Skip to main content

Ecology and Human Pathogenicity of Plant-Associated Bacteria

  • Chapter
  • First Online:
Regulation of Biological Control Agents

Abstract

Plant species and organs are colonised by diverse bacterial communities, which fulfil important functions for their host. Plant-associated bacteria have a great potential in diverse areas of biotechnology, e.g. as biological control agents (BCAs) in plant protection. Although many of them have a positive interaction with their host plants, they can interact with other eukaryotic hosts like humans in a pathogenic way. This review presents an overview about these bacteria that have bivalent interactions with plant and human hosts. We discuss mechanisms of the interactions and their behaviour and ecology. Another important issue is to detect those potentially dangerous bacteria by reliable test systems, and to exclude them from biotechnological applications. The Caenorhabditis elegans slow killing assay is such a bioassay, which is presented and discussed with examples. Besides human health, effects on the environment, especially on structure and function of microbial communities, are discussed. Diverse studies show that BCA application resulted only in transient, short-term effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aballay A, Ausubel FM (2002) Caenorhabditis elegans as a host for the study of host-pathogen interactions. Curr Opin Microbiol 5:97−101

    Article  PubMed  Google Scholar 

  • Aballay A, Yorgey P, Ausubel FM (2000) Salmonella typhimurium proliferates and establishes a persistent infection in the intestine of Caenorhabditis elegans. Curr Biol 10:1539−1542

    Article  PubMed  Google Scholar 

  • Alonso A, Morales G, Escalante R, Campanario E, Sastre L, Martinez JL (2004) Overexpression of the multidrug efflux pump SmeDEF impairs Stenotrophomonas maltophilia physiology. J Antimicrob Chemother 53:432−434

    PubMed  Google Scholar 

  • Alonso A, Rojo F, Martinez JL (1999) Environmental and clinical isolates of Pseudomonas aeruginosa show pathogenic and biodegradative properties irrespective their origin. Environ Microbiol 1:421−430

    Article  PubMed  Google Scholar 

  • Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Ann Rev Plant Biol 57:234−266

    Google Scholar 

  • Beale E, Li G, Tan MW, Rumbaugh KP (2006) Caenorhabditis elegans senses bacterial autoinducers. Appl Environ Microbiol 72:5135−5137

    Article  PubMed  Google Scholar 

  • Berg G (2009) Plant-microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. J Appl Microbiol Biotechnol 84:11−18

    Google Scholar 

  • Berg G, Eberl L, Hartmann A (2005a) The rhizosphere as a reservoir for opportunistic human pathogenic bacteria. Environ Microbiol 71:4203−4213

    Google Scholar 

  • Berg G, Krechel A, Ditz M, Faupel A, Ulrich A, Hallmann J (2005b) Endophytic and ectophytic potato-associated bacterial communities differ in structure and antagonistic function against plant pathogenic fungi. FEMS Microbiol Ecol 51:215−229

    PubMed  Google Scholar 

  • Berg G, Opelt K, Zachow C, Lottmann J, Götz M, Costa R, Smalla K (2006) The rhizosphere effect on bacteria antagonistic towards the pathogenic fungus Verticillium differs depending on plant species and site. FEMS Microbiol Ecol 56:250−261

    PubMed  Google Scholar 

  • Berg G, Roskot N, Smalla K (1999) Genotypic and phenotypic relationship in clinical and environmental isolates of Stenotrophomonas maltophilia. J Clin Microbiol 37:3594−3600

    PubMed  Google Scholar 

  • Berg G, Roskot N, Steidle A, Eberl L, Zock A, Smalla K (2002) Plant-dependent genotypic and phenotypic diversity of antagonistic rhizobacteria isolated from different Verticillium host plants. Appl Environ Microbiol 68:3328−3338

    PubMed  Google Scholar 

  • Berg G, Smalla K (2009) Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol Ecol 68:1−13

    PubMed  Google Scholar 

  • Blouin-Bankhead S, Landa BB, Lutton E, Weller DM, McSpadden Gardener BB (2004) Minimal changes in the rhizobacterial population structure following root colonization by wild type and transgenic biocontrol strains. FEMS Microbiol Ecol 49:307−318

    Google Scholar 

  • Cao H, Baldini RL, Rahme LG (2001) Common mechanisms for pathogens of plants and animals. Ann Rev Phytopathol 39:259−284

    Google Scholar 

  • Cardona ST, Wopperer J, Eberl L, Valvano MA (2005) Diverse pathogenicity of Burkholderia cepacia complex strains in the Caenorhabditis elegans host model. FEMS Microbiol Lett 250:97−104

