Skip to main content

2010 | OriginalPaper | Buchkapitel

5. Energy Production from Food Industry Wastewaters Using Bioelectrochemical Cells

verfasst von : Abhijeet P. Borole, Choo Y. Hamilton

Erschienen in: Emerging Environmental Technologies, Volume II

Verlag: Springer Netherlands

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Conversion of waste and renewable resources to energy using microbial fuel cells (MFCs) is an upcoming technology for enabling a cleaner and sustainable environment. This chapter assesses the energy production potential from the US food industry wastewater resource. It also reports on an experimental study investigating conversion of wastewater from a local milk dairy plant to electricity. An MFC anode biocatalyst enriched on model sugar and organic acid substrates was used as the inoculum for the dairy wastewater MFC. The tests were conducted using a two-chamber MFC with a porous three dimensional anode and a Pt/C air-cathode. Power densities up to 690 mW/m2 (54 W/m3) were obtained.
Analysis of the food industry wastewater resource indicated that MFCs can potentially recover 2–260 kWh/ton of food processed from wastewaters generated during food processing, depending on the biological oxygen demand and volume of water used in the process. A total of 1960 MW of power can potentially be produced from US milk industry wastewaters alone. Hydrogen is an alternate form of energy that can be produced using bioelectrochemical cells. Approximately 2–270 m3 of hydrogen can be generated per ton of the food processed. Application of MFCs for treatment of food processing wastewaters requires further investigations into electrode design, materials, liquid flow management, proton transfer, organic loading and scale-up to enable high power densities at the larger scale. Potential for water recycle also exists, but requires careful consideration of the microbiological safety and regulatory aspects and the economic feasibility of the process.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat USEPA: Waste not, want not: Feeding the hungry and reducing solid waste through food recovery. In.: EPA, 530-R-99-040; 2002. USEPA: Waste not, want not: Feeding the hungry and reducing solid waste through food recovery. In.: EPA, 530-R-99-040; 2002.
2.
Zurück zum Zitat Matteson GC, Jenkins BM: Food and processing residues in California: Resource assessment and potential for power generation. Biores Technol 2007, 98(16):3098–3105.CrossRef Matteson GC, Jenkins BM: Food and processing residues in California: Resource assessment and potential for power generation. Biores Technol 2007, 98(16):3098–3105.CrossRef
3.
4.
Zurück zum Zitat Digman B, Kim DS: Review: Alternative energy from food processing wastes. Environ Prog 2008, 27(4):524–537.CrossRef Digman B, Kim DS: Review: Alternative energy from food processing wastes. Environ Prog 2008, 27(4):524–537.CrossRef
5.
Zurück zum Zitat Zhang RH, El-Mashad HM, Hartman K, Wang FY, Liu GQ, Choate C, Gamble P: Characterization of food waste as feedstock for anaerobic digestion. Biores Technol 2007, 98(4):929–935.CrossRef Zhang RH, El-Mashad HM, Hartman K, Wang FY, Liu GQ, Choate C, Gamble P: Characterization of food waste as feedstock for anaerobic digestion. Biores Technol 2007, 98(4):929–935.CrossRef
6.
Zurück zum Zitat Pham TH, Rabaey K, Aelterman P, Clauwaert P, De Schamphelaire L, Boon N, Verstraete W: Microbial fuel cells in relation to conventional anaerobic digestion technology. Eng Life Sci 2006, 6(3):285–292.CrossRef Pham TH, Rabaey K, Aelterman P, Clauwaert P, De Schamphelaire L, Boon N, Verstraete W: Microbial fuel cells in relation to conventional anaerobic digestion technology. Eng Life Sci 2006, 6(3):285–292.CrossRef
7.
Zurück zum Zitat Logan BE, Hamelers B, Rozendal R, Schrorder U, Keller J, Freguia S, Aelterman P, Verstraete W, Rabaey K: Microbial fuel cells: Methodology and technology. Environ Sci Technol 2006, 40(17):5181–5192.CrossRef Logan BE, Hamelers B, Rozendal R, Schrorder U, Keller J, Freguia S, Aelterman P, Verstraete W, Rabaey K: Microbial fuel cells: Methodology and technology. Environ Sci Technol 2006, 40(17):5181–5192.CrossRef
8.
