Skip to main content

Climate Change and Groundwater

  • Chapter
  • First Online:
Sustaining Groundwater Resources

Abstract

Human civilisations have for millennia depended on the stability of groundwater resources to survive dry or unreliable climates. While groundwater supplies are buffered against short-term effects of climate variability, they can be impacted over longer time frames through changes in rainfall, temperature, snowfall, melting of glaciers and permafrost and vegetation and land-use changes. Groundwater provides an archive of past climate variation by recording changes in recharge amount or the chemical and isotopic evolutionary history of a groundwater system. For example, in the Sahara desert of North Africa, radiocarbon dating of groundwater shows that a highly arid climate prevailed during the last ice age followed by more humid conditions up until approximately 4000 years ago. In northern America and Europe, massive meltwater recharge of aquifers that occurred as a result of the same ice age approximately 15,000–20,000 years ago has left distinctive stable isotope signatures that remain today. The groundwater response to future climate change will be exacerbated by the heavy reliance that present day societies continue to place on groundwater, and the extensive modifications we have made to natural hydrological regimes. Models of groundwater response to climate change predict both increases and decreases in groundwater recharge and groundwater quality. Outcomes will be dependent on geographic location, and hydrological, biological and behavioural feedback mechanisms as natural systems and human civilisations struggle to cope with both climate change and our increasing demand for water.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aravena R, Wassenaar LI (1993) Dissolved organic carbon and methane in a regional confined aquifer: evidence for associated subsurface sources. Appl Geochem 8:483–493

    Article  CAS  Google Scholar 

  • Ayers JF, Vacher HL (1986) Hydrogeology of an atoll island: a conceptual model from detailed study of a micronesian example. Ground Water 24:185–198

    Article  Google Scholar 

  • Bailey RT, Jenson JW, Olsen AE (2009) Numerical modeling of atoll Island hydrogeology. Ground Water 47:184–196

    Article  CAS  Google Scholar 

  • Bandler H (1995) Water resources exploitation in Australian prehistory. Environmentalist 15:97–107

    Article  Google Scholar 

  • Bear J, Cheng AH-D, Sorek S, Ouazar D, Herrera I (eds) (1999) Seawater intrusion in coastal aquifers—concepts, methods, and practices. Kluwer, Dordrecht

    Google Scholar 

  • Benson SM, Cole DR (2008) CO2 sequestration in deep sedimentary formations. Elements 4:325–331

    Article  CAS  Google Scholar 

  • Bethke CM, Johnson TM (2008) Groundwater age and groundwater age dating. Annu Rev Earth Planet Sci 36:121–152

    Article  CAS  Google Scholar 

  • Busenberg E, Plummer LN (1992) Use of chlorofluoromethanes (CCl3F and CCl2F2) as hydrologic tracers and age-dating tools: example- the alluvium and terrace system of Central Oklahoma. Water Resour Res 28:2257–2283

    Article  CAS  Google Scholar 

  • Busenberg E, Plummer LN (2000) Dating young groundwater with sulfur hexafluoride- natural and anthropogenic sources of sulfur hexafluoride. Water Resour Res 36:3011–3030

    Article  CAS  Google Scholar 

  • Cartwright I, Simmons I (2008) Impact of changing climate and land use on the hydrogeology of southeast Australia. Aust J Earth Sci 55:1009–1021

    Article  CAS  Google Scholar 

  • Castro MC, Stute M, Schlosser P (2000) Comparison of 4He ages and 14C ages in simple aquifer systems: implications for groundwater flow and chronologies. Appl Geochem 15:1137–1167

    Article  CAS  Google Scholar 

  • Clark I, Fritz P (1997) Environmental isotopes in hydrogeology. Lewis, Boca Raton, FL, 328 pp

    Google Scholar 

  • Collon P, Kutschera W, Loosli HH, Lehmann BE, Purtschert R, Love AJ, Sampson L, Anthony D, Cole D, Davids B, Morrissey DJ, Sherrill BM, Steiner M, Pardo RC, Paul M (2000) 81Kr in the great Artesian Basin, Australia: a new method for dating very old groundwater. Earth Planet Sci Lett 182:103–113

    Article  CAS  Google Scholar 

  • Croley TE, Luukkonen CL (2003) Potential effects of climate change on ground water in Lansing, Michigan. J Am Water Resour Assoc (JAWRA) 39:149–163

    Article  Google Scholar 

  • Davison MR, Airey PL (1982) The effect of dispersion on the establishment of a paleoclimatic record from groundwater. J Hydrol 58:131–147

    Article  Google Scholar 

  • Dettinger MD, Cayan DR, Meyer MK, Jeton AE (2004) Simulated hydrologic responses to climate variations and change in the Merced, Carson, and American River Basins, Sierra Nevada, California, 1900–2099. Climatic Change 62:283–317