    Article  PubMed  Google Scholar 

  • Conn VM, Franco CMM (2004) Effect of microbial inoculants on the indigenous actinobacterial endophyte population in the roots of wheat as determined by Terminal Restriction Fragment Length Polymorphism. Appl Environ Microbiol 70:6407−6413

    PubMed  Google Scholar 

  • Consortium (The C. elegans Sequencing Consortium) (1998) Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 282:2012−2018

    Google Scholar 

  • Cook RJ, Tomashow LS, Weller DM, Fujimoto D, Mazzola M, Bangera G, Kim DS (1995) Molecular mechanisms of defense by rhizobacteria against root disease. Proc Natl Acad Sci USA 92:4197−201

    PubMed  Google Scholar 

  • Costa R, Gomes NC, Krogerrecklenfort E, Opelt K, Berg G, Smalla K (2007) Pseudomonas community structure and antagonistic potential in the rhizosphere: insights gained by combining phylogenetic and functional gene-based analyses. Environ Microbiol 9:2260−2273

    Article  PubMed  Google Scholar 

  • Costacurta A, Vanderleyden J (1995) Synthesis of phytohormones by plant-associated bacteria. Crit Rev Microbiol 21:1−18

    Article  PubMed  Google Scholar 

  • Dekkers LC, van der Bij AJ, Mulders IHM, Phoelich CC, Wentwoord RAR, Glandorf DCM, Lugtenberg BJJ (1998) Role of the O-antigen of lipopolysaccharide, and possible roles of growth rate and NADH:ubiqunone oxidoreductase (nuo) in competitive tomato root-tip colonization by Pseudomonas fluorescens WCS365. Mol Plant-Microbe Interact 11:763−771

    PubMed  Google Scholar 

  • Devidas P, Rehberger LA (1992) The effects of exotoxin (Thuringiensin) from Bacillus thuringiensis on Meloidogyne incognita and Caenorhabditis elegans. Plant Soil 145:115−120

    Article  Google Scholar 

  • Dunne C, Moënne-Loccoz Y, de Bruijn FJ, O´Gara F (2000) Overproduction of an inducile extracellular serine protease improves biological control of Pythium ultimum by Stenotrophomonas maltophilia strain W81. Microbiol 146:2069−2078

    Google Scholar 

  • Dörr J, Hurek T, Reinhold-Hurek B (1998) Type IV pili are involved in plant−microbe and fungus−microbe interactions. Mol Microbiol 30:7−17

    Article  PubMed  Google Scholar 

  • Finnan S, Morrissey JP, O‘Gara F, Boyd EF (2004) Genome diversity of Pseudomonas aeruginosa isolates from cystic fibrosis patients and the hospital environment. J Clin Microbiol 42:5783−5792

    Article  PubMed  Google Scholar 

  • Garbeva P, van Veen JA, van Elsas JD (2004) Microbial diversity in soil: selection of microbial populations by plant and soil type and implications for disease suppressiveness. Annu Rev Phytopathol 42:243−270

    Article  PubMed  Google Scholar 

  • Girlanda M, Perotto S, Moenne-Loccoz Y, Berbero R, Lazzari A, Defago G, Bonfante P, Luppi P (2001) Impact of biocontrol Pseudomonas fluorescens CHA0 and a genetically modified derivative on the diversity of culturable fungi in the cucumber rhizosphere. Appl Environ Microbiol 67:1851−1864

    Article  PubMed  Google Scholar 

  • Glandorf DCM, Verheggen P, Jansen T, Jorritsma JW, Smit E, Leeflang P et al (2001) Effect of genetically modified Pseudomonas putida WCS358r on the fungal rhizosphere micro-flora of field-grown wheat. Appl Environ Microbiol 67:3371−3378

    Article  PubMed  Google Scholar 

  • Glick BR, Penrose DM, Li JP (1998) A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J Theor Biol 190:63−68

    Article  PubMed  Google Scholar 

  • Govan JRW, Balendreau J, Vandamme P (2000) Burkholderia cepacia – friend and foe. ASM News 66:124−125

    Google Scholar 

  • Graner G, Persson P, Meijer J, Alstrom S (2003) A study on microbial diversity in different cultivars of Brassica napus in relation to its wilt pathogen, Verticillium longisporum. FEMS Microbiol Lett 29:269−276

    Google Scholar 

  • Grosch R, Faltin F, Lottmann J, Kofoet A, Berg G (2005) Effectiveness of 3 antagonistic bacterial isolates to control Rhizoctonia solani Kühn on lettuce and potato. Can J Microbiol 51:345−353

