Skip to main content

Biofuels from Lignocellulosic Biomass

  • Chapter
  • First Online:

Abstract

Biomass feedstock, which is mainly lignocellulose, has considerable potential to contribute to the future production of biofuels and to the mitigation of carbon dioxide emissions. Several challenges exist in the production, harvesting, and conversion aspects of lignocellulose, and these must be resolved in order to reach economic viability. A broad array of research projects are underway to address the technical hurdles, however, additional research may be required to reach commercial sustainability. Gasification and enzymatic hydrolysis are the main technologies being investigated for the conversion of lignocellulosic biomass into material for the production of biofuels. While each approach has pros and cons, both are being explored to determine the optimum potential commercial method for particular feedstock situations, and to better understand the requirements for the massive scale required to contribute to biofuel volume.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. USCB (2008) World Population Clock. United States Census Bureau.

    Google Scholar 

  2. EIA (2008) Annual Energy Outlook: with Projections to 2030. DOE/EIA-0383.

    Google Scholar 

  3. Kharecha PA, Hansen JE (2008) Implications of “peak oil” for atmospheric CO2 and climate. Global Biogeochem Cycles 22:GB3012.

    Article  Google Scholar 

  4. Johnson JM-F, Coleman MD, Gesch R, et al. (2007) Biomass-bioenergy crops in the United States: a changing paradigm. Am J Plant Sci Biotechnol 1:1–28.

    Google Scholar 

  5. Tilman D, Hill J, Lehman C (2006) Carbon-negative biofuels from low-input high-diversity grassland biomass. Science 314:1598–600.

    Article  CAS  PubMed  Google Scholar 

  6. Hansen JS, Kharecha P, Beerling D, et al. (2008) Target atmospheric CO2: where should humanity aim? Open Atmos Sci J 2: 217–31.

    Article  Google Scholar 

  7. Klass DL, Cutler JC (2004) Biomass for renewable energy and fuels. In: Cutler JC (ed) Encyclopedia of Energy. Elsevier, New York.

    Google Scholar 

  8. Petrus L, Noordermeer MA (2006) Biomass to biofuels, a chemical perspective. Green Chem 8:861–7.

    Article  CAS  Google Scholar 

  9. Farrell AE, Gopal AR (2008) Bioenergy research needs for heat, electricity, and liquid fuels. MRS Bull 33:373–80.

    CAS  Google Scholar 

  10. Faaij A (2006) Modern biomass conversion technologies. Mitig Adapt Strateg Glob Change 11:343–75.

    Article  Google Scholar 

  11. McLaren JS (2008) The economic realities, sustainable opportunities, and technical promises of biofuels. AgBioForum 11:8–20.

    Google Scholar 

  12. Perlack RD, Wright LL, Graham RL, et al. (2005) Biomass as feedstock for a bioenergy and bioproducts industry: the technical feasibility of a billion-ton annual supply. USDA and DOE Joint Report 2005, DOE/GO-102005-2135 or ORNL/TM-2005/66.

    Google Scholar 

  13. Arunachalam VS, Fleischer EL (2008) The global energy landscape and materials innovation. MRS Bull 33:264–76.

    Google Scholar 

  14. BP (2008) BP statistical review of world energy: British Petroleum.

    Google Scholar 

  15. Kamm B, Kamm M, Gruber PR, et al. (2006) Biorefinery systems – an overview. In: Kamm DB, Gruber DPR, Kamm M (eds) Biorefineries-Industrial Processes and Products. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

    Google Scholar 

  16. GTC (2008) Gasification: Redefining Clean Energy. Arlington, VA: Gasification Technologies Council.

    Google Scholar 

  17. McLaren JS (2005) Crop biotechnology provides an opportunity to develop a sustainable future. Trends Biotechnol 23:339–42.

    Article  CAS  PubMed  Google Scholar 

  18. Energy Independence and Security Act of 2007 (2007) Public Law 110–140-Dec. 19, 2007.

    Google Scholar 

  19. Kim Y, Hendrickson R, Mosier NS, et al. (2008) Enzyme hydrolysis and ethanol fermentation of liquid hot water and AFEX pretreated distillers’ grains at high-solids loadings. Bioresour Technol 99:5206–15.

    Article  CAS  PubMed  Google Scholar 

  20. Kim Y, Mosier N, Ladisch MR (2008) Process simulation of modified dry grind ethanol plant with recycle of pretreated and enzymatically hydrolyzed distillers’ grains. Bioresour Technol 99:5177–92.

    Article  CAS  PubMed  Google Scholar 

  21. Ciferno JP, Marano JJ (2002) Benchmarking biomass gasification technologies for fuels, chemicals and hydrogen production. NETL, DOE, Pittsburg, PA, USA.