Zurück zum Zitat Liu H, Cheng SA, Logan BE: Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell. Environ Sci Technol 2005, 39(2):658–662.CrossRef Liu H, Cheng SA, Logan BE: Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell. Environ Sci Technol 2005, 39(2):658–662.CrossRef
9.
Zurück zum Zitat Jeong CM, Choi JDR, Ahn YH, Chang HN: Removal of volatile fatty acids (VFA) by microbial fuel cell with aluminum electrode and microbial community identification with 16S rRNA sequence. Korean J Chem Eng 2008, 25(3):535–541.CrossRef Jeong CM, Choi JDR, Ahn YH, Chang HN: Removal of volatile fatty acids (VFA) by microbial fuel cell with aluminum electrode and microbial community identification with 16S rRNA sequence. Korean J Chem Eng 2008, 25(3):535–541.CrossRef
10.
Zurück zum Zitat Park HS, Kim BH, Kim HS, Kim HJ, Kim GT, Kim M, Chang IS, Park YK, Chang HI: A novel electrochemically active and Fe(III)-reducing bacterium phylogenetically related to Clostridium butyricum isolated from a microbial fuel cell. Anaerobe 2001, 7(6):297–306.CrossRef Park HS, Kim BH, Kim HS, Kim HJ, Kim GT, Kim M, Chang IS, Park YK, Chang HI: A novel electrochemically active and Fe(III)-reducing bacterium phylogenetically related to Clostridium butyricum isolated from a microbial fuel cell. Anaerobe 2001, 7(6):297–306.CrossRef
11.
Zurück zum Zitat Ringeisen BR, Henderson E, Wu PK, Pietron J, Ray R, Little B, Biffinger JC, Jones-Meehan JM: High power density from a miniature microbial fuel cell using Shewanella oneidensis DSP10. Environ Sci Technol 2006, 40(8):2629–2634.CrossRef Ringeisen BR, Henderson E, Wu PK, Pietron J, Ray R, Little B, Biffinger JC, Jones-Meehan JM: High power density from a miniature microbial fuel cell using Shewanella oneidensis DSP10. Environ Sci Technol 2006, 40(8):2629–2634.CrossRef
12.
Zurück zum Zitat Borole AP, Hamilton CY, Vishnivetskaya TA, Leak D, Andras C, Morrell-Falvey J, Davison BH, Keller M: Integrating engineering design improvements with exoelectrogen enrichment process to increase power output from microbial fuel cells. J Power Sources 2009, 191: 520–527.CrossRef Borole AP, Hamilton CY, Vishnivetskaya TA, Leak D, Andras C, Morrell-Falvey J, Davison BH, Keller M: Integrating engineering design improvements with exoelectrogen enrichment process to increase power output from microbial fuel cells. J Power Sources 2009, 191: 520–527.CrossRef
13.
Zurück zum Zitat Zuo Y, Xing DF, Regan JM, Logan BE: Isolation of the exoelectrogenic bacterium Ochrobactrum anthropi YZ-1 by using a U-tube microbial fuel cell. Appl Environ Microbiol 2008, 74(10):3130–3137.CrossRef Zuo Y, Xing DF, Regan JM, Logan BE: Isolation of the exoelectrogenic bacterium Ochrobactrum anthropi YZ-1 by using a U-tube microbial fuel cell. Appl Environ Microbiol 2008, 74(10):3130–3137.CrossRef
14.
Zurück zum Zitat Heilmann J, Logan BE: Production of electricity from proteins using a microbial fuel cell. Water Environ Res 2006, 78(5):531–537.CrossRef Heilmann J, Logan BE: Production of electricity from proteins using a microbial fuel cell. Water Environ Res 2006, 78(5):531–537.CrossRef
15.
