Skip to main content

Properties of Mesenchymal Stem Cells to Consider for Cancer Cell Therapy

  • Chapter
  • First Online:

Abstract

Ex vivo cultured mesenchymal stem cells (MSCs) are being investigated for regenerative and cell-based therapy. The observation that human MSCs possess tumor-homing properties has generated a great deal of interest in using MSCs as carriers of anti-cancer biotherapeutics. However, MSCs possess intrinsic properties that may significantly affect the nature of developing tumors. Therefore, understanding these interactions between MSCs and tumor cells will be essential if MSCs are to be used for cancer therapy. In this chapter, we firstly review the cell surface antigens expressed by MSCs and discuss a newly described method to reduce the risk of emboli associated with MSCs infusion. Secondly, we review the literature on the identified molecular pathways governing MSCs migration, including the role of toll-like receptors and death receptors. Thirdly, we present an overview of the biological properties of MSCs that affect tumor survival, metastasis and immune responses. Finally, we describe various approaches to engineer MSCs in order to generate efficient anti-cancer cell therapies, including gene modification to express anti-cancer cytokines and infection with oncolytic viruses, and means to redirect the tropism of MSCs to specific microenvironments.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Al-Khaldi A, Eliopoulos N, Martineau D, Lejeune L, Lachapelle K, Galipeau J (2003) Postnatal bone marrow stromal cells elicit a potent VEGF-dependent neoangiogenic response in vivo. Gene Ther 10: 621–629

    Article  PubMed  CAS  Google Scholar 

  2. Pittenger MF, Mackay AM, Beck SC, et al. (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284: 143–147

    Article  PubMed  CAS  Google Scholar 

  3. Reyes M, Lund T, Lenvik T, Aguiar D, Koodie L, Verfaillie CM (2001) Purification and ex vivo expansion of postnatal human marrow mesodermal progenitor cells. Blood 98: 2615–2625

    Article  PubMed  CAS  Google Scholar 

  4. Wang G, Bunnell BA, Painter RG, et al. (2005) Adult stem cells from bone marrow stroma differentiate into airway epithelial cells: potential therapy for cystic fibrosis. Proc Natl Acad Sci USA 102: 186–191

    Article  PubMed  CAS  Google Scholar 

  5. Horwitz EM, Le Blanc K, Dominici M, et al. (2005) Clarification of the nomenclature for MSC: The International Society for Cellular Therapy position statement. Cytotherapy 7: 393–395

    Article  PubMed  CAS  Google Scholar 

  6. Laitinen A, Laine J (2007) Isolation of mesenchymal stem cells from human cord blood. Curr Protoc Stem Cell Biol Chapter 2: Unit 2A 3

    Google Scholar 

  7. Kumar S, Chanda D, Ponnazhagan S (2008) Therapeutic potential of genetically modified mesenchymal stem cells. Gene Ther 15: 711–715

    Article  PubMed  CAS  Google Scholar 

  8. Delorme B, Ringe J, Gallay N, et al. (2008) Specific plasma membrane protein phenotype of culture-amplified and native human bone marrow mesenchymal stem cells. Blood 111: 2631–2635

    Article  PubMed  CAS  Google Scholar 

  9. Muller I, Kordowich S, Holzwarth C, et al. (2006) Animal serum-free culture conditions for isolation and expansion of multipotent mesenchymal stromal cells from human BM. Cytotherapy 8: 437–444

    Article  PubMed  CAS  Google Scholar 

  10. Anjos-Afonso F, Bonnet D (2008) Isolation, culture, and differentiation potential of mouse marrow stromal cells. Curr Protoc Stem Cell Biol Chapter 2: Unit 2B 3

    Google Scholar 

  11. Stagg J (2007) Immune regulation by mesenchymal stem cells: two sides to the coin. Tissue Antigens 69: 1–9

    Article  PubMed  CAS  Google Scholar 

  12. Gang EJ, Bosnakovski D, Figueiredo CA, Visser JW, Perlingeiro RC (2007) SSEA-4 identifies mesenchymal stem cells from bone marrow. Blood 109: 1743–1751