    Article  PubMed  Google Scholar 

  • Hacker J, Carniel E (2001) Ecological fitness, genomic islands and bacterial pathogenicity. EMBO reports 2:376−381

    PubMed  Google Scholar 

  • Hacker J, Hentschel U, Dobrindt U (2003) Prokaryotic chromosomes and diseases. Science 301:790−793

    Article  PubMed  Google Scholar 

  • Hagemann M, Ribbeck-Busch K, Klähn S, Hasse D, Steinbruch R, Berg G (2008) The plant-associated bacterium Stenotrophomonas rhizophila expresses a new enzyme for the synthesis of the compatible solute glucosylglycerol. J Bac 190:5898−5906

    Google Scholar 

  • Hebbar KP, Martel MH, Heulin T (1998) Suppression of pre- and postemergence damping-off in corn by Burkholderia cepacia. Eur J Plant Pathol 104:29−36

    Article  Google Scholar 

  • Hornschuh M, Grotha R, Kutschera U (2002) Epiphytic bacteria associated with the bryophyte Funaria hygrometrica: effect of Methylobacterium strains on protonema development. Plant Biol 4:682−682

    Article  Google Scholar 

  • Jäderlund J (2008) Fates and impact of the genetically modified plant growth promoting bacterium Pseudomonas fluorescens SBW25. PhD thesis Swedish University of Agricultural Sciences Uppsala

    Google Scholar 

  • Jones BD, Nichols WA, Gibson BW, Sunshine MG, Apicella MA (1997) Study of the role of the htrB gene in Salmonella typhimurium virulence. Infect Immun 65:4778−4783

    PubMed  Google Scholar 

  • Kiewitz C, Tümmler B (2000) Sequence diversity of Pseudomonas aeruginosa: impact on population structure and genome evolution. J Bacteriol 182:3125−3135

    Article  PubMed  Google Scholar 

  • Köthe M, Antl M, Huber B, Stoecker K, Ebrecht D, Steinmetz I, Eberl L (2003) Killing of Caenorhabditis elegans by Burkholderia cepacia is controlled by the cep quorum-sensing system. Cell Microbiol 5:343−351

    Article  PubMed  Google Scholar 

  • Lottmann J, Heuer H, de Vries J, Mahn A, Düring K, Wackernagel W, Smalla K, Berg G (2000) Establishment of introduced antagonistic bacteria in the rhizosphere of transgenic potatoes and their effect on the bacterial community. FEMS Microbiol Ecol 33:41−49

    PubMed  Google Scholar 

  • Lugtenberg BJJ, Chin-A-Woeng TFC, Bloemberg GV (2002) Microbe-plant interactions: principles and mechanisms. Antonie van Leewenhoek 81:373−383

    Article  Google Scholar 

  • Lugtenberg BJJ, Dekkers LC (1999) What makes Pseudomonas bacteria rhizosphere competent?. Environ Microbiol 1:9−13

    PubMed  Google Scholar 

  • Marschner P, Yang CH, Lieberei R, Crowley DE (2001) Soil and plant specific effects on bacterial community composition in the rhizosphere. Soil Biol Biochem 33:1437−1445

    Article  Google Scholar 

  • Miller KJ, Wood JM (1996) Osmoadaption by rhizosphere bacteria. Ann Rev Microbiol 50:101−136

    Google Scholar 

  • Minkwitz A, Berg G (2001) Comparison of antifungal activities and 16S ribosomal DNA sequences of clinical and environmental isolates of Stenotrophomonas maltophilia. J Clin Microbiol 39:139−145

    Article  PubMed  Google Scholar 

  • Morales G, Wiehlmann L, Gudowius P, van Deldenb C, Tümmler B, Martinez JL, Rojo F (2004) Structure of Pseudomonas aeruginosa populations analyzed by single nucleotide polymorphisms and pulsed-field gel electrophoresis. J Bacteriol 186:4228−4237

    PubMed  Google Scholar 

  • Nakayama T, Homma Y, Hashidoko Y, Mitzutani J, Tahara S (1999) Possible role of xanthobaccins produced by Stenotrophomonas sp. strain SB-K88 in suppression of sugar beet damping-off disease. Appl Environ Microbiol 65:4334−4339

    PubMed  Google Scholar 

  • Opelt K, Berg C, Berg G (2007a) The bryophyte genus Sphagnum is a reservoir for powerful and extraordinary antagonists and potentially facultative human pathogens. FEMS Microb Ecol 61:38−53