Zurück zum Zitat Clauwaert P, van der Ha D, Verstraete W: Energy recovery from energy rich vegetable products with microbial fuel cells. Biotechnol Lett 2008, 30(11):1947–1951.CrossRef Clauwaert P, van der Ha D, Verstraete W: Energy recovery from energy rich vegetable products with microbial fuel cells. Biotechnol Lett 2008, 30(11):1947–1951.CrossRef
16.
Zurück zum Zitat Min B, Kim JR, Oh SE, Regan JM, Logan BE: Electricity generation from swine wastewater using microbial fuel cells. Water Res 2005, 39(20):4961–4968.CrossRef Min B, Kim JR, Oh SE, Regan JM, Logan BE: Electricity generation from swine wastewater using microbial fuel cells. Water Res 2005, 39(20):4961–4968.CrossRef
17.
Zurück zum Zitat Kim JR, Dec J, Bruns MA, Logan BE: Removal of Odors from swine wastewater by using microbial fuel cells. Appl Environ Microbiol 2008, 74(8):2540–2543.CrossRef Kim JR, Dec J, Bruns MA, Logan BE: Removal of Odors from swine wastewater by using microbial fuel cells. Appl Environ Microbiol 2008, 74(8):2540–2543.CrossRef
18.
Zurück zum Zitat Logan BE: Potential for wastewater treatment systems based on microbial fuel cells and biological hydrogen production. Abstr Pap Am Chem Soc 2004, 228:U621–U621. Logan BE: Potential for wastewater treatment systems based on microbial fuel cells and biological hydrogen production. Abstr Pap Am Chem Soc 2004, 228:U621–U621.
19.
Zurück zum Zitat Min B, Logan BE: Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell. Environ Sci Technol 2004, 38(21):5809–5814.CrossRef Min B, Logan BE: Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell. Environ Sci Technol 2004, 38(21):5809–5814.CrossRef
20.
Zurück zum Zitat Aelterman P, Rabaey K, Clauwaert P, Verstraete W: Microbial fuel cells for wastewater treatment. Water Sci Technol 2006, 54(8):9–15.CrossRef Aelterman P, Rabaey K, Clauwaert P, Verstraete W: Microbial fuel cells for wastewater treatment. Water Sci Technol 2006, 54(8):9–15.CrossRef
21.
Zurück zum Zitat Clauwaert P, Aelterman P, Pham TH, De Schamphelaire L, Carballa M, Rabaey K, Verstraete W: Minimizing losses in bio-electrochemical systems: The road to applications. Appl Microbiol Biotechnol 2008, 79(6):901–913.CrossRef Clauwaert P, Aelterman P, Pham TH, De Schamphelaire L, Carballa M, Rabaey K, Verstraete W: Minimizing losses in bio-electrochemical systems: The road to applications. Appl Microbiol Biotechnol 2008, 79(6):901–913.CrossRef
22.
Zurück zum Zitat Rozendal RA, Hamelers HVM, Rabaey K, Keller J, Buisman CJN: Towards practical implementation of bioelectrochemical wastewater treatment. Trends Biotechnol 2008, 26(8):450–459.CrossRef Rozendal RA, Hamelers HVM, Rabaey K, Keller J, Buisman CJN: Towards practical implementation of bioelectrochemical wastewater treatment. Trends Biotechnol 2008, 26(8):450–459.CrossRef
23.
Zurück zum Zitat Logan BE, Regan JM: Electricity-producing bacterial communities in microbial fuel cells. Trends Microbiol 2006, 14(12):512–518.CrossRef Logan BE, Regan JM: Electricity-producing bacterial communities in microbial fuel cells. Trends Microbiol 2006, 14(12):512–518.CrossRef
24.
Zurück zum Zitat Rabaey K, Rodriguez J, Blackall L, Keller J, Gross P, Batstone D, Verstraete W, Nealson KH: Microbial ecology meets electrochemistry: Electricity-driven and driving communities. The ISME J 2007, 1:9–18.CrossRef Rabaey K, Rodriguez J, Blackall L, Keller J, Gross P, Batstone D, Verstraete W, Nealson KH: Microbial ecology meets electrochemistry: Electricity-driven and driving communities. The ISME J 2007, 1:9–18.CrossRef
25.