    Article  PubMed  CAS  Google Scholar 

  13. Kannagi R, Cochran NA, Ishigami F, et al. (1983) Stage-specific embryonic antigens (SSEA-3 and -4) are epitopes of a unique globo-series ganglioside isolated from human teratocarcinoma cells. EMBO J 2: 2355–2361

    PubMed  CAS  Google Scholar 

  14. Colter DC, Sekiya I, Prockop DJ (2001) Identification of a subpopulation of rapidly self-renewing and multipotential adult stem cells in colonies of human marrow stromal cells. Proc Natl Acad Sci USA 98: 7841–7845

    Article  PubMed  CAS  Google Scholar 

  15. Digirolamo CM, Stokes D, Colter D, Phinney DG, Class R, Prockop DJ (1999) Propagation and senescence of human marrow stromal cells in culture: a simple colony-forming assay identifies samples with the greatest potential to propagate and differentiate. Br J Haematol 107: 275–281

    Article  PubMed  CAS  Google Scholar 

  16. Lee RH, Seo MJ, Pulin AA, Gregory CA, Ylostalo J, Prockop DJ (2009) The CD34-like protein PODXL and {alpha}6-integrin (CD49f) identify early progenitor MSCs with increased clonogenicity and migration to infarcted heart in mice. Blood: 113: 816–826

    Google Scholar 

  17. Uccelli A, Moretta L, Pistoia V (2008) Mesenchymal stem cells in health and disease. Nat Rev Immunol 8:726–736

    Article  PubMed  CAS  Google Scholar 

  18. Zuk PA, Zhu M, Ashjian P, et al. (2002) Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13: 4279–4295

    Article  PubMed  CAS  Google Scholar 

  19. Baertschiger RM, Bosco D, Morel P, et al. (2008) Mesenchymal stem cells derived from human exocrine pancreas express transcription factors implicated in beta-cell development. Pancreas 37: 75–84

    Article  PubMed  CAS  Google Scholar 

  20. Metcalfe AD, Ferguson MW (2008) Skin stem and progenitor cells: using regeneration as a tissue-engineering strategy. Cell Mol Life Sci 65: 24–32

    Article  PubMed  CAS  Google Scholar 

  21. Markov V, Kusumi K, Tadesse MG, et al. (2007) Identification of cord blood-derived mesenchymal stem/stromal cell populations with distinct growth kinetics, differentiation potentials, and gene expression profiles. Stem Cells Dev 16: 53–73

    Article  PubMed  CAS  Google Scholar 

  22. Crisan M, Yap S, Casteilla L, et al. (2008) A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 3: 301–313

    Article  PubMed  CAS  Google Scholar 

  23. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126: 663–676

    Article  PubMed  CAS  Google Scholar 

  24. Park IH, Zhao R, West JA, et al. (2008) Reprogramming of human somatic cells to pluripotency with defined factors. Nature 451: 141–146

    Article  PubMed  CAS  Google Scholar 

  25. Dimos JT, Rodolfa KT, Niakan KK, et al. (2008) Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science 321: 1218–1221

    Article  PubMed  CAS  Google Scholar 

  26. Wernig M, Lengner CJ, Hanna J, et al. (2008) A drug-inducible transgenic system for direct reprogramming of multiple somatic cell types. Nat Biotechnol 26: 916–924

    Article  PubMed  CAS  Google Scholar 

  27. Kim JB, Zaehres H, Wu G, et al. (2008) Pluripotent stem cells induced from adult neural stem cells by reprogramming with two factors. Nature 454: 646–650