    Google Scholar 

  • Opelt K, Chobot V, Hadacek F, Schönemann S, Eberl L, Berg G (2007b) Investigations of the structure and function of bacterial communities associated with Sphagnum mosses. Environ Microbiol 9:2795–2809

    Article  CAS  PubMed  Google Scholar 

  • Parke JL, Gurian-Sherman D (2001) Diversity of the Burkholderia cepacia complex and implications for risk assessment of biological control strains. Ann Rev Phytopathol 39:225−258

    Google Scholar 

  • Pieterse CMJ, van Pelt JA, Verhagen BWM, Ton J, van Wees SCM, Lon-Klosterziel KM, van Loon LC (2003) Induced systemic resistance by plant growth promoting rhizobacteria. Symbiosis 35:39−54

    Google Scholar 

  • Preston GM, Bertrand N, Rainey PB (2001) Type III secretion in plant growth promoting Pseudomonas fluorescens SBW25. Mol Microbiol 41:999−1014

    PubMed  Google Scholar 

  • Raaijmakers JM, Paulitz CT, Steinberg C, Alabouvette C, Moenne-Loccoz Y (2008) The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant Soil. doi:10.1007/s11104-008-9568–6

    Google Scholar 

  • Rahme LG, Stevens EJ, Wolfort SF, Shoa J, Tompkins RG, Ausubel FM (1995) Common virulence factors for bacterial pathogenicity in plants and animals. Science 268:1899−1902

    Article  PubMed  Google Scholar 

  • Rasche F, Hodl V, Poll C, Kandeler E, Gerzabek MH, van Elsas JD, Sessitsch A (2006) Rhizosphere bacteria affected by transgenic potatoes with antibacterial activities compared with the effects of soil, wild-type potatoes, vegetation stage and pathogen exposure. FEMS Microbiol Ecol 56:219−235

    PubMed  Google Scholar 

  • Ribbeck-Busch K, Roder A, Hasse D, de Boer W, Martínez JL, Hagemann M, Berg G (2005) A molecular biological protocol to distinguish potentially human pathogenic Stenotrophomonas maltophilia from plant−associated Stenotrophomonas rhizophila. Environ Microbiol 7:1853−1858

    Article  PubMed  Google Scholar 

  • Scherwinski K, Grosch R, Berg G (2007) Root application of bacterial antagonists to field-grown lettuce: effects on non-target micro-organisms and disease suppression. IOBC/WPRS Bull 30:255−257

    Google Scholar 

  • Scherwinski K, Grosch R, Berg G (2008) Effect of bacterial antagonists on lettuce: active biocontrol of Rhizoctonia solani and negligible, short-term effect on non-target microbes. FEMS Microb Ecol 64:106–116

    Article  CAS  Google Scholar 

  • Scherwinski K, Wolf A, Berg G (2006) Assessing the risk of biological control agents on the indigenous microbial communities: Serratia plymuthica HRO-C48 and Streptomyces sp. HRO-71 as model bacteria. BioControl 52:87−112

    Google Scholar 

  • Schulenburg H, Ewbank JJ (2004) Diversity and specificity in the interaction between Caenorhabditis elegans and the pathogen Serratia marcescens. BMC Evol Biol 4:49−56

    Article  Google Scholar 

  • Schwieger F, Tebbe CC (2000) Effect of field inoculation with Sinorhizobium meliloti L33 on the composition of bacterial communities in rhizospheres of a target plant (Medicago sativa) and a non-target plant (Chenopodium album)-linking of 16S rRNA gene-based single-strand conformation polymorphism community profiles to the diversity of cultivated bacteria. Appl Environ Microbiol 66:3556−3565

    Article  PubMed  Google Scholar 

  • Siciliano DS, Forin N, Mihoc A et al (2001) Selection of specific endophytic bacterial genotypes by plant in response to soil contamination. Appl Environ Microbiol 67:2469−2475

    Article  PubMed  Google Scholar 

  • Smalla K (2004) Culture-independent microbiology. In: Bull AT (ed) Microbial diversity and bioprospecting. ASM, Washington DC, pp 88−99

    Google Scholar 

  • Smalla K, Wieland G, Buchner A, Zock A, Parzy J, Roskot N, Heuer H, Berg G (2001) Bulk and rhizosphere soil bacterial communities studied by Denaturing Gradient Gel Electrophoresis: plant dependent enrichment and seasonal shifts. Appl Environ Microbiol 67:4742−4751