    Google Scholar 

  22. McKendry P (2002) Energy production from biomass (part 3): gasification technologies. Bioresour Technol 83:55–63.

    Article  CAS  PubMed  Google Scholar 

  23. Hamelinck CN, Faaij APC, den Uil H, et al. (2004) Production of FT transportation fuels from biomass; technical options, process analysis and optimisation, and development potential. Energy 29:1743–71.

    Article  CAS  Google Scholar 

  24. Henstra AM, Sipma J, Rinzema A, et al. (2007) Microbiology of synthesis gas fermentation for biofuel production. Curr Opin Biotechnol 18:200–6.

    Article  CAS  PubMed  Google Scholar 

  25. Hendriks ATWM, Zeeman G (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol 100:10–8.

    Article  CAS  PubMed  Google Scholar 

  26. Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11.

    Article  CAS  PubMed  Google Scholar 

  27. Jorgensen H, Kristensen JB, Felby C (2007) Enzymatic conversion of lignocellulose into fermentable sugars: challenges and opportunities. Biofuels, Bioprod Bioref 1:119–34.

    Article  Google Scholar 

  28. Laser M (2001) Hydrothermal pretreatment of cellulosic biomass for bioconversion to ethanol. Dissertation, Dartmouth College.

    Google Scholar 

  29. Kim SH (2004) Lime pretreatment and enzymatic hydrolysis of corn stover. Dissertation, Texas A&M University.

    Google Scholar 

  30. Pan X, Gilkes N, Kadla J, et al. (2006) Bioconversion of hybrid poplar to ethanol and co-products using an organosolv fractionation process: optimization of process yields. Biotechnol Bioeng 94:851–61.

    Article  CAS  PubMed  Google Scholar 

  31. Dadi AP, Varanasi S, Schall CA (2006) Enhancement of cellulose saccharification kinetics using an ionic liquid pretreatment step. Biotechnol Bioeng 95:904–10.

    Article  CAS  PubMed  Google Scholar 

  32. Yang B, Wyman CE (2008) Pretreatment: the key to unlocking low-cost cellulosic ethanol. Biofuels, Bioprod Bioref 2:26–40.

    Article  CAS  Google Scholar 

  33. Laser M, Schulman D, Allen SG, et al. (2002) A comparison of liquid hot water and steam pretreatments of sugar cane bagasse for bioconversion to ethanol. Bioresour Technol 81:33–44.

    Article  CAS  PubMed  Google Scholar 

  34. Anderson, WF, Peterson J, Akin DE, et al. (2005) Enzyme pretreatment of grass lignocellulose for potential high-value co-products and an improved fermentable substrate. Appl Biochem Biotechnol 121–124:303–10.

    Article  PubMed  Google Scholar 

  35. Taherzadeh MJ, Karimi K (2008) Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. Int J Mol Sci 9:1621–51.

    Article  CAS  PubMed  Google Scholar 

  36. Eggeman T, Elander RT (2005) Process and economic analysis of pretreatment technologies. Bioresour Technol 96:2019–25.

    Article  CAS  PubMed  Google Scholar 

  37. Sendich E, Laser M, Kim S, et al. (2008) Recent process improvements for the ammonia fiber expansion (AFEX) process and resulting reductions in minimum ethanol selling price. Bioresour Technol 99:8429–35.

    Article  CAS  PubMed  Google Scholar 

  38. Aden A (2008) Biochemical production of ethanol from corn stover: 2007 state of technology model. NREL/TP-510-43205.

    Google Scholar 

  39. Lynd LR, Weimer PJ, van Zyl WH, et al. (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66:506–77.

    Article  CAS  PubMed  Google Scholar 

  40. Jeoh T, Ishizawa CI, Davis MF, et al. (2007) Cellulase digestibility of pretreated biomass is limited by cellulose accessibility. Biotechnol Bioeng 98:112–22.

    Article  CAS  PubMed  Google Scholar 

  41. Divne C, Stahlberg J, Teeri TT, et al. (1998) High-resolution crystal structures reveal how a cellulose chain is bound in the 50 Å long tunnel of cellobiohydrolase I from Trichoderma reesei. J Mol Biol 275:309–25.

    Article  CAS  PubMed  Google Scholar 

  42. Barr BK, Hsieh YL, Ganem B, et al. (1996) Identification of two functionally different classes of exocellulases. Biochemistry 35:586–92.

    Article  CAS  PubMed  Google Scholar 

  43. Kaur J, Chadha BS, Kumar BA (2007) Purification and characterization of β-glucosidase from Melanocarpus sp. MTCC 3922. Electron J Biotechnol 10:260–70.

    Article  CAS  Google Scholar 

  44. Wyman CE, Dale BE, Elander RT, et al. (2005) Comparative sugar recovery data from laboratory scale application of leading pretreatment technologies to corn stover. Bioresour Technol 96:2026–32.