    Article  PubMed  CAS  Google Scholar 

  28. Park IH, Arora N, Huo H, et al. (2008) Disease-specific induced pluripotent stem cells. Cell 134: 877–886

    Article  PubMed  CAS  Google Scholar 

  29. Sasaki M, Abe R, Fujita Y, Ando S, Inokuma D, Shimizu H (2008) Mesenchymal stem cells are recruited into wounded skin and contribute to wound repair by transdifferentiation into multiple skin cell type. J Immunol 180: 2581–2587

    PubMed  CAS  Google Scholar 

  30. Smyth MJ, Dunn GP, Schreiber RD (2006) Cancer immunosurveillance and immunoediting: the roles of immunity in suppressing tumor development and shaping tumor immunogenicity. Adv Immunol 90: 1–50

    Article  PubMed  CAS  Google Scholar 

  31. Hung SC, Deng WP, Yang WK, et al. (2005) Mesenchymal stem cell targeting of microscopic tumors and tumor stroma development monitored by noninvasive in vivo positron emission tomography imaging. Clin Cancer Res 11: 7749–7756

    Article  PubMed  CAS  Google Scholar 

  32. Karnoub AE, Dash AB, Vo AP, et al. (2007) Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 449: 557–563

    Article  PubMed  CAS  Google Scholar 

  33. Nakamizo A, Marini F, Amano T, et al. (2005) Human bone marrow-derived mesenchymal stem cells in the treatment of gliomas. Cancer Res 65: 3307–3318

    PubMed  CAS  Google Scholar 

  34. Nakamura K, Ito Y, Kawano Y, et al. (2004) Antitumor effect of genetically engineered mesenchymal stem cells in a rat glioma model. Gene Ther 11: 1155–1164

    Article  PubMed  CAS  Google Scholar 

  35. Studeny M, Marini FC, Dembinski JL, et al. (2004) Mesenchymal stem cells: potential precursors for tumor stroma and targeted-delivery vehicles for anticancer agents. J Natl Cancer Inst 96: 1593–1603

    Article  PubMed  CAS  Google Scholar 

  36. Khakoo AY, Pati S, Anderson SA, et al. (2006) Human mesenchymal stem cells exert potent antitumorigenic effects in a model of Kaposi’s sarcoma. J Exp Med 203: 1235–1247

    Article  PubMed  CAS  Google Scholar 

  37. Qiao L, Xu Z, Zhao T, et al. (2008) Suppression of tumorigenesis by human mesenchymal stem cells in a hepatoma model. Cell Res 18: 500–507

    Article  PubMed  CAS  Google Scholar 

  38. Ame-Thomas P, Maby-El Hajjami H, Monvoisin C, et al. (2007) Human mesenchymal stem cells isolated from bone marrow and lymphoid organs support tumor B-cell growth: role of stromal cells in follicular lymphoma pathogenesis. Blood 109: 693–702

    Article  PubMed  CAS  Google Scholar 

  39. Hall B, Dembinski J, Sasser AK, Studeny M, Andreeff M, Marini F (2007) Mesenchymal stem cells in cancer: tumor-associated fibroblasts and cell-based delivery vehicles. Int J Hematol 86: 8–16

    Article  PubMed  CAS  Google Scholar 

  40. Sasser AK, Sullivan NJ, Studebaker AW, Hendey LF, Axel AE, Hall BM (2007) Interleukin-6 is a potent growth factor for ER-alpha-positive human breast cancer. FASEB J 21: 3763–3770

    Article  PubMed  CAS  Google Scholar 

  41. Zhu W, Xu W, Jiang R, et al. (2006) Mesenchymal stem cells derived from bone marrow favor tumor cell growth in vivo. Exp Mol Pathol 80: 267–274

    Article  PubMed  CAS  Google Scholar 

  42. Samudio I, Fiegl M, McQueen T, Clise-Dwyer K, Andreeff M (2008) The warburg effect in leukemia-stroma cocultures is mediated by mitochondrial uncoupling associated with uncoupling protein 2 activation. Cancer Res 68: 5198–5205