Zurück zum Zitat Oh SE, Logan BE: Hydrogen and electricity production from a food processing wastewater using fermentation and microbial fuel cell technologies. Water Res 2005, 39(19):4673–4682.CrossRef Oh SE, Logan BE: Hydrogen and electricity production from a food processing wastewater using fermentation and microbial fuel cell technologies. Water Res 2005, 39(19):4673–4682.CrossRef
26.
Zurück zum Zitat Liu WZ, Wang AJ, Ren NQ, Zhao XY, Liu LH, Yu ZG, Lee DJ: Electrochemically assisted biohydrogen production from acetate. Energy Fuels 2008, 22(1):159–163.CrossRef Liu WZ, Wang AJ, Ren NQ, Zhao XY, Liu LH, Yu ZG, Lee DJ: Electrochemically assisted biohydrogen production from acetate. Energy Fuels 2008, 22(1):159–163.CrossRef
27.
Zurück zum Zitat Sakai S, Yagishita T: Microbial production of hydrogen and ethanol from glycerol-containing wastes discharged from a biodiesel fuel production plant in a bioelectrochemical reactor with thionine. Biotechnol Bioeng 2007, 98(2):340–348.CrossRef Sakai S, Yagishita T: Microbial production of hydrogen and ethanol from glycerol-containing wastes discharged from a biodiesel fuel production plant in a bioelectrochemical reactor with thionine. Biotechnol Bioeng 2007, 98(2):340–348.CrossRef
28.
Zurück zum Zitat Borole AP, Hamilton CY, Aaron DS, Tsouris C: Electricity from food and bioindustry wastewaters using microbial fuel cells. In: American Chemical Society Annual Meeting. Philadelphia, PA: ACS Preprints; 2008. Borole AP, Hamilton CY, Aaron DS, Tsouris C: Electricity from food and bioindustry wastewaters using microbial fuel cells. In: American Chemical Society Annual Meeting. Philadelphia, PA: ACS Preprints; 2008.
29.
Zurück zum Zitat Liu H, Grot S, Logan BE: Electrochemically assisted microbial production of hydrogen from acetate. Environ Sci Technol 2005, 39(11):4317–4320.CrossRef Liu H, Grot S, Logan BE: Electrochemically assisted microbial production of hydrogen from acetate. Environ Sci Technol 2005, 39(11):4317–4320.CrossRef
30.
Zurück zum Zitat Logan BE, Call D, Cheng S, Hamelers HVM, Sleutels T, Jeremiasse AW, Rozendal RA: Microbial electrolysis cells for high yield hydrogen gas production from organic matter. Environ Sci Technol 2008, 42(23):8630–8640.CrossRef Logan BE, Call D, Cheng S, Hamelers HVM, Sleutels T, Jeremiasse AW, Rozendal RA: Microbial electrolysis cells for high yield hydrogen gas production from organic matter. Environ Sci Technol 2008, 42(23):8630–8640.CrossRef
31.
Zurück zum Zitat Schroder U: From wastewater to hydrogen: Biorefineries based on microbial fuel-cell technology. Chemsuschem 2008, 1(4):281–282.CrossRef Schroder U: From wastewater to hydrogen: Biorefineries based on microbial fuel-cell technology. Chemsuschem 2008, 1(4):281–282.CrossRef
32.
Zurück zum Zitat Demain AL: Biosolutions to the energy problem. J Ind Microbiol Biotechnol 2009, 36(3): 319–332.CrossRef Demain AL: Biosolutions to the energy problem. J Ind Microbiol Biotechnol 2009, 36(3): 319–332.CrossRef
33.
Zurück zum Zitat Rittmann BE: Opportunities for renewable bioenergy using microorganisms. Biotechnol Bioeng 2008, 100(2):203–212.CrossRef Rittmann BE: Opportunities for renewable bioenergy using microorganisms. Biotechnol Bioeng 2008, 100(2):203–212.CrossRef
34.