    Article  PubMed  Google Scholar 

  • Sokol PA, Malott RJ, Riedel K, Eberl L (2007) Communication systems in the genus Burkholderia: global regulators and targets for novel antipathogenic drugs. Future Microbiol 2:555−563

    Article  PubMed  Google Scholar 

  • Steinkamp G, Wiedemann B, Rietschel E, Krahl A, Giehlen J, Barmeier H, Ratjen F (2005) Prospective evaluation of emerging bacteria in cystis fibrosis. J Cyst Fibros 4:41−48

    Article  PubMed  Google Scholar 

  • Sørensen J (1997) The rhizosphere as a habitat for soil microorganisms. In: Van Elsas JD, Trevors JT, Wellington EMH (eds) Modern Soil Microbiology. Marcel Dekker, Hongkong, pp 21−45

    Google Scholar 

  • Tan MW, Ausubel FM (2000) Caenorhabditis elegans a model genetic host to study Pseudomonas aeruginosa pathogenesis. Curr Opin Microbiol 3:29−34

    PubMed  Google Scholar 

  • Tan MW, Rahme LG, Sternberg JA, Tompkins RG, Ausubel FM (1999) Pseudomonas aeruginosa killing of Caenorhabditis elegans used to identify P. aeruginosa virulence factors. Proc Natl Acad Sci USA 96:2408−2413

    PubMed  Google Scholar 

  • Viebahn M, Glandorf DCM, Ouwens TWM, Smit E, Leeflang P, Wernars K, Thomashow LS, Van Loon LC, Bakker PAHM (2003) Repeated introduction of genetically modified Pseudomonas putida WCS358r without intensified effects on the indigenous microflora of field-grown wheat. Appl Environ Microbiol 69:3110−3118

    Article  PubMed  Google Scholar 

  • Vincent JL, Bihari DJ, Suter PM, Bruining HA, White J, Nicolas-Chanoin MH, Wolff M, Spencer RC, Hemmer M (1995) The prevalence of nosocomial infection in intensive care units in Europe. Results of the European Prevalence of Infection in Intensive Care (EPIC) Study. EPIC International Advisory Committee. JAMA 274:639−644

    Article  PubMed  Google Scholar 

  • Walsh UF, Moënne-Loccoz Y, Tichy H-V, Gardner A, Corkery DM, Lorkhe S, O´Gara F (2003) Residual impact of the biocontrol inoculant Pseudomonas fluorescens F113 on the resident population of rhizobia nodulating a red clover rotation crop. Microbiol Ecol 45:145−155

    Article  Google Scholar 

  • Whipps J (2001) Microbial interactions and biocontrol in the rhizosphere. J Exp Bot 52:487−511

    PubMed  Google Scholar 

  • Wilson RK (1999) How the worm was won The C. elegans genome sequencing project. Trends Genet 15:51−58

    Article  PubMed  Google Scholar 

  • Winding A, Binnerup SJ, Pritchard H (2004) Non-target effects of bacterial biological control agents suppressing root pathogenic fungi. FEMS Microbiol Ecol 47:129−141

    PubMed  Google Scholar 

  • Wolfgang MC, Kulasekara BR, Liang X, Boyd D, Wu K, Yang Q, Miyada CG, Lory S (2003) Conservation of genome content and virulence determinants among clinical and environmental isolated of Pseudomonas aeruginosa. PNAS 100:88484−8489

    Article  Google Scholar 

  • Zabetakis I (1997) Enhancement of flavour biosynthesis from strawberry (Fragaria x ananassa) callus cultures by Methylobacterium species. Plant Cell Tissue Organ Culture 50:179−183

    Article  Google Scholar 

  • Zachow C, Pirker H, Westendorf C, Tilcher R, Berg G (2009) Caenorhabditis elegans provides a valuable tool to evaluate the human pathogenic potential of bacterial biocontrol agents. Eur J Plant Pathol 125:367−376

    Article  Google Scholar 

  • Zachow C, Tilcher R, Berg G (2008) Sugar beet-associated bacterial and fungal communities show a high indigenous antagonistic potential against plant pathogens. Microb Ecol 55:119−129

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Jamshid Fathei (Uppsala, Sweden) for cooperation regarding DsRed2-transformation of bacteria and Anton Hartmann (Neuherberg, Germany) for help with Fig. 8.2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriele Berg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Netherlands

About this chapter

Cite this chapter

Berg, G., Zachow, C., Cardinale, M., Müller, H. (2011). Ecology and Human Pathogenicity of Plant-Associated Bacteria. In: Ehlers, RU. (eds) Regulation of Biological Control Agents. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3664-3_8

Download citation

Publish with us

Policies and ethics