    Article  PubMed  CAS  Google Scholar 

  43. Tabe Y, Jin L, Tsutsumi-Ishii Y, et al. (2007) Activation of integrin-linked kinase is a critical prosurvival pathway induced in leukemic cells by bone marrow-derived stromal cells. Cancer Res 67: 684–694

    Article  PubMed  CAS  Google Scholar 

  44. Spaeth E, Klopp A, Dembinski J, Andreeff M, Marini F (2008) Inflammation and tumor microenvironments: Defining the migratory itinerary of mesenchymal stem cells. Gene Ther 15: 730–738

    Article  PubMed  CAS  Google Scholar 

  45. Honczarenko M, Le Y, Swierkowski M, Ghiran I, Glodek AM, Silberstein LE (2006) Human bone marrow stromal cells express a distinct set of biologically functional chemokine receptors. Stem Cells 24: 1030–1041

    Article  PubMed  CAS  Google Scholar 

  46. Sordi V, Malosio ML, Marchesi F, et al. (2005) Bone marrow mesenchymal stem cells express a restricted set of functionally active chemokine receptors capable of promoting migration to pancreatic islets. Blood 106: 419–427

    Article  PubMed  CAS  Google Scholar 

  47. Dwyer RM, Potter-Beirne SM, Harrington KA, et al. (2007) Monocyte chemotactic protein-1 secreted by primary breast tumors stimulates migration of mesenchymal stem cells. Clin Cancer Res 13: 5020–5027

    Article  PubMed  CAS  Google Scholar 

  48. Klopp AH, Spaeth EL, Dembinski JL, et al. (2007) Tumor irradiation increases the recruitment of circulating mesenchymal stem cells into the tumor microenvironment. Cancer Res 67: 11687–11695

    Article  PubMed  CAS  Google Scholar 

  49. Belema-Bedada F, Uchida S, Martire A, Kostin S, Braun T (2008) Efficient homing of multipotent adult mesenchymal stem cells depends on FROUNT-mediated clustering of CCR2. Cell Stem Cell 2: 566–575

    Article  PubMed  CAS  Google Scholar 

  50. Mishra PJ, Humeniuk R, Medina DJ, et al. (2008) Carcinoma-associated fibroblast-like differentiation of human mesenchymal stem cells. Cancer Res 68: 4331–4339

    Article  PubMed  CAS  Google Scholar 

  51. Orimo A, Gupta PB, Sgroi DC, et al. (2005) Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 121: 335–348

    Article  PubMed  CAS  Google Scholar 

  52. Schmidt A, Ladage D, Schinkothe T, et al. (2006) Basic fibroblast growth factor controls migration in human mesenchymal stem cells. Stem Cells 24: 1750–1758

    Article  PubMed  CAS  Google Scholar 

  53. Li Y, Yu X, Lin S, Li X, Zhang S, Song YH (2007) Insulin-like growth factor 1 enhances the migratory capacity of mesenchymal stem cells. Biochem Biophys Res Commun 356: 780–784

    Article  PubMed  CAS  Google Scholar 

  54. Mira E, Lacalle RA, Gonzalez MA, et al. (2001) A role for chemokine receptor transactivation in growth factor signaling. EMBO Rep 2: 151–156

    Article  PubMed  CAS  Google Scholar 

  55. Ponte AL, Marais E, Gallay N, et al. (2007) The in vitro migration capacity of human bone marrow mesenchymal stem cells: comparison of chemokine and growth factor chemotactic activities. Stem Cells 25: 1737–1745

    Article  PubMed  CAS  Google Scholar 

  56. Liotta F, Angeli R, Cosmi L, et al. (2008) Toll-like receptors 3 and 4 are expressed by human bone marrow-derived mesenchymal stem cells and can inhibit their T-cell modulatory activity by impairing Notch signaling. Stem Cells 26: 279–289

    Article  PubMed  CAS  Google Scholar 

  57. Pevsner-Fischer M, Morad V, Cohen-Sfady M, et al. (2007) Toll-like receptors and their ligands control mesenchymal stem cell functions. Blood 109: 1422–1432