    Article  Google Scholar 

  • Döll P, Flörke M 2005. Global-scale estimation of diffuse groundwater recharge. Frankfurt Hydrology Paper 03, Institute of Physical Geography, Frankfurt University, Frankfurt, 26 pp. Available at http://www.geo.uni-frankfurt.de/ipg/ag/dl/publikationen/index.html

  • Earman S, Dettinger M 2008. Monitoring networks for long-term recharge change in the mountains of California and Nevada—a meeting report: California Energy Commission PIER Energy-Related Environmental Workshop Report CEC-500-2008-006, 32 pp

    Google Scholar 

  • Earman S, Campbell AR, Newman BD, Phillips FM (2006) Isotopic exchange between snow and atmospheric water vapour: estimation of the snowmelt component of groundwater recharge in the southwestern United States. J Geophys Res 111(D9):D09302. doi:10.1029/2005JD006470

    Article  Google Scholar 

  • Edmunds WM, Dodo A, Djoret D, Gasse F, Gaye CB, Goni IB, Travi Y, Zouari K, Zuppi GM (2004) Groundwater as an archive of climatic and environmental change: Europe to Africa. In: Battarbee WW (ed) Past climate variability through Europe and Africa. Springer, Dordrecht, pp 279–306

    Chapter  Google Scholar 

  • Fabryka-Martin J, Bentley H, Elmore D, Airey PL (1985) Natural iodine-129 as an environmental tracer. Geochim Cosmochim Acta 49:337–347

    Article  CAS  Google Scholar 

  • Fehn U, Snyder G, Egeberg PK (2000) Dating of pore waters with 129I: relevance for the origin of marine gas hydrates. Science 289:2332–2335

    Article  CAS  Google Scholar 

  • Fetter CW (1994) Applied hydrogeology, 3rd edn. Prentice Hall, Englewood Cliffs, NJ, 691 pp. ISBN 0-02-336490-4

    Google Scholar 

  • Fontes JC, Garnier J-M (1979) Determination of the initial 14C activity of the total dissolved carbon: a review of the existing models and a new approach. Water Resour Res 15:399–413

    Article  Google Scholar 

  • Freeze RA, Cherry JA (1979) Groundwater. Prentice-Hall, Englewood Cliffs, NJ, 604pp

    Google Scholar 

  • Galego Fernandes P, Carreira PM (2008) Isotopic evidence of aquifer recharge during the last ice age in Portugal. J Hydrol 361:291–308

    Article  Google Scholar 

  • Gasse F (2000) Hydrological changes in the African tropics since the last glacial maximum. Quaternary Sci Rev 19:189–211

    Article  Google Scholar 

  • Gonfiantini R (1996) On the isotopic composition of precipitation. In: Proceedings, International Symposium on isotope hydrology, In memory of J.-Ch. Fontes. BRGM-ORSTOM, Paris

    Google Scholar 

  • Grasby S, Chen. Z (2005) Subglacial recharge into the Western Canada sedimentary basin – impact of Pleistocene glaciation on basin hydrodynamics. Geolog Soc Am Bull 117(3–4):500–514

    Article  Google Scholar 

  • Grasby S, Betcher RN, Render F (2000) Reversal of the regional-scale flow system of the Williston basin in response to Pleistocene glaciation. Geology 28:635–638

    Article  CAS  Google Scholar 

  • Guendouz A, Moulla AS, Edmunds WM, Zouari K, Shand P, Mamou A (2003) Hydrogeochemical and isotopic evolution of water in the complexe terminal aquifer in the Algerian Sahara. Hydrogeol J 11:483–495

    Article  CAS  Google Scholar 

  • Hong S-Y, Kalnay E (2000) Role of sea surface temperature and soil-moisture feedback in the 1998 Oklahoma–Texas drought. Nature 408:842–844. doi:10.1038/35048548

    Article  CAS  Google Scholar 

  • IPCC (2007) Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, M.L. Parry, O.F. Canziani, J.P. Palutikof, P.J. van der Linden and C.E. Hanson, Eds., Cambridge University Press, Cambridge, UK, 976pp

    Google Scholar 

  • Jiang T, Chen YD, Xu C, Chen X, Chen X, Singh VP (2007) Comparison of hydrological impacts of climate change simulated by six hydrological models in the Dongjiang Basin, South China. J Hydrol 336:316–333

    Article  Google Scholar 

  • Jirákova H, Huneau F, Celle-Jeanton H, Hrkal Z, Le Coustumer P (2009) Palaeorecharge conditions of the deep aquifers of the Northern Aquitaine region (France). J Hydrol 368:1–16

    Article  Google Scholar 

  • Kaufman S, Libby WF (1954) The natural distribution of tritium. Phys Rev 93:1337–1344