Zurück zum Zitat Call D, Logan BE: Hydrogen production in a single chamber microbial electrolysis cell lacking a membrane. Environ Sci Technol 2008, 42(9):3401–3406.CrossRef Call D, Logan BE: Hydrogen production in a single chamber microbial electrolysis cell lacking a membrane. Environ Sci Technol 2008, 42(9):3401–3406.CrossRef
35.
Zurück zum Zitat Casani S, Rouhany M, Knochel S: A discussion paper on challenges and limitations to water reuse and hygiene in the food industry. Water Res 2005, 39(6):1134–1146.CrossRef Casani S, Rouhany M, Knochel S: A discussion paper on challenges and limitations to water reuse and hygiene in the food industry. Water Res 2005, 39(6):1134–1146.CrossRef
36.
Zurück zum Zitat Alimentarius C: Codex Alimentarius Commission: Codex Committee on Food Hygeine. Proposed draft guidelines for the hygeinic reuse of processing water in food plants. Joint FAO/WHO Food Standards Programme, 34th Session. In. Bangkok, Thailand; 2001. Alimentarius C: Codex Alimentarius Commission: Codex Committee on Food Hygeine. Proposed draft guidelines for the hygeinic reuse of processing water in food plants. Joint FAO/WHO Food Standards Programme, 34th Session. In. Bangkok, Thailand; 2001.
37.
Zurück zum Zitat Rabaey K, Clauwaert P, Aelterman P, Verstraete W: Tubular microbial fuel cells for efficient electricity generation. Environ Sci Technol 2005, 39(20):8077–8082.CrossRef Rabaey K, Clauwaert P, Aelterman P, Verstraete W: Tubular microbial fuel cells for efficient electricity generation. Environ Sci Technol 2005, 39(20):8077–8082.CrossRef
38.
Zurück zum Zitat Sun J, Hu YY, Bi Z, Cao YQ: Improved performance of air-cathode single-chamber microbial fuel cell for wastewater treatment using microfiltration membranes and multiple sludge inoculation. J Power Sources 2009, 187(2):471–479.CrossRef Sun J, Hu YY, Bi Z, Cao YQ: Improved performance of air-cathode single-chamber microbial fuel cell for wastewater treatment using microfiltration membranes and multiple sludge inoculation. J Power Sources 2009, 187(2):471–479.CrossRef
39.
Zurück zum Zitat Lu N, Zhou SG, Zhuang L, Zhang JT, Ni JR: Electricity generation from starch processing wastewater using microbial fuel cell technology. Biochem Eng J 2009, 43(3):246–251.CrossRef Lu N, Zhou SG, Zhuang L, Zhang JT, Ni JR: Electricity generation from starch processing wastewater using microbial fuel cell technology. Biochem Eng J 2009, 43(3):246–251.CrossRef
40.
Zurück zum Zitat Kamm B, Gruber PR, Kamm M: Biorefineries - Industrial Processes and Products, vols. 1 & 2. Weinheim, Germany: Wilwy-VCH Verlag Gmbh and Co; 2006. Kamm B, Gruber PR, Kamm M: Biorefineries - Industrial Processes and Products, vols. 1 & 2. Weinheim, Germany: Wilwy-VCH Verlag Gmbh and Co; 2006.
41.
Zurück zum Zitat Niessen J, Schroder U, Scholz F: Exploiting complex carbohydrates for microbial electricity generation - a bacterial fuel cell operating on starch. Electrochem commun 2004, 6(9):955–958.CrossRef Niessen J, Schroder U, Scholz F: Exploiting complex carbohydrates for microbial electricity generation - a bacterial fuel cell operating on starch. Electrochem commun 2004, 6(9):955–958.CrossRef
42.
Zurück zum Zitat Shimoyama T, Komukai S, Yamazawa A, Ueno Y, Logan BE, Watanabe K: Electricity generation from model organic wastewater in a cassette-electrode microbial fuel cell. Appl Microbiol Biotechnol 2008, 80(2):325–330.CrossRef Shimoyama T, Komukai S, Yamazawa A, Ueno Y, Logan BE, Watanabe K: Electricity generation from model organic wastewater in a cassette-electrode microbial fuel cell. Appl Microbiol Biotechnol 2008, 80(2):325–330.CrossRef
43.