    Article  PubMed  CAS  Google Scholar 

  58. Tomchuck SL, Zwezdaryk KJ, Coffelt SB, Waterman RS, Danka ES, Scandurro AB (2008) Toll-like receptors on human mesenchymal stem cells drive their migration and immunomodulating responses. Stem Cells 26: 99–107

    Article  PubMed  CAS  Google Scholar 

  59. Yu S, Cho HH, Joo HJ, Bae YC, Jung JS (2008) Role of MyD88 in TLR agonist-induced functional alterations of human adipose tissue-derived mesenchymal stem cells. Mol Cell Biochem 317: 143–150

    Article  PubMed  CAS  Google Scholar 

  60. Secchiero P, Melloni E, Corallini F, et al. (2008) TRAIL promotes migration of human bone marrow multipotent stromal cells. Stem Cells 26: 2955–2963

    Google Scholar 

  61. Takeda K, Stagg J, Yagita H, Okumura K, Smyth MJ (2007) Targeting death-inducing receptors in cancer therapy. Oncogene 26: 3745–3757

    Article  PubMed  CAS  Google Scholar 

  62. Rubio D, Garcia-Castro J, Martin MC, et al. (2005) Spontaneous human adult stem cell transformation. Cancer Res 65: 3035–3039

    PubMed  CAS  Google Scholar 

  63. Li H, Fan X, Kovi RC, et al. (2007) Spontaneous expression of embryonic factors and p53 point mutations in aged mesenchymal stem cells: a model of age-related tumorigenesis in mice. Cancer Res 67: 10889–10898

    Article  PubMed  CAS  Google Scholar 

  64. Rubio D, Garcia S, De la Cueva T, et al. (2008) Human mesenchymal stem cell transformation is associated with a mesenchymal-epithelial transition. Exp Cell Res 314: 691–698

    Article  PubMed  CAS  Google Scholar 

  65. Berman SD, Calo E, Landman AS, et al. (2008) Metastatic osteosarcoma induced by inactivation of Rb and p53 in the osteoblast lineage. Proc Natl Acad Sci USA 105: 11851–11856

    Article  PubMed  CAS  Google Scholar 

  66. Ren YX, Finckenstein FG, Abdueva DA, et al. (2008) Mouse mesenchymal stem cells expressing PAX-FKHR form alveolar rhabdomyosarcomas by cooperating with secondary mutations. Cancer Res 68: 6587–6597

    Article  PubMed  CAS  Google Scholar 

  67. Bernardo ME, Zaffaroni N, Novara F, et al. (2007) Human bone marrow derived mesenchymal stem cells do not undergo transformation after long-term in vitro culture and do not exhibit telomere maintenance mechanisms. Cancer Res 67: 9142–9149

    Article  PubMed  CAS  Google Scholar 

  68. Aggarwal S, Pittenger MF (2005) Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 105: 1815–1822

    Article  PubMed  CAS  Google Scholar 

  69. Beyth S, Borovsky Z, Mevorach D, et al. (2005) Human mesenchymal stem cells alter antigen-presenting cell maturation and induce T-cell unresponsiveness. Blood 105: 2214–2219

    Article  PubMed  CAS  Google Scholar 

  70. Djouad F, Plence P, Bony C, et al. (2003) Immunosuppressive effect of mesenchymal stem cells favors tumor growth in allogeneic animals. Blood 102: 3837–3844

    Article  PubMed  CAS  Google Scholar 

  71. Le Blanc K, Rasmusson I, Gotherstrom C, et al. (2004) Mesenchymal stem cells inhibit the expression of CD25 (interleukin-2 receptor) and CD38 on phytohaemagglutinin-activated lymphocytes. Scand J Immunol 60: 307–315