    Article  CAS  Google Scholar 

  • Kazemi GA, Lehr JH, Perrochet P (2006) Groundwater age. Wiley, Hoboken, NJ, 325pp

    Google Scholar 

  • Kharaka YK et al (2006a) Gas-water-rock interactions in Frio formation following CO2 injection: implications for the storage of greenhouse gases in sedimentary basins. Geology 34:577–580

    Article  CAS  Google Scholar 

  • Kharaka YK, Cole DR, Thordsen JJ, Kakouros E, Nance HS (2006b) Gas-water-rock interactions in sedimentary basins: CO2 sequestration in the Frio Formation, Texas, USA. J Geochem Exploration 89:183–186

    Article  CAS  Google Scholar 

  • Kipfer R, Aeschbach-Hertin W, Peeters F, Stute M (2002) Noble gases in lakes and ground waters. Rev Mineral Geochem 47:615–700

    Article  CAS  Google Scholar 

  • Kooi H (2008) Spatial variability in subsurface warming over the last three decades; insight from repeated borehole temperature measurements in the Netherlands. Earth Planet Sci Lett 270:86–94

    Article  CAS  Google Scholar 

  • Lal D, Nijampurkar VN, Rama S 1970. Silicon-32 hydrology. In: Proceedings of symposium isotope hydrology, International Atomic Energy Agency, Vienna, 9–13 Mar 1970, pp 847–868

    Google Scholar 

  • Libby WF (1955) Radiocarbon dating, 2nd edn. University of Chicago Press, Chicago, IL

    Google Scholar 

  • Libby WF (1967) History of radiocarbon dating. In: Radioactive dating and methods of low-level counting. IAEA, Vienna, pp 3–25

    Google Scholar 

  • Loáiciga HA, Maidment ER, Valdes JB (2000) Climate-change impacts in a regional karst aquifer, Texas, USA. J Hydrol 227:173–194

    Article  Google Scholar 

  • Loosli HH, Lehmann B, Aeschbach-Hertig W, Kipfer R, Edmunds WM, Eichinger L, Rozanski K, Stute M, Vaikmae R (1998) Tools used to study palaeoclimate help in water management. Eos 79:581–582

    Article  Google Scholar 

  • Loosli HH, Lehmann BE, Smethie WM Jr (2000) Noble gas radioisotopes: 37Ar, 85Kr, 39Ar, 81Kr. In: Cook PG, Herczeg AL (eds) Environmental tracers in subsurface hydrology. Kluwer, Boston, MA, pp 379–396

    Google Scholar 

  • Love AJ, Herczeg AL, Leaney FWJ, Stadter MF, Dighton JC, Armstrong D (1994) Groundwater residence time and palaeohydrology in the Otway Basin, South Australia: 2H, 18O and 14C data. J Hydrol 153:157–187

    Article  Google Scholar 

  • Macpherson GL et al (2008) Increasing shallow groundwater CO2 and limestone weathering, Konza Prairie, USA. Geochim Cosmochim Acta 72:5581–5599

    Article  CAS  Google Scholar 

  • Maxwell RM, Kollet SJ (2008) Interdependence of groundwater dynamics and land-energy feedbacks under climate change. Nat Geosci 1:665–669

    Article  CAS  Google Scholar 

  • McIntosh JC, Walter LM (2005) Volumetrically significant recharge of pleistocene glacial meltwaters into epicratonic basins: constraints imposed by solute mass balances. Chem Geol 222:292–309

    Article  CAS  Google Scholar 

  • Morgenstern U (2000) Silicon-32. In: Cook PG, Herczeg AL (eds) Environmental tracers in subsurface hydrology. Kluwer, Boston, MA, pp 498–502

    Google Scholar 

  • Nakićenović N, Swart R (eds) (2000) Special report on emissions scenarios. Cambridge University Press, Cambridge, 599pp

    Google Scholar 

  • Pearson FJ (1965) Use of C-13/C-12 ratios to correct radiocarbon ages of material initially diluted by limestone. In: Chatters RM, Olsen EA (eds) Proceedings of the 6th international conference on radiocarbon and tritium dating. US Atomic Energy Commission, CONF-650652, Pullman, WA, pp 357–366

    Google Scholar 

  • Pearson FJ, White DE (1967) Carbon-14 ages and flow rates of water in Carrizo sand, Atascosa County, Texas. Water Resour Res 3:251–261

    Article  CAS  Google Scholar 

  • Phillips FM (2000) Chlorine-36. In: Cook PG, Herczeg AL (eds) Environmental tracers in subsurface hydrology. Kluwer, Boston, MA, pp 299–348

    Google Scholar 

  • Phillips FM, Castro MC (2004) Groundwater dating and residence-time measurements. In: Holland HD, Turekian KK (eds) Treatise on geochemistry, Vol 5. Elsevier-Pergamon, Oxford, pp 451–497