Zurück zum Zitat Christy A, Rismani-Yazdi H, Carver Yu Z, Tuovinen OH: Cellulose conversion to electricity in microbial fuel cells: Challenges and constraints. In: Microbial Fuel Cells, First International Symposium: May 27–29, 2008; State College, PA; 2008. Christy A, Rismani-Yazdi H, Carver Yu Z, Tuovinen OH: Cellulose conversion to electricity in microbial fuel cells: Challenges and constraints. In: Microbial Fuel Cells, First International Symposium: May 27–29, 2008; State College, PA; 2008.
44.
Zurück zum Zitat Ren Z, Steinberg LM, Regan JM: Electricity production and microbial biofilm characterization in cellulose-fed microbial fuel cells. Water Sci Technol 2008, 58(3):617–622.CrossRef Ren Z, Steinberg LM, Regan JM: Electricity production and microbial biofilm characterization in cellulose-fed microbial fuel cells. Water Sci Technol 2008, 58(3):617–622.CrossRef
45.
Zurück zum Zitat Chaudhuri SK, Lovley DR: Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nat Biotechnol 2003, 21(10):1229–1232.CrossRef Chaudhuri SK, Lovley DR: Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nat Biotechnol 2003, 21(10):1229–1232.CrossRef
46.
Zurück zum Zitat Freguia S, Rabaey K, Yuan ZG, Keller J: Syntrophic processes drive the conversion of glucose in microbial fuel cell anodes. Environ Sci Technol 2008, 42(21):7937–7943.CrossRef Freguia S, Rabaey K, Yuan ZG, Keller J: Syntrophic processes drive the conversion of glucose in microbial fuel cell anodes. Environ Sci Technol 2008, 42(21):7937–7943.CrossRef
47.
Zurück zum Zitat Hu ZQ: Electricity generation by a baffle-chamber membraneless microbial fuel cell. J Power Sources 2008, 179(1):27–33.CrossRef Hu ZQ: Electricity generation by a baffle-chamber membraneless microbial fuel cell. J Power Sources 2008, 179(1):27–33.CrossRef
48.
Zurück zum Zitat Fan Y, Hu H, Liu H: Enhanced coulombic efficiency and power density of air-cathode microbial fuel cells with an improved cell configuration. J Power Sources 2007, 171:348–354.CrossRef Fan Y, Hu H, Liu H: Enhanced coulombic efficiency and power density of air-cathode microbial fuel cells with an improved cell configuration. J Power Sources 2007, 171:348–354.CrossRef
49.
Zurück zum Zitat Biffinger JC, Pietron J, Ray R, Little B, Ringeisen BR: A biofilm enhanced miniature microbial fuel cell using Shewanella oneidensis DSP10 and oxygen reduction cathodes. Biosens Bioelectron 2007, 22(8):1672–1679.CrossRef Biffinger JC, Pietron J, Ray R, Little B, Ringeisen BR: A biofilm enhanced miniature microbial fuel cell using Shewanella oneidensis DSP10 and oxygen reduction cathodes. Biosens Bioelectron 2007, 22(8):1672–1679.CrossRef
50.
Zurück zum Zitat Aelterman P, Rabaey K, Pham HT, Boon N, Verstraete W: Continuous electricity generation at high voltages and currents using stacked microbial fuel cells. Environ Sci Technol 2006, 40(10):3388–3394.CrossRef Aelterman P, Rabaey K, Pham HT, Boon N, Verstraete W: Continuous electricity generation at high voltages and currents using stacked microbial fuel cells. Environ Sci Technol 2006, 40(10):3388–3394.CrossRef
51.
Zurück zum Zitat Rismani-Yazdi H, Carver SM, Christy AD, Tuovinen IH: Cathodic limitations in microbial fuel cells: An overview. J Power Sources 2008, 180(2):683–694.CrossRef Rismani-Yazdi H, Carver SM, Christy AD, Tuovinen IH: Cathodic limitations in microbial fuel cells: An overview. J Power Sources 2008, 180(2):683–694.CrossRef
52.