    Article  PubMed  Google Scholar 

  72. Sato K, Ozaki K, Oh I, et al. (2007) Nitric oxide plays a critical role in suppression of T-cell proliferation by mesenchymal stem cells. Blood 109: 228–234

    Article  PubMed  CAS  Google Scholar 

  73. Sheng H, Wang Y, Jin Y, et al. (2008) A critical role of IFNgamma in priming MSC-mediated suppression of T cell proliferation through up-regulation of B7-H1. Cell Res 18: 846–857

    Article  PubMed  CAS  Google Scholar 

  74. Tse WT, Pendleton JD, Beyer WM, Egalka MC, Guinan EC (2003) Suppression of allogeneic T-cell proliferation by human marrow stromal cells: implications in transplantation. Transplantation 75: 389–397

    Article  PubMed  CAS  Google Scholar 

  75. Krampera M, Glennie S, Dyson J, et al. (2003) Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide. Blood 101: 3722–3729

    Article  PubMed  CAS  Google Scholar 

  76. Glennie S, Soeiro I, Dyson PJ, Lam EW, Dazzi F (2005) Bone marrow mesenchymal stem cells induce division arrest anergy of activated T cells. Blood 105: 2821–2827

    Article  PubMed  CAS  Google Scholar 

  77. Maccario R, Podesta M, Moretta A, et al. (2005) Interaction of human mesenchymal stem cells with cells involved in alloantigen-specific immune response favors the differentiation of CD4+ T-cell subsets expressing a regulatory/suppressive phenotype. Haematologica 90: 516–525

    PubMed  CAS  Google Scholar 

  78. Casiraghi F, Azzollini N, Cassis P, et al. (2008) Pretransplant infusion of mesenchymal stem cells prolongs the survival of a semiallogeneic heart transplant through the generation of regulatory T cells. J Immunol 181: 3933–3946

    PubMed  CAS  Google Scholar 

  79. Spaggiari GM, Capobianco A, Becchetti S, Mingari MC, Moretta L (2006) Mesenchymal stem cell-natural killer cell interactions: evidence that activated NK cells are capable of killing MSCs, whereas MSCs can inhibit IL-2-induced NK-cell proliferation. Blood 107: 1484–1490

    Article  PubMed  CAS  Google Scholar 

  80. Jiang XX, Zhang Y, Liu B, et al. (2005) Human mesenchymal stem cells inhibit differentiation and function of monocyte-derived dendritic cells. Blood 105: 4120–4126

    Article  PubMed  CAS  Google Scholar 

  81. Zhang B, Liu R, Shi D, et al. (2009) Mesenchymal stem cells induce mature dendritic cells into a novel Jagged-2 dependent regulatory dendritic cell population. Blood 113: 46–57

    Google Scholar 

  82. Corcione A, Benvenuto F, Ferretti E, et al. (2006) Human mesenchymal stem cells modulate B-cell functions. Blood 107: 367–372

    Article  PubMed  CAS  Google Scholar 

  83. Rafei M, Hiseh J, Fortier S, et al. (2008) Mesenchymal stromal cell derived CCL2 suppresses plasma cell immunoglobulin production via STAT3 inactivation and PAX5 induction. Blood 112: 4991–4998

    Google Scholar 

  84. Stagg J, Pommey S, Eliopoulos N, Galipeau J (2006) Interferon-gamma-stimulated marrow stromal cells: a new type of nonhematopoietic antigen-presenting cell. Blood 107: 2570–2577

    Article  PubMed  CAS  Google Scholar 

  85. Hacein-Bey-Abina S, Von Kalle C, Schmidt M, et al. (2003) LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 302: 415–419

    Article  PubMed  CAS  Google Scholar 

  86. Piccoli C, Scrima R, Ripoli M, et al. (2008) Transformation by Retroviral Vectors of Bone Marrow-Derived Mesenchymal Cells Induces Mitochondria-Dependent CAMPSensitive ROS Production. Stem Cells 26: 2843–2854