    Google Scholar 

  • Plummer LN (2005) Dating of young groundwater. In: Aggarwal PK, Gat JR, Froehlich KFO (eds) Isotopes in the water cycle past, present and future of a developing science. Springer, Dordrecht, Netherlands, pp 193–218

    Google Scholar 

  • Plummer LN, Prestemon EC, Parckhurst DL (1994) User’s guide to NETPATH- A computer program for mass-balance calculations: an interactive code (NETPATH) for modelling NET geochemical reactions along a flow PATH- Version 2.0. US Geological Survey, Water Resources Investigations Report 94-4169

    Google Scholar 

  • Ranjan P, Kazama S, Sawamoto M, Sana A (2009) Global scale evaluation of coastal fresh groundwater resources. Ocean Coastal Manage 52:197–206

    Article  Google Scholar 

  • Rath HK (1988) Simulation of the global 85Kr and 14CO2 distribution by means of a time dependent two-dimensional model of the atmosphere (in German). PhD thesis, University of Heidelberg, Germany

    Google Scholar 

  • Rozanski K, Florkowski T (1979) Krypton-85 dating of groundwater. Isotope hydrology 1978 proceedings of symposium Vienna, 1978, Vienna, pp 949–961

    Google Scholar 

  • Scanlon BR, Keese KE, Flint AL, Flint LE, Gaye CB, Edmunds M, Simmers I (2006) Global synthesis of groundwater recharge in semiarid and arid regions. Hydrol Processes 20:3335–3370

    Article  CAS  Google Scholar 

  • Scibek J, Allen DM, Cannon AJ, Whitfield PH (2007) Groundwater–surface water interaction under scenarios of climate change using a high-resolution transient groundwater model. J Hydrol 333:165–181

    Article  Google Scholar 

  • Shiklomanov IA, Rodda JC, (eds) (2004) World water resources at the beginning of the 21st century. Cambridge University Press, New York, NY, 435p. ISBN, 0 521 82085 5

    Google Scholar 

  • Sonntag C, Thorweihe U, Rudolph J, Löhnert E, Junghans C, Münnich K, Klitzsch E, Shazly E, Swailem F (1980) Paleoclimatic evidence in apparent 14C ages of Saharian groundwaters. Radiocarbon 22:871–878

    CAS  Google Scholar 

  • Stute M, Talma AS (1998) Glacial temperatures and moisture transport regimes reconstructed from noble gas and δ18O, Stampriet aquifer, Namibia. In: Isotope techniques in the study of past and current environmental changes in the hydrosphere and the atmosphere. IAEA Vienna Symposium 1997, Vienna, pp 307–328

    Google Scholar 

  • Stute M, Forster M, Frischkorn H, Serejo A, Clark JF, Schlosser P, Broecker WS, Bonani G (1995) Cooling of tropical Brazil (5°C) during the last glacial maximum. Science 269:379–383

    Article  CAS  Google Scholar 

  • Sueker JK, Turk JT, Michel RL (1999) Use of cosmogenic 35S for comparing ages of water from three alpine-subalpine basins in the Colorado Front Range. Geomorphology 27:61–74

    Article  Google Scholar 

  • Trenberth KE (1998) Atmospheric moisture residence times and cycling: implications for rainfall rates and climate change. Climatic Change 39:667–694

    Article  Google Scholar 

  • UNEP (United Nations Environment Programme) (2002) Vital water graphics – an overview of the state of the world’s fresh and marine waters. UNEP, Nairobi. ISBN: 92–807–2236–0

    Google Scholar 

  • Varis O, Kajander T, Lemmel AR (2004) Climate and water: from climate models to water resources management and vice versa. Climatic Change 66:321–344

    Article  Google Scholar 

  • Werner AJ, Simmons CT (2009) Impact of sea-level rise on sea water intrusion in coastal aquifers. Ground Water 47:197–204

    Article  CAS  Google Scholar 

  • WMO (World Meteorological Organization) (1997) Comprehensive assessment of the freshwater resources of the world. WMO and Stockholm Environment Institute, Stockholm

    Google Scholar 

  • World Water Assessment Programme (2009) The United Nations World Water Development Report 3: Water in a Changing World. UNESCO, Paris, and Earthscan, London

    Google Scholar 

  • Xu C, Widén E, Halldin S (2005) Modelling hydrological consequences of climate change – progress and challenges. Adv Atmos Sci 22:789–797

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine E. Hughes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Hughes, C.E., Cendón, D.I., Johansen, M.P., Meredith, K.T. (2011). Climate Change and Groundwater. In: Jones, J. (eds) Sustaining Groundwater Resources. International Year of Planet Earth. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3426-7_7

Download citation

Publish with us

Policies and ethics