel heat sink. Int J Heat Mass Transf 45(13):2823–2827MATHCrossRef
56.
Zurück zum Zitat Shah RK, London AL (1978) Laminar flow forced convection in ducts. In: Advances in heat transfer. Academic Press, New York Shah RK, London AL (1978) Laminar flow forced convection in ducts. In: Advances in heat transfer. Academic Press, New York
57.
Zurück zum Zitat Stief T, Langer OU, Schubert K (1999) Numerical investigation of optimal heat conductivity in micro heat exchangers. Chem Eng Technol 21:297–303CrossRef Stief T, Langer OU, Schubert K (1999) Numerical investigation of optimal heat conductivity in micro heat exchangers. Chem Eng Technol 21:297–303CrossRef
58.
Zurück zum Zitat Stutz MJ, Poulikakos D (2005) Effects of microreactor wall heat conduction on the reforming process of methane. Chem Eng Sci 60:6983–6997CrossRef Stutz MJ, Poulikakos D (2005) Effects of microreactor wall heat conduction on the reforming process of methane. Chem Eng Sci 60:6983–6997CrossRef
59.
Zurück zum Zitat Tiselj I, Hetsroni G, Mavko B, Mosyak A, Pogrebnyak E, Segal Z (2004) Effect of axial conduction on the heat transfer in micro-channels. Int J Heat Mass Transf 47(12–13):2551–2565CrossRef Tiselj I, Hetsroni G, Mavko B, Mosyak A, Pogrebnyak E, Segal Z (2004) Effect of axial conduction on the heat transfer in micro-channels. Int J Heat Mass Transf 47(12–13):2551–2565CrossRef
60.
Zurück zum Zitat Tiwari N, Moharana MK, Sarangi SK (2013) Influence of axial wall conduction in partially heated microtubes. In: Proceedings of 40th national conference on fluid mechanics and fluid power, National Institute of Technology Hamirpur, 12–14 Dec 2013 Tiwari N, Moharana MK, Sarangi SK (2013) Influence of axial wall conduction in partially heated microtubes. In: Proceedings of 40th national conference on fluid mechanics and fluid power, National Institute of Technology Hamirpur, 12–14 Dec 2013
61.
Zurück zum Zitat Tso CP, Mahulikar SP (2000) Experimental verification of the role of Brinkman number in microchannels using local parameters. Int J Heat Mass Transf 43(10):1837–1849CrossRef Tso CP, Mahulikar SP (2000) Experimental verification of the role of Brinkman number in microchannels using local parameters. Int J Heat Mass Transf 43(10):1837–1849CrossRef
62.
Zurück zum Zitat Tuckerman DB, Pease RFW (1981) High-performance heat sinking for VLSI. IEEE Electron Device Letters 2:126–129CrossRef Tuckerman DB, Pease RFW (1981) High-performance heat sinking for VLSI. IEEE Electron Device Letters 2:126–129CrossRef
63.
Zurück zum Zitat Türkakar G, Okutucu-Özyurt T (2012) Dimensional optimization of microchannel heat sinks with multiple heat sources. Int J Therm Sci 62:85–92CrossRef Türkakar G, Okutucu-Özyurt T (2012) Dimensional optimization of microchannel heat sinks with multiple heat sources. Int J Therm Sci 62:85–92CrossRef
64.
Zurück zum Zitat Xu B, Ooi KT, Mavriplis C, Zaghloul ME (2003) Evaluation of viscous dissipation in liquid flow in microchannels. J Micromech Microeng 13(1):53–57CrossRef Xu B, Ooi KT, Mavriplis C, Zaghloul ME (2003) Evaluation of viscous dissipation in liquid flow in microchannels. J Micromech Microeng 13(1):53–57CrossRef
65.
Zurück zum Zitat Yang CY, Chen CW, Lin TY, Kandlikar SG (2012) Heat transfer and friction characteristics of air flow in microtubes. Expt Thermal Fluid Sci 37:12–18CrossRef Yang CY, Chen CW, Lin TY, Kandlikar SG (2012) Heat transfer and friction characteristics of air flow in microtubes. Expt Thermal Fluid Sci 37:12–18CrossRef
66.
Zurück zum Zitat Yarin LP, Mosyak A, Hetsroni G (2009) Fluid flow, heat transfer and boiling in micro-channels. Springer, BerlinMATHCrossRef Yarin LP, Mosyak A, Hetsroni G (2009) Fluid flow, heat transfer and boiling in micro-channels. Springer, BerlinMATHCrossRef
67.
Zurück zum Zitat Zhang LK, Goodson KE, Kenny TW (2004) Silicon microchannel heat sinks: theories and phenomena. Springer, BerlinCrossRef Zhang LK, Goodson KE, Kenny TW (2004) Silicon microchannel heat sinks: theories and phenomena. Springer, BerlinCrossRef
68.
Zurück zum Zitat Zhang SX, He YL, Lauriat G, Tao WQ (2010) Numerical studies of simultaneously developing laminar flow and heat transfer in microtubes with thick wall and constant outside wall temperature. Int J Heat Mass Transf 53(19–20):3977–3989MATHCrossRef Zhang SX, He YL, Lauriat G, Tao WQ (2010) Numerical studies of simultaneously developing laminar flow and heat transfer in microtubes with thick wall and constant outside wall temperature. Int J Heat Mass Transf 53(19–20):3977–3989MATHCrossRef
69.
Zurück zum Zitat Zohar Y (2003) Heat convection in micro ducts. Kluwer Academic Publishers, LondonCrossRef Zohar Y (2003) Heat convection in micro ducts. Kluwer Academic Publishers, LondonCrossRef
Metadaten
Titel
Axial Back Conduction through Channel Walls During Internal Convective Microchannel Flows
verfasst von
Sameer Khandekar
Manoj Kumar Moharana
Copyright-Jahr
2015
Verlag
Springer India
DOI
https://doi.org/10.1007/978-81-322-2289-7_13

Neuer Inhalt