    Article  CAS  PubMed  Google Scholar 

  45. Saha BC, Iten LB, Cotta MA, et al. (2005) Dilute acid pretreatment, enzymatic saccharification, and fermentation of rice hulls to ethanol. Biotechnol Prog 21:816–22.

    Article  CAS  PubMed  Google Scholar 

  46. Saha BC, Cotta MA (2007) Enzymatic saccharification and fermentation of alkaline peroxide pretreated rice hulls to ethanol. Enzyme Microb Technol 41:528.

    Article  CAS  Google Scholar 

  47. Yang B, Boussaid A, Mansfield SD, et al. (2002) Fast and efficient alkaline peroxide treatment to enhance the enzymatic digestibility of steam-exploded softwood substrates. Biotechnol Bioeng 77:678–84.

    Article  CAS  PubMed  Google Scholar 

  48. Lu Y, Yang B, Gress D, et al. (2002) Cellulase adsorption and an evaluation of enzyme recycle during hydrolysis of steam-exploded softwood residues. Appl Biochem Biotechnol 98–100:641–54.

    Article  PubMed  Google Scholar 

  49. Saha BC, Cotta MA (2006) Ethanol production from alkaline peroxide pretreated enzymatically saccharified wheat straw. Biotechnol Prog 22:449–53.

    Article  CAS  PubMed  Google Scholar 

  50. Cara C, Moya M, Ballesteros I, et al. (2007) Influence of solid loading on enzymatic hydrolysis of steam exploded or liquid hot water pretreated olive tree biomass. Process Biochem 42:1003–9.

    Article  CAS  Google Scholar 

  51. Selig MJ, Knoshaug EP, Adney WS, et al. (2008) Synergistic enhancement of cellobiohydrolase performance on pretreated corn stover by addition of xylanase and esterase activities. Bioresour Technol 99:4997–5005.

    Article  CAS  PubMed  Google Scholar 

  52. Torney F, Moeller L, Scarpa A, et al. (2007) Genetic engineering approaches to improve bioethanol production from maize. Curr Opin Biotechnol 18:193–9.

    Article  CAS  PubMed  Google Scholar 

  53. Sticklen MB (2008) Plant genetic engineering for biofuel production: towards affordable cellulosic ethanol. Nat Rev Genet 9:433–43.

    Article  CAS  PubMed  Google Scholar 

  54. Oraby H, Venkatesh B, Dale B, et al. (2007) Enhanced conversion of plant biomass into glucose using transgenic rice-produced endoglucanase for cellulosic ethanol. Transgenic Res 16:739–49.

    Article  CAS  PubMed  Google Scholar 

  55. Ransom C, Balan V, Biswas G, et al. (2007) Heterologous Acidothermus cellulolyticus 1,4-β-endoglucanase E1 produced within the corn biomass converts corn stover into glucose. Appl Biochem Biotechnol 137–140:207–19.

    Article  PubMed  Google Scholar 

  56. Schell D (2008) Quarterly Update #17, October-December 2007 with Report No.: DOE/GO-102008-2420; Available at URL http://www.nrel.gov/docs/fy08osti/41509.pdf.

  57. Hahn-Hagerdal B, Galbe M, Gorwa-Grauslund MF, et al. (2006) Bio-ethanol – the fuel of tomorrow from the residues of today. Trends Biotechnol 24:549–56.

    Article  CAS  PubMed  Google Scholar 

  58. Shaw AJ, Podkaminer KK, Desai SG, et al. (2008) Metabolic engineering of a thermophilic bacterium to produce ethanol at high yield. Proc Natl Acad Sci USA 105:13769–74.

    Article  CAS  PubMed  Google Scholar 

  59. Lee SY, Park JH, Jang SH, et al. (2008) Fermentative butanol production by Clostridia. Biotechnol Bioeng 101:209–28.

    Google Scholar 

  60. Kam MJD, Morey RV, Tiggany DG (2008) Biomass integrated gasification combined cycle for heat and power at ethanol plants. An ASABE Meeting Presentation. Providence, Rhode Island.

    Google Scholar 

  61. Sobolik J (2008) Anaerobic organisms key to Coskata’s rapid rise. Ethanol Producer Magazine July issue of 2008.

    Google Scholar 

  62. Bohlmann GM (2006) Process economic considerations for production of ethanol from biomass feedstocks. Ind Biotechnol 2:14–20.

    Google Scholar 

  63. Verser D, Eggeman TJ (2008) Process for producing ethanol. US patent 7351559.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donghai Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Wu, X., McLaren, J., Madl, R., Wang, D. (2010). Biofuels from Lignocellulosic Biomass. In: Singh, O., Harvey, S. (eds) Sustainable Biotechnology. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3295-9_2

Download citation

Publish with us

Policies and ethics