Zurück zum Zitat Lefebvre O, Al-Mamun A, Ooi WK, Tang Z, Chua DHC, Ng HY: An insight into cathode options for microbial fuel cells. Water Sci Technol 2008, 57(12):2031–2037.CrossRef Lefebvre O, Al-Mamun A, Ooi WK, Tang Z, Chua DHC, Ng HY: An insight into cathode options for microbial fuel cells. Water Sci Technol 2008, 57(12):2031–2037.CrossRef
53.
Zurück zum Zitat Liu H, Cheng SA, Logan BE: Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration. Environ Sci Technol 2005, 39(14):5488–5493.CrossRef Liu H, Cheng SA, Logan BE: Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration. Environ Sci Technol 2005, 39(14):5488–5493.CrossRef
54.
Zurück zum Zitat Min B, Roman OB, Angelidaki I: Importance of temperature and anodic medium composition on microbial fuel cell (MFC) performance. Biotechnol Lett 2008, 30(7):1213–1218.CrossRef Min B, Roman OB, Angelidaki I: Importance of temperature and anodic medium composition on microbial fuel cell (MFC) performance. Biotechnol Lett 2008, 30(7):1213–1218.CrossRef
55.
Zurück zum Zitat Rozendal RA, Hamelers HVM, Buisman CJN: Effects of membrane cation transport on pH and microbial fuel cell performance. Environ Sci Technol 2006, 40(17):5206–5211.CrossRef Rozendal RA, Hamelers HVM, Buisman CJN: Effects of membrane cation transport on pH and microbial fuel cell performance. Environ Sci Technol 2006, 40(17):5206–5211.CrossRef
56.
Zurück zum Zitat Pham TH, Boon N, Aelterman P, Clauwaert P, De Schamphelaire L, Oostveldt P, Verbeken K, Verstraete W, Rabaey K: High shear enrichment improves the performance of the anodophilic microbial consortium in a microbial fuel cell. Microbial Biotechnol 2008, 1(6):487–496.CrossRef Pham TH, Boon N, Aelterman P, Clauwaert P, De Schamphelaire L, Oostveldt P, Verbeken K, Verstraete W, Rabaey K: High shear enrichment improves the performance of the anodophilic microbial consortium in a microbial fuel cell. Microbial Biotechnol 2008, 1(6):487–496.CrossRef
57.
Zurück zum Zitat Keller J, Rabaey K: Experiences from MFC pilot plant operation. In: MFC Symposium: 2008. Keller J, Rabaey K: Experiences from MFC pilot plant operation. In: MFC Symposium: 2008.
58.
Zurück zum Zitat 58. Borole AP, Mielenz J, Vishnivetskaya TA, Hamilton CY: Controlling accumulation of fermentation inhibitors in biorefinery water recycle using microbial fuel cells. Biotechnol Biofuels 2009, published on line. 58. Borole AP, Mielenz J, Vishnivetskaya TA, Hamilton CY: Controlling accumulation of fermentation inhibitors in biorefinery water recycle using microbial fuel cells. Biotechnol Biofuels 2009, published on line.
59.
Zurück zum Zitat Rezaei F, Richard TL, Logan BE: Enzymatic hydrolysis of cellulose coupled with electricity generation in a microbial fuel cell. Biotechnol Bioeng 2008, 101(6):1163–1169.CrossRef Rezaei F, Richard TL, Logan BE: Enzymatic hydrolysis of cellulose coupled with electricity generation in a microbial fuel cell. Biotechnol Bioeng 2008, 101(6):1163–1169.CrossRef
Metadaten
Titel
Energy Production from Food Industry Wastewaters Using Bioelectrochemical Cells
verfasst von
Abhijeet P. Borole
Choo Y. Hamilton
Copyright-Jahr
2010
Verlag
Springer Netherlands
DOI
https://doi.org/10.1007/978-90-481-3352-9_5