    Article  PubMed  CAS  Google Scholar 

  87. Aker M, Tubb J, Groth AC, et al. (2007) Extended core sequences from the cHS4 insulator are necessary for protecting retroviral vectors from silencing position effects. Hum Gene Ther 18: 333–343

    Article  PubMed  CAS  Google Scholar 

  88. Montini E, Cesana D, Schmidt M, et al. (2006) Hematopoietic stem cell gene transfer in a tumor-prone mouse model uncovers low genotoxicity of lentiviral vector integration. Nat Biotechnol 24: 687–696

    Article  PubMed  CAS  Google Scholar 

  89. Zychlinski D, Schambach A, Modlich U, et al. (2008) Physiological Promoters Reduce the Genotoxic Risk of Integrating Gene Vectors. Mol Ther 16: 718–725

    Article  PubMed  CAS  Google Scholar 

  90. Helledie T, Nurcombe V, Cool SM (2008) A simple and reliable electroporation method for human bone marrow mesenchymal stem cells. Stem Cells Dev 17: 837–848

    Article  PubMed  CAS  Google Scholar 

  91. Sackstein R, Merzaban JS, Cain DW, et al. (2008) Ex vivo glycan engineering of CD44 programs human multipotent mesenchymal stromal cell trafficking to bone. Nat Med 14: 181–187

    Article  PubMed  CAS  Google Scholar 

  92. Studeny M, Marini FC, Champlin RE, Zompetta C, Fidler IJ, Andreeff M (2002) Bone marrow-derived mesenchymal stem cells as vehicles for interferon-beta delivery into tumors. Cancer Res 62: 3603–3608

    PubMed  CAS  Google Scholar 

  93. Stagg J, Lejeune L, Paquin A, Galipeau J (2004) Marrow stromal cells for interleukin-2 delivery in cancer immunotherapy. Hum Gene Ther 15: 597–608

    Article  PubMed  CAS  Google Scholar 

  94. Eliopoulos N, Francois M, Boivin MN, Martineau D, Galipeau J (2008) Neo-organoid of marrow mesenchymal stromal cells secreting interleukin-12 for breast cancer therapy. Cancer Res 68: 4810–4818

    Article  PubMed  CAS  Google Scholar 

  95. Chen X, Lin X, Zhao J, et al. (2008) A tumor-selective biotherapy with prolonged impact on established metastases based on cytokine gene-engineered MSCs. Mol Ther 16: 749–756

    Article  PubMed  CAS  Google Scholar 

  96. Elzaouk L, Moelling K, Pavlovic J (2006) Anti-tumor activity of mesenchymal stem cells producing IL-12 in a mouse melanoma model. Exp Dermatol 15: 865–874

    Article  PubMed  CAS  Google Scholar 

  97. Power AT, Wang J, Falls TJ, et al. (2007) Carrier cell-based delivery of an oncolytic virus circumvents antiviral immunity. Mol Ther 15: 123–130

    Article  PubMed  CAS  Google Scholar 

  98. Sonabend AM, Ulasov IV, Tyler MA, Rivera AA, Mathis JM, Lesniak MS (2008) Mesenchymal stem cells effectively deliver an oncolytic adenovirus to intracranial glioma. Stem Cells 26: 831–841

    Article  PubMed  CAS  Google Scholar 

  99. Komarova S, Kawakami Y, Stoff-Khalili MA, Curiel DT, Pereboeva L (2006) Mesenchymal progenitor cells as cellular vehicles for delivery of oncolytic adenoviruses. Mol Cancer Ther 5: 755–766

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

J.S. is supported by a post-doctoral fellowship from the Canadian Institutes of Health Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Stagg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Stagg, J., Pommey, S. (2009). Properties of Mesenchymal Stem Cells to Consider for Cancer Cell Therapy. In: Dittmar, T., Zanker, K. (eds) Stem Cell Biology in Health and Disease. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3040-5_5

Download citation

Publish with us

Policies and ethics